

Enabling Improved Digital Transformation of Requirements and Simulation through SysML and MBSE

Daniel (Dan) Herber Assistant Professor of Systems Engineering Colorado State University <u>daniel.herber@colostate.edu</u>

Outline

- Introduction
- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

Outline

• Introduction

- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

Introduction

- Digital Transformation, Digital Engineering, Digital Threads, Model-based Systems Engineering (MBSE), etc. — Imperative ideas, but often there are still challenges in releasing their vision to support better engineering practice
- Here, we wanted to highlight briefly two areas of work towards the broad goal of better digital engineering through MBSE and the use of the Systems Modeling Language (SysML)
- The two areas are:
 - Model-based structured requirements that better bring requirements into digital engineering and model-centric practices
 - Digital thread creation between SysML and external simulation models for improved optioneering, program management, and systems engineering

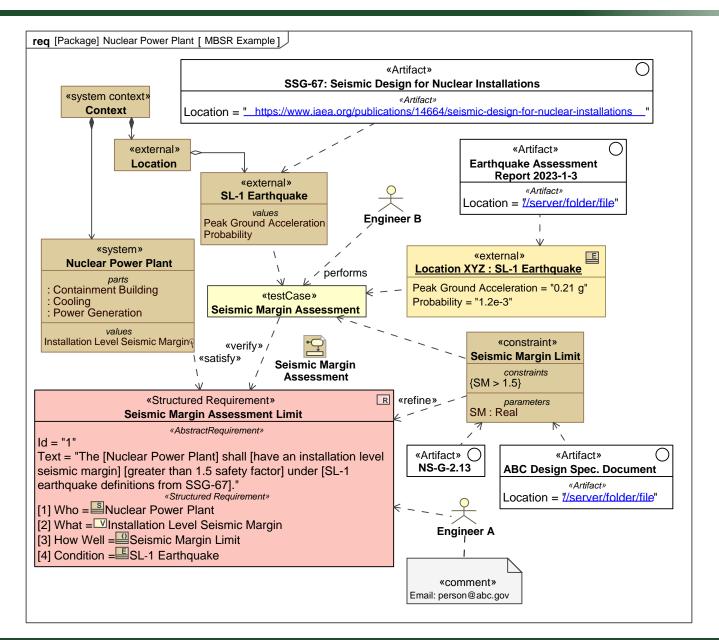
Outline

- Introduction
- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

- A structured requirement, or a requirements template, defines an orderly requirement structure with specified attribute placeholders
 - Helps capture the precise meaning and communicate the required information to define a complete requirement
- A structured requirement statement may look like:
 - o The [Who] shall [What] [How Well] under [Condition].
- Some examples:
 - The [Nuclear Power Plant] shall [have an installation level seismic margin] [greater than 1.5 safety factor] under [SL-1 earthquake definitions from SSG-67].
 - The [Instrumentation & Controls] *shall* [be protected] [in accordance with the guidance of SSG-64] under [effects of fire & explosion as defined in SSG-64].
 - The [Standby Pump 123-C] shall [deliver water to equipment XYZ-A] [at the rate of at lest 150 gpm] under [a loss of primary pumps A and B].
- There is a variety of other potential structured requirement templates for different standards and requirement types

R. Carson (2021). Developing Complete and Validated Requirements

Classical SysML Requirements Modeling



• A classical SysML-based requirement is developed by defining:

- Some predefined abstract attributes: Name, Id, and Text
- Some traceability relationships that include attributes such as: Owner, Derived, Derived From, Satisfied By, Refined By, Traced To, and Verified By
- o Hierarchical relationships between requirements
- An identified issue is that many approaches do not fully integrate requirements with the system model, including in classical SysML
 - Many perspectives have less to do with defining the requirements and more with traceability to the system model (an important aspect)
- Therefore, we have been developing model-based structured requirements (MBSRs)
 - Combines the two together textual structured requirements and classical SysML requirements modeling to leverage the advantages of both

MBSR Example Diagram

CSU

MBSR Dependency Matrix

Legend	_		Nuc	ear	Pow	er Pl	ant™								
Dependency			enc	ū	÷ 				arth	<u> </u>		me			Jn f-
Dependency (Implied)) NS-G-2.13	R 1 Core Damage Frequenc	ABC Design Spec. Docum	Context	Earthquake Assessme	Engineer A	Engineer B	Location XYZ : SL-1 Earth	📘 Nuclear Power Plant 🔲	V Installation Level Seis	Seismic Margin Assessme	Seismic Margin Limit-	SL-1 Earthquake	SSG-67: Seismic Design f
🖃 🦳 Nuclear Power Plant		1	6	1	1		•⊢< 1	•≺ 1	2	1	1	5	2	2	
NS-G-2.13	1	-	Ū	-	-	-	-	-	-	-	-		7	-	-
R 1 Core Damage Frequency Limit	6				2		2			2	2	2	2		
	1												\nearrow		
Context	1		27												
Earthquake Assessment Report	1								\nearrow						
- 옷 Engineer A	1		\nearrow												
- 🌱 📍 Engineer B	1											\nearrow			
🗆 🖃 Location XYZ : SL-1 Earthquake	2					\checkmark						\nearrow			
🗄 🔜 Nuclear Power Plant	1		17												
Installation Level Seismic Marg	1		\nearrow												
	5		\nearrow					\checkmark	\checkmark				\checkmark	\swarrow	
	4	\checkmark	\nearrow	\checkmark								\nearrow			
Earthquake	2											\nearrow			\checkmark
SSG-67: Seismic Design for Nucl	1													\nearrow	

MBSR Attribute Matrix

MBSRs also support summarizing views for how the system model relates to the requirement definitions

# △ Id	Name	Requirement Type	Text	Who	What	How Well	Condition
1 M1	E R M1 Overall TRAS Requirement	•	Overall System Requirement Specification	TRAS			
2 M1.1	R M1.1 Initial Time to Deploy	Performance	TRAS time to deploy shall be less than 2 seconds	TRAS	Dperate TRAS	Initial Deploy Time	Normal Landing Scenario
3 M1.2	R M1.2 Overall Reliability	Non-Functional	TRAS shall achieve overall system reliability no less than 0.9 under normal landing condition.	TRAS	Coperate TRAS	Overall Reliability	Normal Landing Scenario
4 M1.3	R M1.3 Probability of Failure	Non-Functional	TRAS composite probability of failure shall be no more than 1E-9	TRAS	Coperate TRAS	Probability of Failure	Normal Landing Scenario
5 M1.4	TRAS Average Power R M1.4 Consumption During Deploy Operation	Interface	During Thrust reverser deploy operation, from ECU/DCR opening to fully extended actuator position, TRAS average power consumption shall be lower than 1TBDkW.	Power Interface	Control Energy	TRAS Average Power Consumption During Deploy Operation	Normal Landing Scenario
6 M1.5	■ M1.5 Unlocking for TR Deployment	Functional	The TRAS actuators shall include overstow function to ensure unlocking function is performed with loading during TR deployment.	Actuators	Perform Overstow	🕼 Overall Reliability	TR Deployment Scenario
7 M1.6	R M1.6 Total Mass	Physical	System total mass shall be less than 320 pounds.	TRAS	Operate TRAS	Total Mass	Normal Landing Scenario
8 M1.7	R M1.7 Tertiary Lock Relocking	Design Constraint	Each Tertiary lock shall be designed to not relock during T/R deploy and stow translation.	TL TL	Control Lock	Prevent Relocking	TR Deployment Scenario

Example here is a thrust reverser actuation system (TRAS)

Legend	_								
Condition	Ъ	ġ							
🏸 How Well	ture	lpa	Ó	oilit	ц	e P	Ë		Re
🔎 What	truc	AS R	net	eliał	y of	erag	j for	SS	ock
🗡 Who	Model-Based Structured F	M1 Overall TRAS Requ	M1.1 Initial Time to D	M1.2 Overall Reliabilit	M1.3 Probability of Fa-	M1.4 TRAS Average P-	M1.5 Unlocking for TF	M1.6 Total Mass	M1.7 Tertiary Lock Re-
	Bas	erall	litia	vera	roba	RAS	nloc	otal	ertia
	del-	Ő	1 II	2 0	с. Р	4T	.5 U	.6 T	7 T
		R	R	R	R	R	R	R	R
🖃 🦲 Example		1	4	4	4	4	4	4	4
🖻 🛄 Behavior			2	2	2	2	2	2	2
	1					2			
	1								\checkmark
	5		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	4		\checkmark	\checkmark	\checkmark			\checkmark	
	1						\checkmark		
TR Deployment Scenario	2						\checkmark		\checkmark
🛱 🛅 Constraints			1	1	1	1	1	1	1
- 🔛 Initial Deploy Time	1		2						
	2			\checkmark			\checkmark		
- Prevent Relocking	1								\checkmark
Probability of Failure	1				\checkmark				
- Dtal Mass	1							2	
TRAS Average Power Co	1					\swarrow			
E Structure		1	1	1	1	1	1	1	1
- Actuators	1						\swarrow		
Power Interface	1					\checkmark			
TL	1								\checkmark
TRAS	5	\swarrow	2	2	2			\checkmark	

D. R. Herber, et al. Model-based structured requirements in SysML

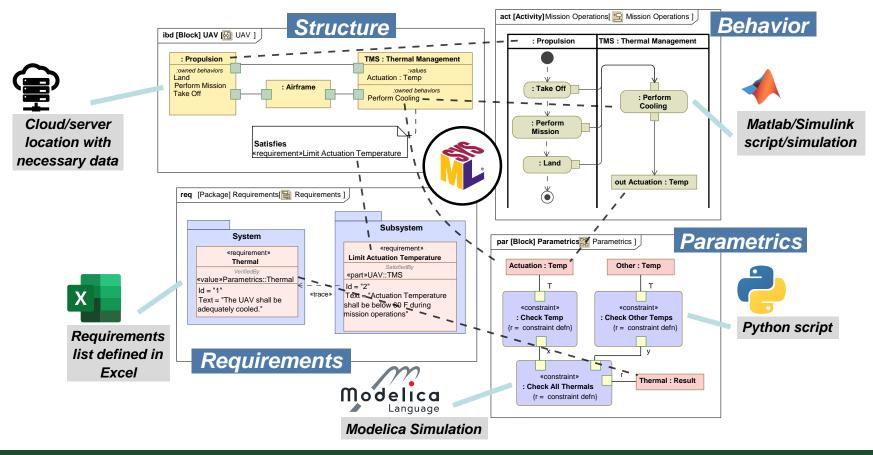
04/25/2023

MBSR Conclusion

- The MBSR approach is more aligned with the model-centric philosophy of system development through its more broad use of elements in a system model
 - The model then contains further information need to effectively understand, satisfy, and verify our requirements
- MBSR restricts us to create and define the right elements and relationships (or readily see that they are missing)
 - o Completeness metrics can be defined and automated
- MBSRs simplify activities such as dynamic change impact assessment (e.g., if this block changed, what requirement definitions depended on it?)

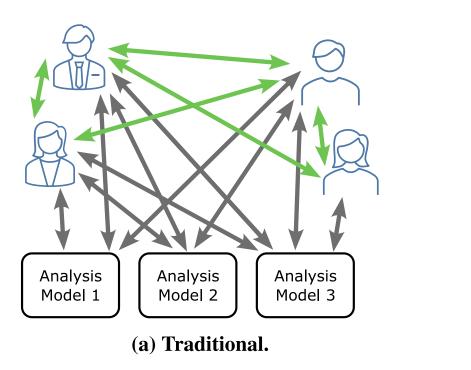
Please consider engaging with the open-sourced model on GitHub at <u>https://github.com/danielrherber/model-based-structured-requirements</u>

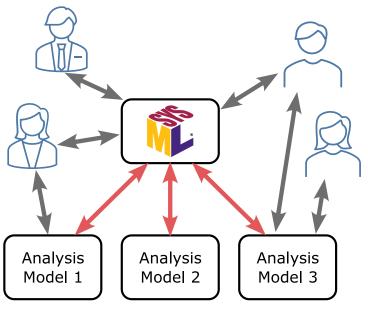
Outline



- Introduction
- Model-based Structured Requirements
- Integration of SysML and External Simulation Models

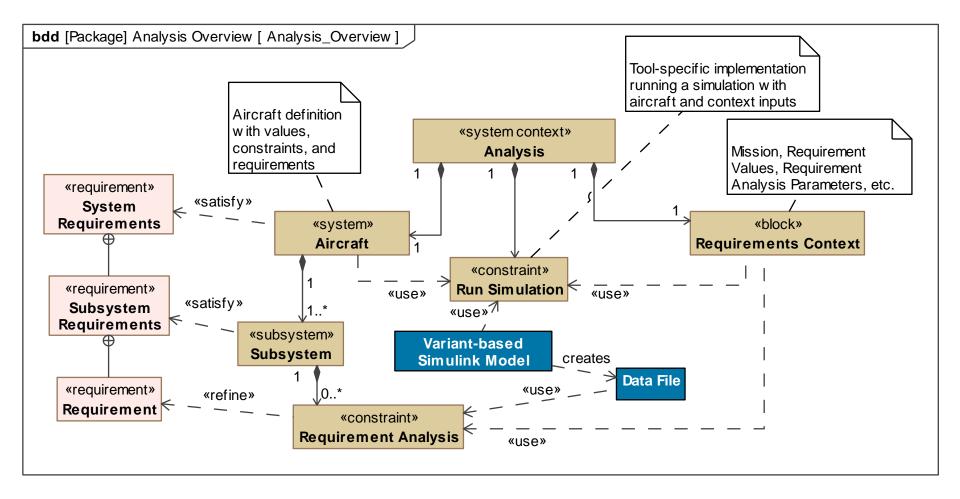
Digital Threads with MBSE Tools




- Creation of effective digital threads means using the "best-of-breed" tools to complete specific engineering tasks and having different tool inputs and outcomes formally linked
- Many MBSE tools support integration and execution of external models
 - o For example, Cameo Systems Modeler supports Matlab/Simulink, Python, etc.

A primary goal here is to develop more effective, stable pathways for different individuals to interact with the digital system models

(b) SysML-based.



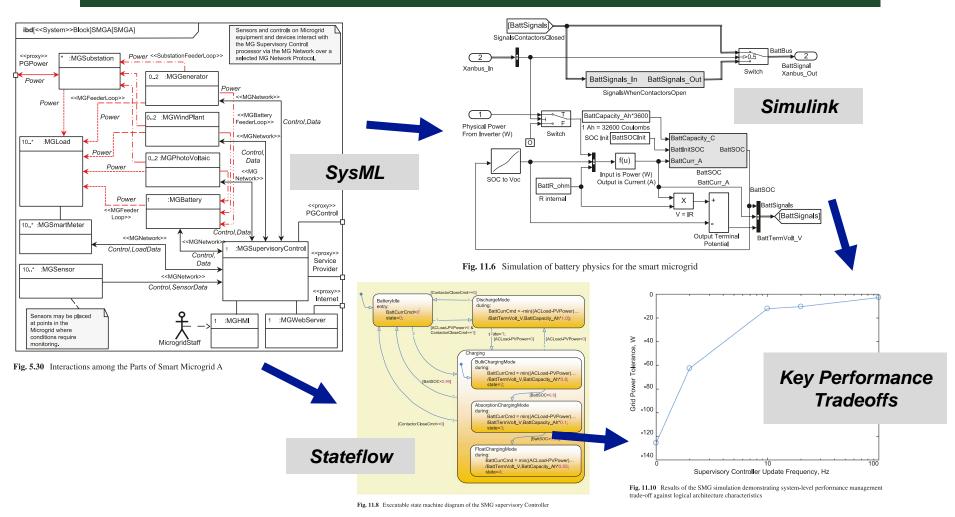
- In this work on aircraft design, the four subsystems are 1) Aerodynamics, 2) Engine, 3) Thermal Management System (TMS), 4) and Electrical Power System (EPS)
- A critical aspect considered in this work is when multiple different modeling options (termed variants) are available for a given piece of a system
- As an example, consider the following sets of variants for the four subsystems:
 - {Aero} × {Engine-A, Engine-B} × {TMS-A, TMS-B, TMS-C} × {EPS-A, EPS-B}
 - 12 unique complete variant architectures with one specific architecture being {Aero, Engine-A, TMS-C, EPS-B}
- The Simulink models were created to support different variant definitions
- Then, we change the variant selections through the SysML-based model
- Finally, requirement verification is completed in the SysML model using the simulation results

D. R. Herber, et al. Advancing model-based engineering through improved integration of domainspecific simulation and analysis using SysML-based models for unmanned aerial vehicles

Approach Overview

Results Summary

Results visualized and captured within the MBSE tool as well as the external tool (Matlab/Simulink)


								50	00	1			
:Requirements P Context.:Mission Context : Mission Context	☑ :Aircraft.:Aerodynamics.Model Name : Aero Variants	:Aircraft.:Engine.Model Name : Engine Variants	Aircraft.:Thermal Management.Model Name : TMS Variants	Aircraft.:EPS.Model Name : EPS Variants	ResultFile : String	:Aircraft.:Thermal Management.Check Avionics Temp : GenericRequirement	Housekeeping Temp :	40 [1]	00 -				
Hawk1 : Mission Context	Aero_1	Eng_1	ACS_3	Empty	Results-Architecture-Aero_1- ACS_3-Eng_1-Empty-Ha wk1-1669608882	fail	pass		00				
Hawk2 : Mission Context	Aero_1	Eng_1	ACS_3	Empty	Results-Architecture-Aero_1- ACS_3-Eng_1-Empty-Ha wk2-1669600025	fail	pass	30 Beserves 20					
Hawk1 : Mission Context	Aero_1	Eng_1	ACS_3	Hawk_buck_dual	Results-Architecture-Aero_1- ACS_3-Eng_1-Hawk_bu ck_dual-Hawk1-1669608434	pass	fail		00				
Hawk2 : Mission Context	Aero_1	Eng_1	Ram_ACS_3	Hawk_buck_dual	Results-Architecture-Aero_1- Ram_ACS_3-Eng_1-Ha wk_buck_dual-Hawk2-166960 0779	pass	fall	Fuel	00				
Hawk1 : Mission Context	Aero_1	Eng_1	Ram_ACS_3	Empty	Results-Architecture-Aero_1- Ram_ACS_3-Eng_1-Em pty-Hawk1-1669607201	fail	pass	10					
Hawk2 : Mission Context	Aero_1	Eng_1	Ram_ACS_3	Empty	Results-Architecture-Aero_1- Ram_ACS_3-Eng_1-Em pty-Hawk2-1669601102	fail	pass						l
Hawk1 : Mission Context	Aero_1	Eng_1	Ram_ACS_3	Hawk_buck_dual	Results-Architecture-Aero_1- Ram_ACS_3-Eng_1-Ha wk_buck_dual-Hawk1-166960 6838	pass	fail		0		2	4 time [hr	6
Hawk2 : Mission Context	Aero_1	Eng_1	Ram_3	Hawk_buck_dual	Results-Architecture-Aero_1- Ram_3-Eng_1-Hawk_bu ck_dual-Hawk2-1669601394	pass	fail					time [m	
Hawk1 : Mission Context	Aero_1	Eng_1	Ram_3	Empty	Results-Architecture-Aero_1- Ram_3-Eng_1-Empty-H awk1-1669605978	pass	pass	25	0				
Hawk2 : Mission Context	Aero_1	Eng_1	Ram_3	Empty	Results-Architecture-Aero_1- Ram_3-Eng_1-Empty-H awk2-1669601574	pass	pass	<u>۲</u> 20	0				
Hawk1 : Mission Context	Aero_1	Eng_1	Ram_3	Hawk_buck_dual	Results-Architecture-Aero_1- Ram_3-Eng_1-Hawk_bu ck_dual-Hawk1-1669605765	pass	fail						
Hawk2 : Mission Context	Aero_1	Eng_1	Ram_3	Hawk_buck_dual	Results-Architecture-Aero_1- Ram_3-Eng_1-Hawk_bu ck_dual-Hawk2-1669601870	pass	fail	tati 15	0				
Hawk1 : Mission Context	Aero_1	Eng_1	VCS_3	Empty	Results-Architecture-Aero_1- VCS_3-Eng_1-Empty-Ha wk1-1669605385	pass	pass	Temperature 10	0	<u> </u>			
Hawk2 : Mission Context	Aero_1	Eng_1	VCS_3	Empty	Results-Architecture-Aero_1- VCS_3-Eng_1-Empty-Ha wk2-1669602270	fail	fail	Ter					
Hawk2 : Mission Context	Aero_1	Eng_1	VCS_3	Hawk_buck_dual	Results-Architecture-Aero_1- VCS_3-Eng_1-Hawk_bu ck_dual-Hawk2-1669603146	fail	fail	Avionics	0-		Mm	~~~~~	
Hawk1 : Mission Context	Aero_1	Eng_1	VCS_3	Hawk_buck_dual	Results-Architecture-Aero_1- VCS_3-Eng_1-Hawk_bu ck_dual-Hawk1-1669604729	fail	fail	vior	ما	₩			

4time [hr]

Microgrid Example

Many other potential applications, including a microgrid controller

Borky & Bradley. Effective Model-Based Systems Engineering

Integrating SysML and Simulation Conclusion

- Supported the definition and simulation of 16 distinct configurations (with the potential of 100+ configurations soon) within a digitally-linked SysML and Simulink modeling paradigm
- Other general realized advantages included:
 - Standardization of organizational practices
 - o **Documentation**
 - Stakeholder dialog and artifacts (e.g., automatic generation of presentations and diagrams for reviews)
- Future work remains to explore the added value of the SysML-informed development process formally in the context of the simulation-heavy research group (at AFRL in Dayton, OH)

References

- R. Carson (2021). Developing Complete and Validated Requirements. INCOSE Seattle-Metropolitan Chapter Monthly Meeting. DOI: 10.13140/RG.2.2.28526.74561
- 2. D. R. Herber, J. B. Narsinghani, K. Eftekhari-Shahroudi. 'Model-based structured requirements in SysML.' In IEEE 2022 International Systems Conference (SysCon), Apr 2022. DOI: 10.1109/SysCon53536.2022.9773813
- 3. D. R. Herber, D. Dierker, S. S. Patnaik. 'Advancing model-based engineering through improved integration of domain-specific simulation and analysis using SysML-based models for unmanned aerial vehicles.' In AIAA 2023 SciTech, Jan 2023. DOI: 10.2514/6.2023-0256
- 4. Borky, J. M., & Bradley, T. H. (2019). Effective Model-Based Systems Engineering. Springer International Publishing. DOI: 10.1007/978-3-319-95669-5

Herber Research Group Publications https://www.engr.colostate.edu/~drherber/publications

Enabling Improved Digital Transformation of Requirements and Simulation through SysML and MBSE

CSU Systems Engineering

- My contact info:
 - o daniel.herber@colostate.edu
- Many other faculty doing work at CSU in Systems Engineering in a variety of areas related to digital engineering and energy systems:
 - o Marie Vans in augmented/virtual reality for energy system maintenance
 - o Tim Coburn in analytics and data science in energy
 - Tom Bradley in energy system management and optimization along with MBSE
 - o And many others...
- We offer both distance and on-campus degrees (MS, ME, PhD, Deng)
 - Please see the link below

CSU Systems Engineering https://www.engr.colostate.edu/se

