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¸ Control Co-design as a Dynamic Optimization Problem
One way to represent a control co-design (CCD) problem is in the time1

domain using a dynamic optimization (DO) formulation2:

min
xc,xp

Ψ(xc, xp) =

∫ tf

t0
L (t, ξ, xc, xp) dt +M (ξ(t0), ξ(tf ), xc, xp) (1a)

subject to: ξ̇ = f (t, ξ, xc, xp) (1b)
C (t, ξ, xc, xp) ≤ 0 (1c)
φ (ξ(t0), ξ(tf ), xc, xp) ≤ 0 (1d)

• t ∈ [t0, tf ]: time defined in the time horizon between t0 and tf
• ξ(t): states
• xc: control design variables
• xp: plant design variables

1 Herber and Allison 2018 2 Note that for simplicity of presentation, this is a fixed-horizon,
single-phase problem
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¸ Control Co-design as a DO Problem (continued)
One way to represent a control co-design (CCD) problem is in the time1

domain using a dynamic optimization (DO) formulation2:

min
xc,xp

Ψ(xc, xp) =

∫ tf

t0
L (t, ξ, xc, xp) dt +M (ξ(t0), ξ(tf ), xc, xp) (1a)

subject to: ξ̇ = f (t, ξ, xc, xp) (1b)
C (t, ξ, xc, xp) ≤ 0 (1c)
φ (ξ(t0), ξ(tf ), xc, xp) ≤ 0 (1d)

• L (t, ξ, xc, xp): Lagrange or running cost term (time dependent)
• M (ξ(t0), ξ(tf ), xc, xp): Mayer or terminal cost term
• f (t, ξ, xc, xp): state derivative function (time dependent)
• C (t, ξ, xc, xp): path constraints (time dependent)
• φ (ξ(t0), ξ(tf ), xc, xp): boundary constraints

1 Herber and Allison 2018 2 Note that for simplicity of presentation, this is a fixed-horizon,
single-phase problem
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¸ Basic CCD Solution Strategies

Figure: Sequential design.
Figure: Iterated sequential design.

Figure: Simultaneous design.

Figure: Nested design.
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¸ Optimal Open-Loop Control in CCD
• There often is a choice in control design variables whether it be the

gains in a particular control architecture or open-loop trajectories (u)
• Many recent CCD studies have utilized optimal open-loop control

(OOLC) in early-stage design1

• Closed-loop control (CLC) design requires specification of control
structure (e.g., state/output feedback) that may implicitly limit
performance or the ability to satisfy system constraints

• But there are also certain advantages. . .
• With OOLC, optimal control trajectories are sought without assuming a

control architecture2

• CDD using OOLC results in physical systems with natural dynamics
that interact with an active control system in a way that yields maximal
system performance3

• Can provide important insights at early design stages

1 Allison, Guo, and Han 2014 2 Including the cases where the particular problem has a known
feedback structure that is equivalent to the OOLC 3 Deshmukh, Herber, and Allison 2015
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¸ Some Limitations Found in Earlier CCD Research
• Some studies investigated the specific case when separate plant and

control objectives were well defined1:

Ψ(xc, xp) = wpΨp(xp) + wcΨc(t, ξ, xc, xp)

• Some studies used the assumption of unidirectional coupling where a
plant design objective and constraints did not depend on xc

2

• Realistic treatment of plant design requires the inclusion of constraints
that contain both xp and ξ such as fatigue

• There may not exist a feasible control/state solution for a fixed plant
design with bidirectional coupling

• This is design coupling between the physical-system and control-system
• Many early approaches for solving time-domain CCD problems had

other potentially restrictive assumptions
• For example, infinite-horizon, linear dynamics, and no path constraints so

there is a linear–quadratic regulator (LQR) subproblem in nested CCD3

• Frequency domain approaches can address some challenges but not
readily nonlinear dynamics and path constraints

1 Peters, Papalambros, and Ulsoy 2009; Peters, Papalambros, and Ulsoy 2013; Fathy et al. 2001
2 Peters, Papalambros, and Ulsoy 2013; Allison, Guo, and Han 2014 3 Herber and Allison
2018; Fathy et al. 2001 7
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¸ Some Needs in a General CCD Solution Strategy
1 Inequality constraints

• Many realistic CCD problems have inequality constraints to represent
different failure modes such as stress or fatigue or even simple bounds on
states and controls1

2 Bidirectional coupling
3 Comprehensive plant design representations including independent

design variables and nonlinear dynamics
4 Identification of optimal dynamic and control behaviors

• The desirable control architecture might be unknown in early-stage design
(so support OOLC)

5 Computationally efficient and robust

Direct transcription (DT) methods have been shown to be effective at
addressing these needs

1 Allison and Herber 2014; Allison, Guo, and Han 2014; Herber and Allison 2018
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¸ Direct Transcription Overview
• In DT, the time horizon is discretized into a number of segments
• The values of the states ξ and controls u at the boundaries of these

segments (discrete time points) are included directly as optimization
variables

• Discretization of the time-varying quantities
• The dynamic constraints are included as a set of equality constraints

(known as defect constraints)
• Many potential methods such as the basic trapezoidal rule, pseudospectral

methods, or zero-order hold (only for linear dynamic systems)
• The Lagrange term is evaluated using numerical quadrature
• Path constraints are directly included as finite-dimensional constraints

through their evaluation only at the discrete time points
• Therefore, a DT method creates a (potentially large) nonlinear program

(NLP)
• Many good resources available1

1 Biegler 2010; Biegler 2007; Betts 2010; Herber 2015; Patterson and Rao 2014; Divya 2011
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¸ Direct Transcription Overview (continued)
• CDD using DT and OOLC results in physical systems with natural

dynamics that interact with an active control system in a way that yields
maximal system performance1

• This NLP has a specific structure and sparsity pattern that can be
exploited in solvers to reduce total computational effort

• Certain classes of dynamic optimization problems can be solved with
convex optimization or quadratic programming2

• DT has been shown to have good convergence properties, be
parallelizable, handle unstable DAEs, and have specific advantages for
singular control problems and high-index path constraints

• It is a direct method
• Versus an indirect method such as the use of Pontryagin’s minimum

principle to derive optimality conditions
• It is simultaneous or all-at-once approach because the optimization

algorithm handles all design and analysis tasks
• Analysis equations are embedded as optimization equality constraints

• Analogous ideas are used in (nonlinear) model predictive control
(MPC)

1 Deshmukh, Herber, and Allison 2015 2 Usually with nested CCD solution strategy
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¸ Limitations and Potential Directions for CCD with DT
• Uncertainty

• Address certain uncertainties using robust and reliability-based
optimization principles1

• Merge nested CCD with experimental data2

• Utilize recent developments in robust trajectory optimization such as
polynomial chaos (PC) theory and DT3

• Implementable controllers
• How can we bridge the “gap”4 between optimal open-loop control CCD

studies and implementable control systems?
• Determine how to synergize with feedback control architectures or model

predictive control methods
• Overall, understand how we can extract generalizable design knowledge

from appropriate CCD problems and solutions (decision support tool)

1 Azad and Alexander-Ramos 2019; Cui, Allison, and P. Wang 2019 2 Deese and Vermillion
2018 3 F. Wang et al. 2019 4 Deshmukh, Herber, and Allison 2015
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¸ Limitations and Potential Directions for CCD with DT

• Efficient optimization methods for complex and large CCD problems
• Provide better guidance on nested vs. simultaneous CCD strategies1

• Developments in decomposition-based optimization methods for CCD
with DT2

• Leverage surrogate models, global optimization, and mixed
discrete-continuous programming

• Inclusion of design-appropriate models
• Better use of independent plant-design variables rather than dependent

quantities (requirements) (e.g., instead using spring stiffness, we use the
spring geometry as a design variable)3

• While bidirectional coupling can be challenging to model, it is needed for
CCD to accurately represent real system design problems4

1 Herber and Allison 2018 2 Behtash and Alexander-Ramos 2020; Liu, Azarm, and Chopra
2020 3 Allison, Guo, and Han 2014; Allison and Herber 2014 4 Allison, Guo, and Han 2014;
Allison and Herber 2014

12



Control Co-design Direct Transcription References

¸ References

J. T. Allison, T. Guo, and Z. Han (2014). “Co-design of an active suspension using
simultaneous dynamic optimization”. Journal of Mechanical Design 136.8. DOI:
10.1115/1.4027335

J. T. Allison and D. R. Herber (2014). “Multidisciplinary design optimization of
dynamic engineering systems”. AIAA Journal 52.4. DOI: 10.2514/1.j052182

S. Azad and M. J. Alexander-Ramos (2019). “Robust MDSDO for co-design of
stochastic dynamic systems”. Journal of Mechanical Design 142.1. DOI:
10.1115/1.4044430

M. Behtash and M. J. Alexander-Ramos (2020). “A decomposition-based
optimization algorithm for combined plant and control design of interconnected
dynamic systems”. Journal of Mechanical Design 142.6. DOI: 10.1115/1.4046240

J. T. Betts (2010). Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. Society for Industrial and Applied Mathematics. DOI:
10.1137/1.9780898718577

L. T. Biegler (2007). “An overview of simultaneous strategies for dynamic
optimization”. Chemical Engineering and Processing: Process Intensification
46.11. DOI: 10.1016/j.cep.2006.06.021

13

https://doi.org/10.1115/1.4027335
https://doi.org/10.2514/1.j052182
https://doi.org/10.1115/1.4044430
https://doi.org/10.1115/1.4046240
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1016/j.cep.2006.06.021


Control Co-design Direct Transcription References

¸ References (continued)
L. T. Biegler (2010). Nonlinear Programming. Society for Industrial and Applied

Mathematics. DOI: 10.1137/1.9780898719383
T. Cui, J. T. Allison, and P. Wang (2019). “A comparative study of formulations and

algorithms for reliability-based co-design problems”. Journal of Mechanical
Design 142.3. DOI: 10.1115/1.4045299

J. Deese and C. Vermillion (2018). “Nested plant/controller codesign using
G-optimal design and continuous time adaptation laws: theoretical framework and
application to an airborne wind energy system”. Journal of Dynamic Systems,
Measurement, and Control 140.12. DOI: 10.1115/1.4040759

A. P. Deshmukh, D. R. Herber, and J. T. Allison (2015). “Bridging the gap between
open-loop and closed-loop control in co-design: a framework for complete optimal
plant and control architecture design”. American Control Conference. DOI:
10.1109/acc.2015.7172104

G. Divya (2011). “Advances in global pseudospectral methods for optimal control”.
PhD thesis. University of Florida

H. K. Fathy et al. (2001). “On the coupling between the plant and controller
optimization problems”. American Control Conference. IEEE. DOI:
10.1109/acc.2001.946008

14

https://doi.org/10.1137/1.9780898719383
https://doi.org/10.1115/1.4045299
https://doi.org/10.1115/1.4040759
https://doi.org/10.1109/acc.2015.7172104
https://doi.org/10.1109/acc.2001.946008


Control Co-design Direct Transcription References

¸ References (continued)

D. R. Herber (2015). Basic implementation of multiple-interval pseudospectral
methods to solve optimal control problems. Tech. rep. UIUC-ESDL-2015-01.
Engineering System Design Lab

D. R. Herber and J. T. Allison (2018). “Nested and simultaneous solution strategies
for general combined plant and control design problems”. Journal of Mechanical
Design 141.1. DOI: 10.1115/1.4040705

T. Liu, S. Azarm, and N. Chopra (2020). “Decentralized multi-subsystem co-design
optimization using direct collocation and decomposition-based methods”. Journal
of Mechanical Design. DOI: 10.1115/1.4046438

M. A. Patterson and A. V. Rao (2014). “GPOPS-II”. ACM Transactions on
Mathematical Software 41.1. DOI: 10.1145/2558904

D. L. Peters, P. Y. Papalambros, and A. G. Ulsoy (2009). “On measures of coupling
between the artifact and controller optimal design problems”. International
Design Engineering Technical Conferences. DOI: 10.1115/detc2009-86868

– (2013). “Sequential co-design of an artifact and its controller via control proxy
functions”. Mechatronics 23.4. DOI: 10.1016/j.mechatronics.2013.03.003

15

https://doi.org/10.1115/1.4040705
https://doi.org/10.1115/1.4046438
https://doi.org/10.1145/2558904
https://doi.org/10.1115/detc2009-86868
https://doi.org/10.1016/j.mechatronics.2013.03.003


Control Co-design Direct Transcription References

¸ References (continued)

F. Wang et al. (2019). “Robust trajectory optimization using polynomial chaos and
convex optimization”. Aerospace Science and Technology 92. DOI:
10.1016/j.ast.2019.06.011

16

https://doi.org/10.1016/j.ast.2019.06.011


End

Control Co-design Direct Transcription Solution
Strategies: Overview and Challenges

Daniel R. Herber

Department of Systems Engineering
Colorado State University

Q daniel.herber@colostate.edu
W https://www.engr.colostate.edu/∼drherber

https://www.engr.colostate.edu/~drherber

	Control Co-design
	Direct Transcription
	References
	Appendix
	Appendix


