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Why Carbon Capture?
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But carbon capture has problems...



Carbon Capture Problems
1. Huge Parasitic Load
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Carbon Capture Problems
1. Huge Parasitic Load

2. Limited Plant Flexibility
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How are we going to fix these?



Add Thermal Storage
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Why tortoise and the hare?
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How to decided which Is best?
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Wholesale Electricity Price Data
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Electricity Cost ($/MWh)
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Thermal Storage Options
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Thermal Storage Options
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Which technology wins?
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Electricity Cost ($/MWh)

Thermal Storage Needs High Variably
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Variably Needed for Thermal Storage
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What about future prices?



We Are Working With Grid Modeling Teams to
Understand Future Markets
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More Variability i1s Better for Thermal Storage
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Future Work

 Evaluate additional thermal storage configurations
 Optimize best performing thermal configurations

 Work to better understand future electricity markets
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Braden Limb
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