

## Enabling Improved Digital Transformation of Requirements and Simulation through SysML and MBSE

Daniel (Dan) Herber Assistant Professor of Systems Engineering Colorado State University <u>daniel.herber@colostate.edu</u>

#### Outline



- Introduction
- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

### Outline



#### Introduction

- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

#### Introduction



- Digital Transformation, Digital Engineering, Digital Threads, Model-based Systems Engineering (MBSE), etc. — Imperative ideas, but often there are still challenges in releasing their vision to support better engineering practice
- Here, we wanted to highlight briefly two areas of work towards the broad goal of better digital engineering through MBSE and the use of the Systems Modeling Language (SysML)
- The two areas are:
  - Model-based structured requirements that better bring requirements into digital engineering and model-centric practices
  - Digital thread creation between SysML and external simulation models for improved optioneering, program management, and systems engineering

### Outline



- Introduction
- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

#### **Structured Requirements**



- A structured requirement, or a requirements template, defines an orderly requirement structure with specified attribute placeholders
  - Helps capture the precise meaning and communicate the required information to define a complete requirement
- A structured requirement statement may look like:
  - The [Who] shall [What] [How Well] under [Condition].
- Some examples:
  - The [Nuclear Power Plant] shall [have an installation level seismic margin] [greater than 1.5 safety factor] under [SL-1 earthquake definitions from SSG-67].
  - The [Instrumentation & Controls] *shall* [be protected] [in accordance with the guidance of SSG-64] under [effects of fire & explosion as defined in SSG-64].
  - The [Standby Pump 123-C] shall [deliver water to equipment XYZ-A] [at the rate of at lest 150 gpm] under [a loss of primary pumps A and B].
- There is a variety of other potential structured requirement templates for different standards and requirement types

R. Carson (2021). Developing Complete and Validated Requirements

## **Classical SysML Requirements Modeling**



- A classical SysML-based requirement is developed by defining:
  - $\circ~$  Some predefined abstract attributes: Name, Id, and Text
  - Some traceability relationships that include attributes such as: Owner, Derived, Derived From, Satisfied By, Refined By, Traced To, and Verified By
  - Hierarchical relationships between requirements
- An identified issue is that many approaches do not fully integrate requirements with the system model, including in classical SysML
  - Many perspectives have less to do with defining the requirements and more with traceability to the system model (an important aspect)
- Therefore, we have been developing model-based structured requirements (MBSRs)
  - Combines the two together textual structured requirements and classical SysML requirements modeling to leverage the advantages of both

#### **MBSR Example Diagram**





#### **MBSR Dependency Matrix**



CSU

#### **MBSR Attribute Matrix**



# MBSRs also support summarizing views for how the system model relates to the requirement definitions

|   |                      |                                                                     |                      | 1                                                                                                                                                                      | 1                  | 1                   | 1                                                            |                               |
|---|----------------------|---------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------------------------------------|-------------------------------|
| # | $\bigtriangleup  Id$ | Name Requirement Type                                               |                      | Text                                                                                                                                                                   | Who                | What                | How Well                                                     | Condition                     |
| 1 | M1                   | M1 Overall TRAS Requirement                                         |                      | Overall System Requirement Specification                                                                                                                               | TRAS               |                     |                                                              |                               |
| 2 | M1.1                 | R M1.1 Initial Time to Deploy                                       | Performance          | TRAS time to deploy shall be less than 2 seconds                                                                                                                       | TRAS               | Coperate<br>TRAS    | 🗐 Initial Deploy Time                                        | Normal<br>Landing<br>Scenario |
| 3 | M1.2                 | R M1.2 Overall Reliability                                          | Non-Functional       | TRAS shall achieve overall system<br>reliability no less than 0.9 under normal<br>landing condition.                                                                   | TRAS               | Coperate<br>TRAS    | Overall Reliability                                          | Normal<br>Landing<br>Scenario |
| 4 | M1.3                 | R M1.3 Probability of Failure                                       | Non-Functional       | TRAS composite probability of failure shall be no more than 1E-9                                                                                                       | TRAS               | Operate  TRAS       | Probability of Failure                                       | Normal<br>Landing<br>Scenario |
| 5 | M1.4                 | TRAS Average Power<br>R M1.4 Consumption During<br>Deploy Operation | Interface            | During Thrust reverser deploy operation,<br>from ECU/DCR opening to fully extended<br>actuator position, TRAS average power<br>consumption shall be lower than 1TBDkW. | Power<br>Interface | Control<br>Energy   | TRAS Average Power<br>Consumption During<br>Deploy Operation | Normal<br>Landing<br>Scenario |
| 6 | M1.5                 | R M1.5 Unlocking for TR Deployment                                  | Functional           | The TRAS actuators shall include<br>overstow function to ensure unlocking<br>function is performed with loading during<br>TR deployment.                               | Actuators          | Perform<br>Overstow | 🖾 Overall Reliability                                        | TR<br>Deploymen<br>Scenario   |
| 7 | M1.6                 | R M1.6 Total Mass                                                   | Physical             | System total mass shall be less than 320 pounds.                                                                                                                       | TRAS               | Coperate<br>TRAS    | Total Mass                                                   | Normal<br>Landing<br>Scenario |
| 8 | M1.7                 | R M1.7 Tertiary Lock Relocking                                      | Design<br>Constraint | Each Tertiary lock shall be designed to not relock during T/R deploy and stow translation.                                                                             | TL TL              | Control<br>Lock     | Prevent Relocking                                            | TR<br>Deployment<br>Scenario  |

Example here is a thrust reverser actuation system (TRAS)

| Legend<br>Condition<br>How Well<br>What<br>Who | 📩 Model-Based Structured F 🗍 | R M1 Overall TRAS Requ | R M1.1 Initial Time to D- | R M1.2 Overall Reliabilit | R M1.3 Probability of Fa- | R M1.4 TRAS Average P | R M1.5 Unlocking for TF | R M1.6 Total Mass | R M1.7 Tertiary Lock Re |
|------------------------------------------------|------------------------------|------------------------|---------------------------|---------------------------|---------------------------|-----------------------|-------------------------|-------------------|-------------------------|
| Example                                        |                              | 1                      | 4                         | 4                         | 4                         | 4                     | 4                       | 4                 | 4                       |
| E Eehavior                                     |                              |                        | 2                         | 2                         | 2                         | 2                     | 2                       | 2                 | 2                       |
| - Control Energy                               | 1                            |                        |                           |                           |                           | Z                     |                         |                   |                         |
| Control Lock                                   | 1                            |                        |                           |                           |                           |                       |                         |                   | Z                       |
|                                                | 5                            |                        | 2                         | 2                         | 2                         | 2                     |                         | 2                 |                         |
| - 🔁 Operate TRAS                               | 4                            |                        | Z                         | 2                         | Z                         |                       |                         | 2                 |                         |
|                                                | 1                            |                        |                           |                           |                           |                       | 2                       |                   |                         |
|                                                | 2                            |                        |                           | -                         |                           |                       | 2                       |                   | 2                       |
|                                                |                              |                        | 1                         | 1                         | 1                         | 1                     | 1                       | 1                 | 1                       |
|                                                | 1                            |                        | 2                         |                           |                           |                       |                         |                   |                         |
| - Overall Reliability                          | 2                            |                        |                           | 2                         |                           |                       | 2                       |                   |                         |
| - 🔛 Prevent Relocking                          | 1                            |                        |                           |                           |                           |                       |                         |                   | 2                       |
| Probability of Failure                         | 1                            |                        |                           |                           | 2                         |                       |                         |                   |                         |
|                                                | 1                            |                        |                           |                           |                           |                       |                         | 2                 |                         |
| TRAS Average Power Co                          | 1                            |                        |                           |                           |                           | 2                     |                         |                   |                         |
| 🗄 🛅 Structure                                  |                              | 1                      | 1                         | 1                         | 1                         | 1                     | 1                       | 1                 | 1                       |
| 🔛 Actuators                                    | 1                            |                        |                           |                           |                           |                       | 4                       |                   |                         |
|                                                | 1                            |                        |                           |                           |                           | 2                     |                         |                   |                         |
| 🔲 TL                                           | 1                            |                        |                           |                           |                           |                       |                         |                   | 2                       |
| TRAS                                           | 5                            | 1                      | 1                         | 1                         | 1                         |                       |                         | 1                 |                         |

D. R. Herber, et al. Model-based structured requirements in SysML

04/07/2023

#### **MBSR Conclusion**



- The MBSR approach is more aligned with the model-centric philosophy of system development through its more broad use of elements in a system model
  - The model then contains further information need to effectively understand, satisfy, and verify our requirements
- MBSR restricts us to create and define the right elements and relationships (or readily see that they are missing)
  - Completeness metrics can be defined and automated
- MBSRs simplify activities such as dynamic change impact assessment (e.g., if this block changed, what requirement definitions depended on it?)

Please consider engaging with the open-sourced model on GitHub at

#### Outline



- Introduction
- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

## **Digital Threads with MBSE Tools**



- Creation of effective digital threads means using the "best-of-breed" tools to complete specific engineering tasks and having different tool inputs and outcomes formally linked
- Many MBSE tools support integration and execution of external models
  For example, Cameo Systems Modeler supports Matlab/Simulink, Python, etc.





A primary goal here is to develop more effective, stable pathways for different individuals to interact with the digital system models



(a) Traditional.



(b) SysML-based.

#### **Variant-based Design**



- In this work on aircraft design, the four subsystems are 1) Aerodynamics, 2) Engine, 3) Thermal Management System (TMS), 4) and Electrical Power System (EPS)
- A critical aspect considered in this work is when multiple different modeling options (termed variants) are available for a given piece of a system
- As an example, consider the following sets of variants for the four subsystems:
  - {Aero} × {Engine-A, Engine-B} × {TMS-A, TMS-B, TMS-C} × {EPS-A, EPS-B}
  - 12 unique complete variant architectures with one specific architecture being {Aero, Engine-A, TMS-C, EPS-B}
- The Simulink models were created to support different variant definitions
- Then, we change the variant selections through the SysML-based model
- Finally, requirement verification is completed in the SysML model using the simulation results

D. R. Herber, et al. Advancing model-based engineering through improved integration of domainspecific simulation and analysis using SysML-based models for unmanned aerial vehicles

#### **Approach Overview**





#### **Results Summary**



# Results visualized and captured within the MBSE tool as well as the external tool (Matlab/Simulink)

| :Requirements<br>] Context.:Mission Context : | :Aircraft.:Aerodynamics.Model | :Aircraft.:Engine.Mode<br>▼ Name : Engine | I :Aircraft.:Thermal<br>▼ Management.Model | Aircraft.:EPS.Model | ☑ ResultFile : String                                                                   | :Aircraft.:Thermal<br>Management.Check | :Aircraft.:Thermal<br>Management.Check | 4000           |   |     |           |   |   |
|-----------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------|---------------------|-----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------|---|-----|-----------|---|---|
| Mission Context                               | Hune : Acro variano           | Variants                                  | Name : TMS Variants                        | Hune - Er o Fundito | De la litera de la                                                                      | GenericRequirement                     | GenericRequirement                     |                |   |     |           |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | ACS_3                                      | Empty               | Results-Architecture-Aero_1-<br>ACS_3-Eng_1-Empty-Ha<br>wk1-1669608882                  | fail                                   | pass                                   | S 3000         | - |     |           |   |   |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | ACS_3                                      | Empty               | Results-Architecture-Aero_1-<br>ACS_3-Eng_1-Empty-Ha<br>wk2-1669600025                  | fail                                   | pass                                   | serv           |   |     |           |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | ACS_3                                      | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>ACS_3-Eng_1-Hawk_bu<br>ck_dual-Hawk1-1669608434         | pass                                   | fail                                   | au 2000        | - |     |           |   |   |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_ACS_3                                  | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>Ram_ACS_3-Eng_1-Ha<br>wk_buck_dual-Hawk2-166960<br>0779 | pass                                   | fail                                   | Fuel           |   |     |           |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_ACS_3                                  | Empty               | Results-Architecture-Aero_1-<br>Ram_ACS_3-Eng_1-Em<br>pty-Hawk1-1669607201              | fail                                   | pass                                   | 1000           | - |     |           |   | • |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_ACS_3                                  | Empty               | Results-Architecture-Aero_1-<br>Ram_ACS_3-Eng_1-Em<br>pty-Hawk2-1669601102              | fail                                   | pass                                   | 0              |   |     |           |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_ACS_3                                  | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>Ram_ACS_3-Eng_1-Ha<br>wk_buck_dual-Hawk1-166960<br>6838 | pass                                   | fail                                   | 0              | ) | 2   | 4         | 6 |   |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_3                                      | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>Ram_3-Eng_1-Hawk_bu<br>ck_dual-Hawk2-1669601394         | pass                                   | fail                                   |                |   |     | time [nr] |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_3                                      | Empty               | Results-Architecture-Aero_1-<br>Ram_3-Eng_1-Empty-H<br>awk1-1669605978                  | pass                                   | pass                                   | <sup>250</sup> |   |     |           |   |   |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_3                                      | Empty               | Results-Architecture-Aero_1-<br>Ram_3-Eng_1-Empty-H<br>awk2-1669601574                  | pass                                   | pass                                   | <u>또</u> 200   | e |     |           |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_3                                      | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>Ram_3-Eng_1-Hawk_bu<br>ck_dual-Hawk1-1669605765         | pass                                   | fail                                   | lre            | Υ |     |           |   |   |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | Ram_3                                      | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>Ram_3-Eng_1-Hawk_bu<br>ck_dual-Hawk2-1669601870         | pass                                   | fail                                   | 150 -          |   |     |           |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | VCS_3                                      | Empty               | Results-Architecture-Aero_1-<br>VCS_3-Eng_1-Empty-Ha<br>wk1-1669605385                  | pass                                   | pass                                   | ed 100         | 1 |     |           |   | 1 |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | VCS_3                                      | Empty               | Results-Architecture-Aero_1-<br>VCS_3-Eng_1-Empty-Ha<br>wk2-1669602270                  | fail                                   | fail                                   | Ter            |   |     |           |   |   |
| Hawk2 : Mission Context                       | Aero_1                        | Eng_1                                     | VCS_3                                      | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>VCS_3-Eng_1-Hawk_bu<br>ck_dual-Hawk2-1669603146         | fail                                   | fail                                   | .50 -          | 1 | Man | ~~~~      |   |   |
| Hawk1 : Mission Context                       | Aero_1                        | Eng_1                                     | VCS_3                                      | Hawk_buck_dual      | Results-Architecture-Aero_1-<br>VCS_3-Eng_1-Hawk_bu<br>ck_dual-Hawk1-1669604729         | fail                                   | fail                                   | vion           | V | L.  |           |   |   |

0

 $\mathbf{2}$ 

4

time [hr]

6

8

-50

5000 🔊

#### **Microgrid Example**



#### Many other potential applications, including a microgrid controller



#### Borky & Bradley. Effective Model-Based Systems Engineering

04/07/2023

## Integrating SysML and Simulation Conclusion



- Supported the definition and simulation of 16 distinct configurations (with the potential of 100+ configurations soon) within a digitally-linked SysML and Simulink modeling paradigm
- Other general realized advantages included:
  - $_{\odot}$  Standardization of organizational practices
  - o Documentation
  - Stakeholder dialog and artifacts (e.g., automatic generation of presentations and diagrams for reviews)
- Future work remains to explore the added value of the SysML-informed development process formally in the context of the simulation-heavy research group (at AFRL in Dayton, OH)

#### References



- 1. R. Carson (2021). Developing Complete and Validated Requirements. INCOSE Seattle-Metropolitan Chapter Monthly Meeting. DOI: 10.13140/RG.2.2.28526.74561
- 2. D. R. Herber, J. B. Narsinghani, K. Eftekhari-Shahroudi. 'Model-based structured requirements in SysML.' In IEEE 2022 International Systems Conference (SysCon), Apr 2022. DOI: 10.1109/SysCon53536.2022.9773813
- 3. D. R. Herber, D. Dierker, S. S. Patnaik. 'Advancing model-based engineering through improved integration of domain-specific simulation and analysis using SysML-based models for unmanned aerial vehicles.' In AIAA 2023 SciTech, Jan 2023. DOI: 10.2514/6.2023-0256
- 4. Borky, J. M., & Bradley, T. H. (2019). Effective Model-Based Systems Engineering. Springer International Publishing. DOI: 10.1007/978-3-319-95669-5

Herber Research Group Publications https://www.engr.colostate.edu/~drherber/publications



Enabling Improved Digital Transformation of Requirements and Simulation through SysML and MBSE



### **CSU Systems Engineering**



#### • My contact info:

- o daniel.herber@colostate.edu
- Many other faculty doing work at CSU in Systems Engineering in a variety of areas related to digital engineering and energy systems:
  - o Marie Vans in augmented/virtual reality for energy system maintenance
  - Tim Coburn in analytics and data science in energy
  - Tom Bradley in energy system management and optimization along with MBSE
  - And many others...
- We offer both distance and on-campus degrees (MS, ME, PhD, Deng)
  - Please see the link below

CSU Systems Engineering https://www.engr.colostate.edu/se



# Digital Engineering Conference

April 25 & 26 | Idaho Falls







Fermilab

MIT LINCOLN LABORATOR



