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What should control researchers know
about design research?
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 Optimization Model-based CCD

• Many control co-design (CCD) approaches leverage model-based CCD
• Often this is further structured as optimization model-based CCD

• This comes with the value, goal, or objective measure(s)
• We also must consider what is possible — the constraints

changing: plant decisions, control decisions (1a)

(maximize or) minimize: goal (1b)

subject to: what is possible (1c)

• Let’s add some more structure to the CCD problem:

changing: plant decisions xp, control decisions xc (2a)

(maximize or) minimize: goal J(xp, xc) (2b)

subject to: physical design-only constraints gp(xp) (2c)

control design-only constraints gc(xc) (2d)

coupled system constraints gs(xp, xc) (2e)

3



What You Should Know Portrait of CCD Research References

 Design Coupling and Synergy Mechanisms
• We are here because of the purple coupled parts — they enable the investigation

of design coupling and synergy mechanisms
• Design coupling — How design decisions in one domain influence the ideal

design decisions in other domains
• For example, plant decisions might impact controller gains, or control

decisions modify the states that force the plant decisions to change
• Is it strong or significant? Is it captured by the optimization model?

• Synergy mechanism — A specific underlying design mechanism that facilitates
overall system performance improvements when two or more design elements
are varied synergistically1

• In wind energy, CCD enables the synergistic reduction in tower size with
better-controlled maintenance of the optimal tip speed ratio, structural
deflections, and stress2

• Certain simplified system dynamics (such as steady-state or pseudostatic
models) or static analysis that neglects dynamic effects altogether don’t readily
support these ideas3

1 Allison, Herber, and Deshmukh 2015 2 Deshmukh and Allison 2015 3 Allison and Herber 2014
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 What Should Our Goals Be? (Or What Have Our Goals Been?)
? What determines the system’s value that we are driving at through a CCD

perspective?

? Are we looking to understand trade-offs (multi-objective perspectives)?
• Sometimes the result of these questions leads to separable “design”-focused

goals Jp and “control”-focused goals Jc

• In other CCD application spaces, such a distinction might be unnatural or
unnecessary

• In energy systems, this might be the levelized cost of energy (LCOE)1

• Other areas are cost-driven (minimize cost within prescribed specifications)
• Still, limited or simplified consideration of the dynamics and controls occurs

• For example, designing a counterbalanced robotic manipulator as a proxy
for minimizing energy consumption2

• Overall we might consider appropriately “balanced” CCD approaches
• Ones that identify the key system-level goals without undue influence of

either area
1 Sundarrajan, Lee, et al. 2021 2 Allison and Herber 2014
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 Consider the Limits

• A common perspective in the design community is understanding feasible
system solutions through limits

• Inequality constraints in the optimization context
• These might be simple bounds (x ≤ a) or more complicated constraints on our

independent decisions or derived quantities (e.g., outputs, states, and control
signals)

• Examples include cost, mass, geometric dimensions, deflection, stress,
fatigue, packaging, temperatures, power, actuator limits, etc.

• Drivers are often failure theories, manufacturing limits, stakeholder preferences,
or even engineering judgment

? A question then is what are effective CCD strategies assuming these concerns?
• Many popular control paradigms don’t directly handle such concerns
• This has led some CCD researchers to explore methods with this specific

situation in mind
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 How Should We Solve It? — Sequential Perspective

P : Plant decisions C : Control decisions

(b) Iterative sequential design

Optimize P Optimize C

Iterations

Optimize P Optimize C

(a) Sequential design

• Sequential design — Determine the plant first, controller second é

• Iterative sequential design — Now we pass control design results back for plant
redesign and iterate

• What is communicated back? Might be a fixed controller and/or insights into
changes related to the physical-design domain

• This approach can suffer from slow convergence and well-posedness issues

? Can we do better?
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 How Should We Solve It? — Simultaneous and Nested CCD Strategies

(d) Simultaneous CCD

Optimize P and C

(c) Nested CCD

Optimize P

Optimize C
Candidate

Plants

P : Plant decisions C : Control decisions

• Nested CCD — Ask the question, if I made this physical system, what would the
best controller be? This is the essence of the nested approach1

• Embedded inner-loop optimization problem (control subproblem) within the
outer loop

• Simultaneous CCD — Consider both at the same time in one problem
• Could follow many paths toward the system-level optimum

1 Herber and Allison 2018
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 Simultaneous and Nested CCD Strategies — Which One?
1. X is faster and more scalable than Y — It depends!1

• A poorly implemented Y is worse than a well implemented X
2. X is easier to implement than Y — It depends!

• Sometimes it is easier to create one problem with simultaneous CCD
• Sometimes it is easier to partition based on an existing control design

technique for the inner-loop subproblem

3. X is more robust and accurate than Y — It depends!
• Simultaneous CCD has more flexibility to explore since infeasibility is

allowed while iterating/solving
• Nested CCD can support hybrid approaches with focused exploration (often

the physical design parameters) but might fail to converge if the inner loop
does not always have a solution

4. X will result in the same solution than Y — It depends!
• Many CCD problems do not readily support “nice” formulations
• In certain CCD problems, concerns regarding local optima are valid

1 Sundarrajan and Herber 2021
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 Modeling for Effective and Balanced CCD (1)
• Lots of ways to model and represent change to our physical systems or plants
• However, there is sometimes a disconnect between the more “controls-centric”

plant modeling needs and the model concerns of physical system realization

Lumped DirectMetamodel

Abstract Concrete

• Metamodel — coefficients in a state-space model or transfer function
• Lumped model — physics-driven intermediate parameters

• For example, the spring constant k in the a2,3 coefficient k/m of the
state-space model

• Direct model — independent decisions, more closely connected to
manufacturing

• Instead of k from before, we might consider the spring wire diameter directly
10
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 Modeling for Effective and Balanced CCD (2)

• More abstract representations might be considered plant requirements or targets,
but the issue comes when there is a disconnect between this CCD result and
what is physically possible, especially when plant-design constraints are ignored1

• This isn’t to say there isn’t value in more abstract CCD problems — we should
consider the realizability of the outcome

• Linear vs. nonlinear models, low vs. high fidelity models — ensure that system
performance assessment is sufficiently close to reality even if the primary
(control) design methods are based on linear theory

• Overly simplified plant models might not enable sufficient exploration and
exploitation of design coupling

1 Allison and Herber 2014
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¸ Active Suspension Case Study

• Active vehicle suspension CCD problem in
this work is the one from Allison, Guo, and
Han 2014

• The system consists of two masses: sprung
mass ms/4 and unsprung mass mus/4

• The suspension is composed of a spring ks

and damper cs, and a force actuator u(t)
• kt and ct are the spring damper constants of

the tire, and z0(t) is the road input
• There are seven design geometric plant

design variables associated with the spring
and damper

Active Suspension CCD Problem
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¸ System Dynamics and Objective
• There are four states in the system (zs − zus, żs, zus − z0, żus)
• The dynamics of the system are linear with respect to (ξ(t), u(t)), and nonlinear

with respect to xp:

ξ̇(t) = A(xp)ξ(t) + Bu(t) + Eż0(t) (6a)

A =


0 1 0 0

−kt(xp)

mus/4

−[cs(xp)+ct]

mus/4

ks(xp)

mus/4

cs(xp)

mus/4

0 −1 0 1
0 cs(xp)

ms/4

−ks(xp)

ms/4

−cs(xp)

ms/4

 , B =


0
−1

mus/4

0
1

ms/4

 , E =


−1

ct
mus/4

0
0

 (6b-c)

• The objective function is a combination of quadratic penalties on handling
(zus − z0), passenger comfort z̈s, and control effort u:

o =

∫ tf

t0

[
w1ξ

2
1 + w2[ξ̇4(t, ξ, u, xp)]

2 + w3u2
]

dt (7)

with w1 = 105, w2 = 0.5, and w3 = 10−5 from Ref. Allison, Guo, and Han 2014
• Two design load cases z0 are simultaneously considered with a weighted sum: 1)

ramp profile, 2) rough road profile

min
ξ,u,xp

10−2o(ξramp, uramp, xp) + o(ξrough, urough, xp) (8)
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¸ Plant Design: Spring

• The spring physical
design variables are the
wire diameter d, helix
diameter D, pitch p, and
number of active coils Na

• The main intermediate
parameter is the spring
constant ks(xp):

ks =
d4G

8D3Na

[
1 + d2

2D2

]
• There are six static

constraints and four
dynamic constraints

Spring Design

go,1(xp) = 4− C ≤ 0 (10)

go,2(xp) = C − 12 ≤ 0 (11)

go,3(xp) = L0 − 5.26D ≤ 0 (12)

go,4(xp) = L0 − 0.40 ≤ 0 (13)

go,5(xp) = d + D− 0.25 ≤ 0 (14)

go,6(xp) = 1.2τ(Fs)− Ssy ≤ 0 (16)

gi,1(xp, ξ) = max
t
|ξ3(t)| − L0 + Ls + 0.02 + δg ≤ 0 (17)

gi,2(xp, ξ) = 0.15 + 1− L0 − Ls

δg + 1.1ξ3(t)
≤ 0 (18)

gi,3(xp, ξ) =
1.2τ(Fa)

0.24Sut
+
τ(Fm)

Ssy
− 1 ≤ 0 (19)

gi,4(xp, ξ) =
1.2τ(Fa)

241× 106 − 1 ≤ 0 (20)
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¸ Plant Design: Damper

• The damper physical
design variables are the
valve diameter Do,
working piston diameter
Dp, and damper stroke
Ds

• The intermediate
parameter is the damper
constant cs(xp):

cs =
D4

p

8CdC2(Do)D2
o

√
πkvρ1

2

• There are three static
and dynamic constraints

Damper Design

go,7(xp) = d − D + Dp + 0.022 ≤ 0 (22)

go,8(xp) = 2Ds − 0.394 ≤ 0 (23)

go,9(xp) = L0 − Ls − Ds ≤ 0 (24)

gi,5(xp, ξ) =
4cs(Do)maxt|ξ̇3(t)|

πD2
p

− 4.75× 106 ≤ 0 (25)

gi,6(xp, ξ) = max
t
|ξ̇3(t)| − 5 ≤ 0 (26)

gi,7(xp, ξ) =
4πD2

ocs(Do)maxt|ξ̇3(t)|
4kvπD2

p
− 0.03 ≤ 0 (27)
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Portrait of CCD research through now:
physical-system design perspective
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 Introduction

• With concerns of . . .
• Bidirectional coupling
• General objective functions
• Time-domain specifications
• Inclusion of various limits
• Comprehensive plant design representations, including independent design

variables and nonlinear dynamics
• Understanding system performance limits and optimal dynamic and control

behaviors
. . . a certain direction of CCD research arose
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 One Thread of Historical CCD Development (1)

Early Integrated Design Methods

• 1980’s–1990’s: Control Structure Interaction (CSI) optimizing the structure
and controller to minimize unwanted structural vibration modes1

• 1980’s–present: Multidisciplinary Design Optimization (MDO) but developed
around fundamentally static system models2

Initial CCD Research

A Breakthrough: Direct Optimal Control in CCD

CCD Method Maturation and Impact

Going Forward

1 Crawley and Luis 1987; Manning 1991; S. S. Rao and Sunar 1994 2 Sobieszczanski-Sobieski and Haftka
1997; Martins and Lambe 2013; Allison and Herber 2014
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 One Thread of Historical CCD Development (2)

Early Integrated Design Methods

Initial CCD Research

• Late 1990’s/early 2000’s: CCD theory and method development1
• Advances based on certain assumptions such as unidirectional design

coupling and LQR/G control
• Cannot account for plant design in a comprehensive manner2

(e.g., state-dependent failure modes)

A Breakthrough: Direct Optimal Control in CCD

CCD Method Maturation and Impact

Going Forward

1 Fathy et al. 2001; Reyer et al. 2001 2 Allison and Herber 2014; Allison, Guo, and Han 2014; Herber and Alli-
son 2018
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 One Thread of Historical CCD Development (3)

Early Integrated Design Methods

Initial CCD Research

A Breakthrough: Direct Optimal Control in CCD

• 2011: First publication of CCD with direct transcription (DT) enabling
comprehensive plant design while being generally efficient and scalable1

• 2017: Revised CCD theory for bi-directional problems2

CCD Method Maturation and Impact

Going Forward

1 Allison, Guo, and Han 2014 2 Herber and Allison 2018
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 One Thread of Historical CCD Development (4)

Early Integrated Design Methods

Initial CCD Research

A Breakthrough: Direct Optimal Control in CCD

CCD Method Maturation and Impact

• Expanded applications, growing impact (new programs – NSF and ARPA-E)
• 2019: Labeled an engineering game changer1

• Deeper understanding of these methods and better implementations with
solution time 100x less than initial efforts2

• Expansion beyond basic deterministic CCD with open-loop optimal control
(e.g., distributed CCD, stochastic CCD, robust MPC, etc.)

Going Forward

1 Garcia-Sanz 2019 2 Sundarrajan and Herber 2021
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 One Thread of Historical CCD Development (5)

Early Integrated Design Methods

Initial CCD Research

A Breakthrough: Direct Optimal Control in CCD

CCD Method Maturation and Impact

Going Forward

• Incorporating detailed physical models (perhaps possible with surrogate
modeling and machine learning)

• Account for uncertainty in the presence of design coupling
• Bridging the gap between the open-loop control insights and closed-loop

control solutions
• Getting into the lab, physical experiments, and on actual products, especially

when supporting higher-TRL development efforts
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 Simulation-based Method Block Diagram

Stop
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 Multiple Shooting or Break Up the Long Simulation
• In the multiple shooting approach1, we partition the time horizon into smaller time

segments, and separate simulations are performed on each segment
• This results in a multiphase problem that requires continuity constraints,

i.e., continuous states at each time segment:

x(1)(t1)︸ ︷︷ ︸
simulation result

= x(2)(t1)︸ ︷︷ ︸
optimization variable

(3)

Shooting

Forward simulation

Multiple shooting

Simulation result

Optimization variable

1 Section 3.4 in Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
19
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 Multiple Shooting vs. Direct Transcription

? What if we reduce the simulation (shooting) horizon to only two points?
• This idea is the essence of a single-step direct transcription (DT) (or

time-marching or integral DT) method1

Multiple shooting

Simulation result

Optimization variable

Single-step direct transcription

Optimization variable

1 See Chapters 2 & 3 in Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
Chapters 8 & 10 in Nonlinear Programming, and Betts 1998; A. V. Rao 2010; Kelly 2017
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 Direct Transcription Comments
• Although it may be counterintuitive to create such a large problem with many

more variables and constraints, it is in fact often better than the alternatives
• For example, finite-horizon LQR is solved with matrix multiplications and an

inverse
• There are many tools available to help construct and solve DT problems with a

variety of different numerical methods (and some do support the inclusion of
plant design variables)

• You don’t have to (and probably shouldn’t) do this on our own
• DT is closely related to model predictive control (MPC); individual MPC problems

are DT-like problems
• An MPC strategy solves open-loop problems sequentially with feedback

from what the system actually did under previous control actions
• Similar to linear-quadratic problems from classical control theory, linear-quadratic

dynamic optimization problems can be efficiently solved as quadratic programs
(QPs)

• Used in some studies with LQDO-amenable CCD problems using the
nested CCD strategy
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