
Introduction Model-Based Structured Requirements Examples Conclusion References

Model-Based Structured Requirements in SysML

g Daniel R. Herber

 Colorado State University – Department of Systems Engineering
 daniel.herber@colostate.edu

INCOSE Requirements Working Group Meeting
March 30, 2023

1

mailto:daniel.herber@colostate.edu

Introduction Model-Based Structured Requirements Examples Conclusion References

 Outline

1. Introduction
2. Model-Based Structured Requirements
3. Examples
4. Conclusion

Î

2

1

Introduction

Introduction Model-Based Structured Requirements Examples Conclusion References

 Introduction (1)
• Central to the rules governing a system are the requirements placed on it, often

by various stakeholders
• These requirements help guide the system development process of a complex

entity
• However, requirements do not specify how the system will meet these needs—it

is up to the solution and project team to decide how the requirements shall be
fulfilled

• Therefore, it is critical to have a well-defined, complete, and adaptable
representation of the requirements

• There are a variety of approaches for developing and managing requirements1

• For example, it has been established that a well-defined requirement shall
possess the following general characteristics2:

• Necessary, Appropriate, Unambiguous, Complete, Singular, Feasible,
Verifiable, Correct, and Conforming

1 Pohl 2010; ISO/IEC/IEEE International Standard - Systems and software engineering – Life cycle processes
– Requirements engineering 2018; Ryan et al. 2019; R. Carson 2021; IEEE Guide for Developing System Re-
quirements Specifications 1998 2 ISO/IEC/IEEE International Standard - Systems and software engineering
– Life cycle processes – Requirements engineering 2018; Ryan et al. 2019

3

Introduction Model-Based Structured Requirements Examples Conclusion References

 Introduction (2)
• Unfortunately, it is still a common problem of tremendous effort being spent

understanding and interacting with the requirements along with multiple iterations
because these guidelines and rules must be adhered to manually by engineers

• These issues lead to increased costs and risks during development due to the
poor quality of requirements defined during the early stages

• Now, architecture-centric practices are gaining widespread acceptance in
systems engineering (SE)

• This process involves capturing the structure, behavior, and rules and their
relationships to create an abstract representation of a system, often termed a
model of the system

• A common language for creating such a model is the Systems Modeling
Language (SysML)1

• A system model does not inherently provide value to the SE effort—rather,
benefits are realized through its support of various SE activities

1 OMG System Modeling Language 2019; Friedenthal, Moore, and Steiner 2015
4

Introduction Model-Based Structured Requirements Examples Conclusion References

 Introduction (3)
• An identified issue is that many approaches do not fully integrate requirements

with the system model, including in classical SysML!
• For example, on page 309 of A Practical Guide to SysML:

“SysML includes a requirements modeling capability to provide a bridge
between the text-based requirements that may be maintained in a
requirements management tool and the system model. . . . This capability is
intended to significantly improve requirements management throughout the
lifecycle of a system by enabling rigorous traceability between the text-based
requirements and the model elements that represent the system design,
analysis, implementation, and test cases.

• This perspective has less to do with defining the requirements and more with
traceability to the system model

• However, we put forth here that the requirements’ definitions themselves (in
addition to traceability) can benefit from direct relationships to the system model
and SysML constructs

• To this end, we will describe an approach for supporting rigorous model-based
requirements using the existing concepts of structured requirements and SysML,
termed model-based structured requirement (MBSR)

5

2

Model-Based Structured Requirements

Introduction Model-Based Structured Requirements Examples Conclusion References

 Structured Requirements (1)
• A structured requirement, or a requirements template, defines an orderly

requirement structure with specified attribute placeholders1

• Helps capture the precise meaning and communicate the required
information to define a complete requirement

• For example, a structured requirement statement may look like:

The [Who] shall [What] [How Well] under [Condition]. (1)

• [Who] — Defines a subject term specified by an agent or user role that
provides a capability or performs a function

• [What] — Refers to an action verb term specified by a required functionality
or characteristic

• [How Well] — Indicates a comparison factor specified by constraints that
can be applied to restrict the implementation of a required functionality or a
design characteristic

• [Condition] — Describes the measurable qualitative or quantitative terms
specified by characteristics such as an operational scenario, environmental
condition, or a cause that is stipulated

1 R. S. Carson 2015 6

Introduction Model-Based Structured Requirements Examples Conclusion References

 Structured Requirements (2)

• For example, this a structured requirement written using Eq. (1) in natural
language:

The [actuation system]Who shall [prevent inadvertent stowing]What

[with at least three levels of safety]How Well under [normal deploy op-
eration]Condition.

(R1)

 Remark

As currently presented, this is simply a refinement of the classical textual requirements
approach and has only an imprecise relationship to the system model.

7

Introduction Model-Based Structured Requirements Examples Conclusion References

 Structured Requirements (3)
• The orderly sequence of attributes for a structured requirement can be aligned

with other approaches or standards
• Following some minor changes to the attributes, the ISO/IEC/IEEE 29148:2018

standard can be represented as1:

[Condition] [Subject] [Action] [Object] [Constraint of Action]. (2)

• An example is2:

[At sea state 1]Condition [the Radar System]Subject [shall detect]Action

[targets]Object [at ranges out to 100 nautical miles]Constraint of Action. (R2)

• Additionally, structured requirement forms have been proposed for different types
of requirements (e.g., functional, non-functional, interface, design constraint, and
operational) where the form and attributes are tailored to the specific needs of
the different requirement types3

1 ISO/IEC/IEEE International Standard - Systems and software engineering – Life cycle processes – Require-
ments engineering 2018 2 Ribaupierre et al. 2021 3 Pohl 2010

8

Introduction Model-Based Structured Requirements Examples Conclusion References

 Classical SysML Requirements Modeling (1): Definition

• As with many aspects of system modeling, SysML supports the inclusion of
requirements1

• A classical SysML-based requirement is developed by defining:
• Some predefined abstract attributes: Name, Id, and Text
• Some traceability relationships that include attributes such as: Owner,

Derived, Derived From, Satisfied By, Refined By, Traced To, and Verified By
• Hierarchical relationships between requirements with a containment

relationship

 Remark

Even though some relationships between the requirement and system model are now
possible, the primary text statement is static, which is more likely to be incomplete,
contain errors, and be inconsistent with the rest of the SysML-based system model.

1 OMG System Modeling Language 2019; Friedenthal, Moore, and Steiner 2015

9

Introduction Model-Based Structured Requirements Examples Conclusion References

 Classical SysML Requirements Modeling (2): Example

SysML-based RequirementsSysML Requirements[Package]req][

Text = "TRAS shall reach 85% of the

actuator stroke in less than 2 seconds

under normal landing deploy condition."

Id = "T1.1"

Initial Time to Deploy

«requirement»

Text = "TRAS shall reliably and rapidly

decelerate aircraft on landing by

diverting engine flow."

Normal Landing

«requirement»

Text = "Overall System Requirement

Specification"

Id = "T1"

Overall TRAS Requirements

«requirement»

Text = "Quick/smooth/controlled

 stopping after landing"

Landing

«requirement»

...
Initial Deploy Time : time[second]

values

Classifier Behavior

TRAS

«block»

Time to Deploy : time[second]
parameters

{Time to Deploy< 2.0}
constraints

Initial Deploy Time

«constraint»

Verify Time to Deploy

«testCase»

Decelerate
Aircraft
Rapidly and
Reliably

«rationale»
«satisfy»

«deriveReqt»

«refine»

«deriveReqt»

«verify»

10

Introduction Model-Based Structured Requirements Examples Conclusion References

 Model-Based Structured Requirement in SysML (1): Motivation

• To address the concerns regarding the use of textual structured requirements
and classical SysML requirements modeling, we define here an approach that
combines the two together to leverage the advantages of both1

• We want a more rigorous approach for structuring requirements that also directly
links to the SysML system model elements, similar to the existing traceability
relationships

• With direct links to the system model, this approach to requirements is more
heavily model-based and structured; hence, we term these model-based
structured requirements (MBSRs)

1 Herber, Narsinghani, and Eftekhari-Shahroudi 2022; Narsinghani 2021

11

Introduction Model-Based Structured Requirements Examples Conclusion References

 Model-Based Structured Requirement in SysML (2): Stereotype

Model-Based Structured Requirements Profile Stereotype Definition[Profile]bdd][

Who = Component

What = Implement a Behavior

Requirement Type = Functional

Rationale = Derivation Rationale

How Well = Limit

Condition = Normal Scenario

«Structured Requirement»

Version Number = "2.1"

Verification Means = V&V Activity

Tester = Component

Qualitative Assessment = "This

requirement should be reviewed by

Person A"

Priority = High

Compliance Status = Expected Compliance
«Organization Requirement Attributes»

Text = "The [Component] shall [Implement

a Behavior] within [Limit] under [Normal

Scenario]"

Id = "E3"
«AbstractRequirement»

Example Organizational Requirement

«Organizational Requirement»

Who = Component

What = Implement a Behavior

Requirement Type = Performance

Rationale = Derivation Rationale

How Well = Limit

Condition = Normal Scenario

«Structured Requirement»

Text = "The [Component] shall [Implement

a Behavior] within [Limit] under [Normal

Scenario]"

Id = "E2"
«AbstractRequirement»

Example Structured Requirement

«Structured Requirement»

+Rationale : Relationship
+Condition : NamedElement [1..*]
+How Well : ConstraintBlock
+What : Behavior
+Who : Block [1]
+Requirement Type : Requirement Categories

attributes

[Class]

Structured Requirement

«stereotype»

+Verification Means : TestCase
+Tester : Block [1..*]
+Implementer : Block [1..*]
+Qualitative Assessment : String
+Priority : Priority List
+Version Number : Version
+Compliance Status : Compliance Status List

attributes

[Class]

Organization Requirement Attributes

«stereotype»

+/Master : AbstractRequirement
+/VerifiedBy : NamedElement [*]
+/TracedTo : NamedElement [*]
+/RefinedBy : NamedElement [*]
+/SatisfiedBy : NamedElement [*]
+/DerivedFrom : AbstractRequirement [*]
+/Derived : AbstractRequirement [*]
+Id : String [1] = {id}
+Text : String [1] =

attributes

[NamedElement]

AbstractRequirement

«stereotype»

[Class]

Organizational Requirement

«stereotype»

{uri=http://www.omg.
org/spec/SysML/20150

709/SysML}

SysML

«profile»

Requirements

[Class]

Requirement

«stereotype»

Additional organization
requirement attributes

Additional structured
requirement attributes

All attributes combined

• ≪Structured Requirement≫ stereotype is defined
in the figure on the left for the structured
requirement template in Eq. (1)

• Each attribute is typed by a SysML model element
kind with several powerful consequences:

• We can enforce that only particular types of
model content is valid for a particular attribute
(e.g., the [Who] attribute must be a block)

• Allows us to pick from an auto-generated list
of available elements in most SysML tools (or
see the element needs to be created)

• Can specify how many elements can be
included with a particular attribute using
multiplicity (e.g., [1] or [1..*]).

12

Introduction Model-Based Structured Requirements Examples Conclusion References

 Model-Based Structured Requirement in SysML (3): Application

Model-Based Structured Requirements Profile Stereotype Definition[Profile]bdd][

Who = Component

What = Implement a Behavior

Requirement Type = Functional

Rationale = Derivation Rationale

How Well = Limit

Condition = Normal Scenario

«Structured Requirement»

Version Number = "2.1"

Verification Means = V&V Activity

Tester = Component

Qualitative Assessment = "This

requirement should be reviewed by

Person A"

Priority = High

Compliance Status = Expected Compliance
«Organization Requirement Attributes»

Text = "The [Component] shall [Implement

a Behavior] within [Limit] under [Normal

Scenario]"

Id = "E3"
«AbstractRequirement»

Example Organizational Requirement

«Organizational Requirement»

Who = Component

What = Implement a Behavior

Requirement Type = Performance

Rationale = Derivation Rationale

How Well = Limit

Condition = Normal Scenario

«Structured Requirement»

Text = "The [Component] shall [Implement

a Behavior] within [Limit] under [Normal

Scenario]"

Id = "E2"
«AbstractRequirement»

Example Structured Requirement

«Structured Requirement»

+Rationale : Relationship
+Condition : NamedElement [1..*]
+How Well : ConstraintBlock
+What : Behavior
+Who : Block [1]
+Requirement Type : Requirement Categories

attributes

[Class]

Structured Requirement

«stereotype»

+Verification Means : TestCase
+Tester : Block [1..*]
+Implementer : Block [1..*]
+Qualitative Assessment : String
+Priority : Priority List
+Version Number : Version
+Compliance Status : Compliance Status List

attributes

[Class]

Organization Requirement Attributes

«stereotype»

+/Master : AbstractRequirement
+/VerifiedBy : NamedElement [*]
+/TracedTo : NamedElement [*]
+/RefinedBy : NamedElement [*]
+/SatisfiedBy : NamedElement [*]
+/DerivedFrom : AbstractRequirement [*]
+/Derived : AbstractRequirement [*]
+Id : String [1] = {id}
+Text : String [1] =

attributes

[NamedElement]

AbstractRequirement

«stereotype»

[Class]

Organizational Requirement

«stereotype»

{uri=http://www.omg.
org/spec/SysML/20150

709/SysML}

SysML

«profile»

Requirements

[Class]

Requirement

«stereotype»

Additional organization
requirement attributes

Additional structured
requirement attributes

All attributes combined

• Now, an MBSR element can be created by:
• Applying the stereotype to a requirement or

creating a requirement with this stereotype
applied

• Specifying the SysML attributes necessitated
by this stereotype

• A basic example, titled Example Structured
Requirement, is shown on the left where we see
model elements (indicated by icons) linked to the
attributes of the MBSR

13

Introduction Model-Based Structured Requirements Examples Conclusion References

 Enhancing MBSRs with Organizational Attributes

Model-Based Structured Requirements Profile Stereotype Definition[Profile]bdd][

Who = Component

What = Implement a Behavior

Requirement Type = Functional

Rationale = Derivation Rationale

How Well = Limit

Condition = Normal Scenario

«Structured Requirement»

Version Number = "2.1"

Verification Means = V&V Activity

Tester = Component

Qualitative Assessment = "This

requirement should be reviewed by

Person A"

Priority = High

Compliance Status = Expected Compliance
«Organization Requirement Attributes»

Text = "The [Component] shall [Implement

a Behavior] within [Limit] under [Normal

Scenario]"

Id = "E3"
«AbstractRequirement»

Example Organizational Requirement

«Organizational Requirement»

Who = Component

What = Implement a Behavior

Requirement Type = Performance

Rationale = Derivation Rationale

How Well = Limit

Condition = Normal Scenario

«Structured Requirement»

Text = "The [Component] shall [Implement

a Behavior] within [Limit] under [Normal

Scenario]"

Id = "E2"
«AbstractRequirement»

Example Structured Requirement

«Structured Requirement»

+Rationale : Relationship
+Condition : NamedElement [1..*]
+How Well : ConstraintBlock
+What : Behavior
+Who : Block [1]
+Requirement Type : Requirement Categories

attributes

[Class]

Structured Requirement

«stereotype»

+Verification Means : TestCase
+Tester : Block [1..*]
+Implementer : Block [1..*]
+Qualitative Assessment : String
+Priority : Priority List
+Version Number : Version
+Compliance Status : Compliance Status List

attributes

[Class]

Organization Requirement Attributes

«stereotype»

+/Master : AbstractRequirement
+/VerifiedBy : NamedElement [*]
+/TracedTo : NamedElement [*]
+/RefinedBy : NamedElement [*]
+/SatisfiedBy : NamedElement [*]
+/DerivedFrom : AbstractRequirement [*]
+/Derived : AbstractRequirement [*]
+Id : String [1] = {id}
+Text : String [1] =

attributes

[NamedElement]

AbstractRequirement

«stereotype»

[Class]

Organizational Requirement

«stereotype»

{uri=http://www.omg.
org/spec/SysML/20150

709/SysML}

SysML

«profile»

Requirements

[Class]

Requirement

«stereotype»

Additional organization
requirement attributes

Additional structured
requirement attributes

All attributes combined

• Additionally, we seek to integrate organizational
attributes into the fundamental definition of
requirements that align with the specific rules and
policies of the organization

 Remark

Such additions might allow MBSRs in SysML to
capture all information required for a high-quality,
compliant requirement.

• Attributes in ≪Organization Requirement
Attributes≫ include Compliance Status, Version
Number, Priority, Qualitative Assessment,
Implementer, Tester, and Verification Means

• Then, ≪Organizational Requirement≫ combines
≪Organization Requirement Attributes≫ and
≪Structured Requirement≫

14

Introduction Model-Based Structured Requirements Examples Conclusion References

 Model-Based Structured Requirement in SysML Example

Model-Based Structured Requirements[Package] MBSRsreq][

Who = TRAS

What = Operate TRAS

Requirement Type = Performance

Rationale =

How Well = Initial Deploy Time

Condition =

Normal Landing Scenario

Actuator Deployment

«Structured Requirement»

Verification Means = Verify Time to Deploy

Tester = Component

Priority = High

Compliance Status = Expected Compliance
«Organization Requirement Attributes»

RefinedBy = Initial Deploy Time

Id = "M1.1"
«AbstractRequirement»

Initial Time to Deploy

«Organizational Requirement»

...
Initial Deploy Time : time[second] = s

values

TRAS

«block»

Overall TRAS Requirements

«Organizational Requirement»

Time to Deploy : time[second]
parameters

{Time to Deploy< 2.0}
constraints

Initial Deploy Time

«constraint»

Verify Time to Deploy

«testCase»

Normal Landing

«requirement»

Landing

«requirement»

«satisfy»

«refine»

«deriveReqt»

«verify»

«deriveReqt»

15

Introduction Model-Based Structured Requirements Examples Conclusion References

 Model-Based Structured Requirement in SysML (4): Potential Benefits

• Connecting requirement attributes with model elements allows requirement
information (both definition and traceability) to remain current and available

• Therefore, this can further reduce the errors and iterations while developing
requirements, saving time and other resources

• Also simplify activities such as dynamic change impact assessment (e.g., if this
block changed, what requirement definitions depended on it?)

• By formally breaking down the requirement statement into required attributes as
model elements, completeness metrics can be automatically computed, and its
gradual definition might be less risky

• Finally, there might be a deeper, more natural connection between the
requirements team and other engineering groups through the
single-source-of-truth SysML model

16

3

Examples

Introduction Model-Based Structured Requirements Examples Conclusion References

 Example Overview

• We now present several more examples of requirements implemented as
MBSRs (Slide 20), as well as pure textual structured (Slide 18) and classical
SysML requirements (Slide 19) for comparison

• All of the examples are based on a notional thrust reverser actuation system
(TRAS)

• A necessary subsystem in most commercial aircraft to achieve and maintain
safe ground stopping distance after a touchdown in adverse conditions such
as wet/slippery runways by reversing fan bypass air flow1

• The model for these examples and MBSR stereotype definition is publicly
available on � GitHub2

• Model created in No Magic’s Cameo Systems Modeler 19.0 LTR SP4

1 Maré 2018; Yetter 1995 2 https://github.com/danielrherber/model-based-structured-requirements

17

https://github.com/danielrherber/model-based-structured-requirements

Introduction Model-Based Structured Requirements Examples Conclusion References

 Textual Requirements for TRAS

ID Name Requirement Type Text Rationale

1.1 Initial Time to Deploy Performance TRAS shall reach 85% of the actuator stroke in less than 2 seconds under normal landing deploy condition. Decelerate Aircraft Rapidly and Reliably

1.2 TRAS MTBF Non-Functional TRAS MTBF shall be greater than 15000 mission flight hours under normal landing condition. Decelerate Aircraft Rapidly and Reliably

1.3 TRAS Average Power Consumption

During Deploy Operation

Interface During Thrust reverser deploy operation, from ECU/DCR opening to fully extended actuator position, TRAS

average power consumption shall be lower than 35 kW.

Decelerate Aircraft Rapidly and Reliably

1.4 TRAS Fluid Interface Interface TRAS shall be able to withstand the hydraulic fluid temperature within a range of -70F to 280F on ground, under

storage conditions.

Improve Efficiency, Safety and Sustainability

1.5 TRAS Weight Limit Physical System total mass shall be less than 320 pounds. Differentiate with More Electric Aircraft

1.6 Jam During Reverser Deployment Design Constraint TRAS shall withstand the actuator lock jam without deformation when subjected to a compressive load of -5075

lbf.

Improve Efficiency, Safety and Sustainability

1.7 Interruption Functional TRAS shall be capable of changing the direction of reverser motion on command at any point in the actuation cycle

under normal loading conditions.

Decelerate Aircraft Rapidly and Reliably

• Much of the necessary information is captured in the pure spreadsheet version
• However, the pieces of information are generally static, unlinked from any other

representation of the system of interest

18

Introduction Model-Based Structured Requirements Examples Conclusion References

 Classical SysML Requirements for TRAS

Id Name Text Rationale Derived From Satisfied By Refined By Verified By

1 T1 T1 Overall TRAS Requirements Overall System Requirement Specification

2 T1.1 T1.1 Initial Time to Deploy
TRAS shall reach 85% of the actuator stroke in less than 2 seconds

under normal landing deploy condition.
Decelerate Aircraft

Rapidly and Reliably
3.1 Normal Landing Initial Deploy Time : time[second] Initial Deploy Time Verify Time to

Deploy

3 T1.2 T1.2 TRAS MTBF
TRAS MTBF shall be greater than 15000 mission flight hours under

normal landing condition.
Decelerate Aircraft

Rapidly and Reliably

3.6 TR Probability of

Failure
TRAS MTBF : Mission Flight Time TRAS MTBF Verify TRAS MTBF

4 T1.3 T1.3
TRAS Average Power

Consumption During

Deploy Operation

During Thrust reverser deploy operation, from ECU/DCR opening to

fully extended actuator position, TRAS average power consumption

shall be lower than 35 kW.

Decelerate Aircraft

Rapidly and Reliably

3.5 Energy Efficiency

Gain

Average Power Consumption :

power[kilowatt]

TRAS Average

Power Consumption

During Deploy

Operation

Verify Average

Power

Consumption

5 T1.4 T1.4 TRAS Fluid Interface

TRAS shall be able to withstand the hydraulic fluid temperature within

a range of -70F to 280F on ground, under storage conditions.
Improve Efficiency, Safety

and Sustainability
3.1 Normal Landing Fluid Temperature :

thermodynamic

temperature[kelvin] = 366.0 K

Hydrualic Fluid

Temperature Range

Measure Hydraulic

Fluid

Temperature

6 T1.5 T1.5 TRAS Weight Limit
System total mass shall be less than 320 pounds. Differentiate with More

Electric Aircraft

3.4 TR Level Weight

Constraint
Total Mass : mass[pound] Total Mass Verify Total Mass

7 T1.6 T1.6
Jam During Reverser

Deployment

TRAS shall withstand the actuator lock jam without deformation when

subjected to a compressive load of -5075 lbf.
Improve Efficiency, Safety

and Sustainability
3.1 Normal Landing TRAS Overcome Jamming

Loads

Verify Jamming

Loads

8 T1.7 T1.7 Interruption

TRAS shall be capable of changing the direction of reverser motion on

command at any point in the actuation cycle under normal loading

conditions.

Decelerate Aircraft

Rapidly and Reliably
3.1 Normal Landing Control Motion Deployment

Direction

Verify Deployment

Direction

• Now, we have a lot more information connected to the system model
• However, we are still left to understand much of a specific requirement through

its static text-based statement

19

Introduction Model-Based Structured Requirements Examples Conclusion References

 Model-Based Structured Requirements (MBSRs) for TRAS

Id Name Requirement Type Text Who What How Well Condition Rationale Satisfied By Verification Means Priority

1 M1 M1 Overall TRAS Requirements Overall System Requirement Specification TRAS

2 M1.1 M1.1 Initial Time to Deploy Performance

TRAS shall reach 85% of the actuator

stroke in less than 2 seconds under

normal landing deploy condition.
TRAS

Operate

TRAS

Initial Deploy

Time

Normal Landing

Scenario

Actuator Deployment

DeriveReqt[Initial

Time to Deploy ->

Normal Landing]

Initial Deploy

Time :

time[second]

Verify Time to

Deploy
High

3 M1.2 M1.2 TRAS MTBF Non-Functional

TRAS MTBF shall be greater than 15000

mission flight hours under normal

landing condition.
TRAS

Operate

TRAS
TRAS MTBF

Normal Landing

Scenario

DeriveReqt[TRAS MTBF

-> TR Probability of

Failure]

TRAS MTBF :

Mission Flight

Time

Verify TRAS

MTBF
Medium

4 M1.3 M1.3

TRAS Average Power

Consumption During

Deploy Operation

Interface

During Thrust reverser deploy operation,

from ECU/DCR opening to fully extended

actuator position, TRAS average power

consumption shall be lower than 35 kW.

Power

Interface

Control

Energy

TRAS Average

Power

Consumption

During Deploy

Operation

Normal Landing

Scenario

DeriveReqt[TRAS

Average Power

Consumption During

Deploy Operation ->

Energy Efficiency Gain]

Average Power

Consumption :

power[kilowatt]

Verify

Average

Power

Consumption

Medium

5 M1.4 M1.4 TRAS Fluid Interface Interface

TRAS shall be able to withstand the

hydraulic fluid temperature within a

range of -70F to 280F on ground, under

storage conditions.

Hydraulic

Interface

Operate

TRAS

Hydrualic

Fluid

Temperature

Range

Ground Altitude

Storage Condition
DeriveReqt[Normal

Landing -> Landing]

Fluid Temperature

: thermodynamic

temperature[kelvi

n] = 366.0 K

Measure

Hydraulic

Fluid

Temperature

Low

6 M1.5 M1.5 Total Mass Physical

System total mass shall be less than 320

pounds. TRAS
Operate

TRAS
Total Mass

Normal Landing

Scenario

DeriveReqt[Total Mass

-> TR Level Weight

Constraint]

Total Mass :

mass[pound]
Verify Total

Mass
Low

7 M1.6 M1.6
Jam During Reverser

Deployment
Design Constraint

TRAS shall withstand the actuator lock

jam without deformation when subjected

to a compressive load of -5075 lbf.
Actuators

Operate

TRAS

Overcome

Jamming

Loads

TR Deployment

Scenario

DeriveReqt[Jam During

Reverser Deployment

-> Safety Against IAS]

TRAS Verify

Jamming

Loads
Medium

8 M1.7 M1.7 Interruption Functional

TRAS shall be capable of changing the

direction of reverser motion on

command at any point in the actuation

cycle under normal loading conditions.

TRAS
Control

Motion

Deployment

Direction

Normal Landing

Scenario DeriveReqt[Interruptio

n -> Normal Landing]

Control Motion Verify

Deployment

Direction
Low

9 M2 M2 [Incomplete Requirement]

• We have more specific information about each requirement, and this information
comes in the form of links to various model elements

• Do you want to know what Normal Landing Scenario is? Go to the element that
defines it

• If the Normal Landing Scenario definition changed, the requirement has a
direct link to those changes 20

Introduction Model-Based Structured Requirements Examples Conclusion References

 Model-driven Dependency Matrix

M
o
d
e
l-
B
a
se

d
 S

tr
u
ct

u
r

M
1
 O

v
e
ra

ll
T
R
A
S
 R

M
1
.1

 I
n
it
ia

l
T
im

e
 t

M
1
.2

 T
R
A
S
 M

T
B
F

M
1
.3

 T
R
A
S
 A

v
e
ra

g

M
1
.4

 T
R
A
S
 F

lu
id

 I

M
1
.5

 T
o
ta

l
M

a
ss

M
1
.6

 J
a
m

 D
u
ri
n
g

M
1
.7

 I
n
te

rr
u
p
ti
o
n

Who

What

How Well

Condition

Legend

Example

Behavior

Control Energy

Control Motion

Normal Landing Scenario

Operate TRAS

Storage Condition

TR Deployment Scenario

Constraints

Actuator Deployment

Deployment Direction

Ground Altitude

Hydrualic Fluid Temperature

Initial Deploy Time

Overcome Jamming Loads

Total Mass

TRAS Average Power Consu

TRAS MTBF

Structure

Actuators

Hydraulic Interface

Power Interface

TRAS

1 5 4 4 5 4 4 4

2 2 2 2 2 2 2

1

1

5

5

1

1

2 1 1 2 1 1 1

1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1

1

1

1

5

• More so than the classical SysML approach,
we have shared model elements across the
MBSRs

• This is automatically visualized and counted in
a dependency matrix that includes the key
≪Structured Requirement≫ attributes

• TRAS is shared among multiple requirements
as well as Operate TRAS and Normal Landing
Scenario

• Requirements might also be (partially) built up
from views like this dependency matrix (i.e.,
link model elements to the MBSR attributes)

21

Introduction Model-Based Structured Requirements Examples Conclusion References

 Metrics Measuring MBSR Completeness

Name Metric Suite Scope
Complete Requirement

Percentage

Total

Requirements

Includes

Who

Includes

Condition

Includes

How Well

Includes

What

1 Version 1 MBSR Completeness Metrics Example 37.5 8 5 5 6 6

2 Version 2 MBSR Completeness Metrics Example 77.7778 9 8 7 7 7

• We can automatically assess requirement completeness with respect to the
MBSR specification

• For example, an MBSR is considered complete when it has nonempty [Who],
[What], [How Well], and [Condition] attributes

• These metrics are automatically computed in the model using customized metric
suites and scripts (see the next slide)

• However, TRAS might be considered complete as all child requirements are
complete, and more appropriate handling of this scenario is left as future work

22

Introduction Model-Based Structured Requirements Examples Conclusion References

 MBSR Nonempty Attribute Counting Script

• Above is the Groovy script with Cameo Systems Modeler used to count how
many MBSRs have a nonempty [Who] attribute where element list contains
all MBSRs in a particular context

• This illustrates that MBSRs in SysML provides the possibility for deeper
programmatic interaction with requirements

• Full details available in the model1

1 https://github.com/danielrherber/model-based-structured-requirements

23

https://github.com/danielrherber/model-based-structured-requirements

4

Conclusion

Introduction Model-Based Structured Requirements Examples Conclusion References

 Summary

• When requirements are written in the classical text format, significant resources
(including many brains) are required to develop and manage them, which can
lead to identifying problems late in the development cycle

• Overall, the proposed MBSR approach is more aligned with the model-centric
philosophy of system development through its more broad use of elements in a
system model

• It adds systems thinking rigor when developing the model (and requirements)
that support the wide range of SE activities

• The MBSR restricts us to create and define the right elements and relationships
(or readily see that they are missing)

• It also directly connects pieces that help define a requirement to the
functional/physical architecture elements and system verification/validation
artifacts with more specific and relevant relationships1

1 Wheatcraft et al. 2022

24

Introduction Model-Based Structured Requirements Examples Conclusion References

 Future Work
• Customized MBSR validation rules will help eliminate errors and improve the

quality in the early stages of requirements elicitation in a more automated
manner

• Utilizing APIs and scripting available in the tools, we might automatically
generate the requirement text statement only using the structured attributes1

• After all, the structured requirement template is simply filling in the
placeholders with the natural language names for the attributes in Eq. (1).

• More refinements to the attributes (both in naming, typing, and completeness)
should be investigated to ensure that they holistically capture the concerns in
requirements development

• Further investigations into requirement and model metrics (see Slide 23) that
help define requirement completeness utilizing the structured attributes

• Development of specific profiles for different types of structured
requirements and organizational needs

• Additional examples push forward and refine this concept

1 R. S. Carson 2015

25

Introduction Model-Based Structured Requirements Examples Conclusion References

 General Parting Questions

? What do you like and not like about the proposed MBSR approach in SysML?
What might you change?

? Should requirements be done within a SysML modeling tool with the MBSR
concept (or what would still be preventing the proposed transition)?

? How do we effectively merge existing SysML requirements modeling capabilities
with MBSRs (i.e., is there overlap)?

? What might a better completeness metric/formula look like for MBSRs (or
requirements in general)?

? Do you want to contribute to this effort?
• Please consider engaging with the open-sourced model on � GitHub at

https://github.com/danielrherber/model-based-structured-requirements
• Comments, proposed refinements, additional examples, etc., are all

encouraged

26

https://github.com/danielrherber/model-based-structured-requirements

Introduction Model-Based Structured Requirements Examples Conclusion References

 Acknowledgements

• Thanks to my collaborators at CSU on this work:
• Jayesh B. Narsinghani
• Kamran Eftekhari-Shahroudi

• This research was supported by the Woodward-CSU
Master Research and Development Agreement

�

27

Introduction Model-Based Structured Requirements Examples Conclusion References

 References

	 R. Carson (2021). Developing Complete and Validated Requirements. INCOSE Seattle-
Metropolitan Chapter Monthly Meeting. DOI: 10.13140/RG.2.2.28526.74561

	 R. S. Carson (2015). “Implementing Structured Requirements to Improve Requirements Qual-
ity”. INCOSE International Symposium 25.1. DOI: 10.1002/j.2334-5837.2015.00048.x

	 S. Friedenthal, A. Moore, and R. Steiner (2015). A Practical Guide to SysML. 3rd. Elsevier.
DOI: 10.1016/c2013-0-14457-1

	 D. R. Herber, J. B. Narsinghani, and K. Eftekhari-Shahroudi (2022). “Model-based structured
requirements in SysML”. 2022 IEEE International Systems Conference. DOI: 10 . 1109 /
syscon53536.2022.9773813

	 IEEE Guide for Developing System Requirements Specifications (1998). IEEE. DOI: 10.1109/
ieeestd.1998.88826

	 ISO/IEC/IEEE International Standard - Systems and software engineering – Life cycle pro-
cesses – Requirements engineering (2018). IEEE. DOI: 10.1109/ieeestd.2018.8559686

	 J.-C. Maré (2018). Aerospace Actuators 3: European Commercial Aircraft and Tiltrotor Air-
craft. John Wiley & Sons, Inc. DOI: 10.1002/9781119505433

	 Model-based structured requirements (n.d.). URL: https://github.com/danielrherber/model-
based-structured-requirements

	 J. B. Narsinghani (2021). “Towards a model-based implementation in technology/platform life
cycle development processes applied to a thrust reverser actuation system (TRAS) con-
cept”. MS thesis. Colorado State University

28

https://doi.org/10.13140/RG.2.2.28526.74561
https://doi.org/10.1002/j.2334-5837.2015.00048.x
https://doi.org/10.1016/c2013-0-14457-1
https://doi.org/10.1109/syscon53536.2022.9773813
https://doi.org/10.1109/syscon53536.2022.9773813
https://doi.org/10.1109/ieeestd.1998.88826
https://doi.org/10.1109/ieeestd.1998.88826
https://doi.org/10.1109/ieeestd.2018.8559686
https://doi.org/10.1002/9781119505433
https://github.com/danielrherber/model-based-structured-requirements
https://github.com/danielrherber/model-based-structured-requirements

Introduction Model-Based Structured Requirements Examples Conclusion References

 References (continued)

	 OMG System Modeling Language (2019). Object Management Group
	 K. Pohl (2010). Requirements Engineering. Springer
	 H. de Ribaupierre et al. (2021). Automatic extraction of requirements expressed in industrial

standards : a way towards machine readable standards ? arXiv. DOI: 10.48550/arXiv.2112.
13091

	 M. Ryan et al. (2019). Guide for Writing Requirements. Tech. Prod. INCOSE-TP-2010-006-03.
INCOSE Requirements Working Group

	 L. Wheatcraft et al. (2022). Needs, Requirements, Verification, Validation Lifecycle Manual.
Tech. Prod. INCOSE-TP-2021.002-01. INCOSE Requirements Working Group

	 J. A. Yetter (1995). Why Do Airlines Want and Use Thrust Reversers? A Compilation of Airline
Industry Responses to a Survey Regarding the Use of Thrust Reversers on Commercial
Transport Airplanes. Tech. rep. NASA-TM-109158. NASA Langley Research Center

29

https://doi.org/10.48550/arXiv.2112.13091
https://doi.org/10.48550/arXiv.2112.13091

Thank you.

Model-Based Structured Requirements in SysML

Daniel R. Herber

https:// github.com/ danielrherber/ model-based-
structured-requirements

https://github.com/danielrherber/model-based-structured-requirements
https://github.com/danielrherber/model-based-structured-requirements

	Introduction
	Model-Based Structured Requirements
	Structured Requirements
	Classical SysML Requirements Modeling
	Model-Based Structured Requirement in SysML

	Examples
	Conclusion
	References
	Appendix
	Appendix

