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Introduction

Csu

- Digital Transformation, Digital Engineering, Digital Threads, Model-based
Systems Engineering (MBSE), etc. — Imperative ideas, but often there are
still challenges in releasing their vision to support better engineering
practice

* Here, we wanted to highlight briefly two areas of work towards the broad
goal of better digital engineering through MBSE and the use of the Systems
Modeling Language (SysML)

* The two areas are:

o Model-based structured requirements that better bring requirements into digital
engineering and model-centric practices

o Digital thread creation between SysML and external simulation models for
improved optioneering, program management, and systems engineering

04/07/2023 4



Outline

CSu

* Introduction
 Model-based Structured Requirements
* Integration of SysML and External Simulation Models

04/07/2023 5



Structured Requirements

CSu

« A structured requirement, or a requirements template, defines an orderly
requirement structure with specified attribute placeholders

o Helps capture the precise meaning and communicate the required information
to define a complete requirement

* A structured requirement statement may look like:
o The [\Who] shall [What] [How Well] under [Condition].
«  Some examples:

o The [Nuclear Power Plant] shall [have an installation level seismic margin]
[greater than 1.5 safety factor] under [SL-1 earthquake definitions from SSG-
67].

o The [Instrumentation & Controls] shall [be protected] [in accordance with the
guidance of SSG-64] under [effects of fire & explosion as defined in SSG-64].

o The [Standby Pump 123-C] shall [deliver water to equipment XYZ-A] [at the
rate of at lest 150 gpm] under [a loss of primary pumps A and BJ.

 There is a variety of other potential structured requirement templates for
different standards and requirement types

R. Carson (2021). Developing Complete and Validated Requirements
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Classical SysML Requirements Modeling
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« A classical SysML-based requirement is developed by defining:
o Some predefined abstract attributes: Name, Id, and Text

o Some traceability relationships that include attributes such as: Owner, Derived,
Derived From, Satisfied By, Refined By, Traced To, and Verified By

o Hierarchical relationships between requirements

* An identified issue is that many approaches do not fully integrate
requirements with the system model, including in classical SysML

o Many perspectives have less to do with defining the requirements and more
with traceability to the system model (an important aspect)

 Therefore, we have been developing model-based structured requirements
(MBSRs)

o Combines the two together textual structured requirements and classical
SysML requirements modeling to leverage the advantages of both
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MBSR Example Diagram
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MBSR Dependency Matrix
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MBSR Attribute Matrix
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MBSRs also support summarizing views for how the

system model relates to the requirement definitions
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MBSR Conclusion
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« The MBSR approach is more aligned with the model-centric philosophy of

system development through its more broad use of elements in a system
model

o The model then contains further information need to effectively understand,
satisfy, and verify our requirements

« MBSR restricts us to create and define the right elements and relationships
(or readily see that they are missing)

o Completeness metrics can be defined and automated

« MBSRs simplify activities such as dynamic change impact assessment (e.g.,
if this block changed, what requirement definitions depended on it?)

Please consider engaging with the open-sourced model on GitHub at
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Digital Threads with MBSE Tools

CSu

Creation of effective digital threads means using the “best-of-breed” tools to
complete specific engineering tasks and having different tool inputs and

outcomes fo

rmally linked

Many MBSE tools support integration and execution of external models
o For example, Cameo Systems Modeler supports Matlab/Simulink, Python, etc.
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Traditional vs. SysML-based Pathways

A primary goal here is to develop more effective, stable pathways
for different individuals to interact with the digital system models

B2 @

) o fE
} f \ ¢
EFIE3IED EFIE3IED

(a) Traditional. (b) SysML-based.

o

<4
}@%

!

04/07/2023 14



Variant-based Design
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In this work on aircraft design, the four subsystems are 1) Aerodynamics, 2)
Engine, 3) Thermal Management System (TMS), 4) and Electrical Power
System (EPS)

A critical aspect considered in this work is when multiple different modeling
options (termed variants) are available for a given piece of a system

As an example, consider the following sets of variants for the four
subsystems:

o {Aero} X {Engine-A, Engine-B} x {TMS-A, TMS-B, TMS-C} x {EPS-A, EPS-
B}

o 12 unique complete variant architectures with one specific architecture being
{Aero, Engine-A, TMS-C, EPS-B}

The Simulink models were created to support different variant definitions

Then, we change the variant selections through the SysML-based model

Finally, requirement verification is completed in the SysML model using the
simulation results

D. R. Herber, et al. Advancing model-based engineering through improved integration of domain-
specific simulation and analysis using SysML-based models for unmanned aerial vehicles
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Approach Overview
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bdd [Package] Analysis Overview [ Analysis_Overview ] )

Aircraft definition

Tool-specific implementation
running a simulation w ith
aircraft and context inputs

AN

w ith values, «system context» 4
constraints, and Analysis 7 Mission, Requirement
requirements y y y / Values, Requirement
«requirement» \ 7 Analysis Parameters, etc.
System «satisfy» \ § 1 /
Requirements T = «system» p # «block
Aircraft 1 P, Requirements Context
! «constraint» |
«requirement _ 1 «use» _|RunSimulation< ooy — — T |
Subsystem «satisfy» 1.5 «usex»’!
Requirements & — __ |
«subsystem» Varahthasad
Subsystem T L B creates |
—— 1 Ik Data File |
«requirement» e «efiriey 0.* ﬁusg» — |
SeauEmet T «constraint» <é—
Requirement Analysis «uUSey»

04/07/2023



Results Summary
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Results visualized and captured within the MBSE tool as well as the

external tool (Matlab/Simulink)
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Microgrid Example

CSu

Many other potential applications, including a microgrid controller
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Integrating SysML and Simulation Conclusion
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« Supported the definition and simulation of 16 distinct configurations (with
the potential of 100+ configurations soon) within a digitally-linked SysML
and Simulink modeling paradigm

« Other general realized advantages included:
o Standardization of organizational practices
o Documentation

o Stakeholder dialog and artifacts (e.g., automatic generation of presentations
and diagrams for reviews)

* Future work remains to explore the added value of the SysML-informed
development process formally in the context of the simulation-heavy
research group (at AFRL in Dayton, OH)
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My contact info:
o daniel.herber@colostate.edu

 Many other faculty doing work at CSU in Systems Engineering in a variety of
areas related to digital engineering and energy systems:

o Marie Vans in augmented/virtual reality for energy system maintenance
o Tim Coburn in analytics and data science in energy
o Tom Bradley in energy system management and optimization along with MBSE
o And many others...
« We offer both distance and on-campus degrees (MS, ME, PhD, Deng)
o Please see the link below
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