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Abstract. Systems engineering enabled the development of some of the greatest engineering marvels

of the 20th century. With the advent of the information age and software-centric systems, which

drove a dramatic increase in system complexity, the practice of systems engineering has encountered

growing pains. As organizations developing these software-centric systems work to adopt agile

software development methods, the rigor of systems engineering work has been compromised. The

linguistic relativity hypothesis suggests that the cognitive ability to engineer effective systems is

developed and enhanced by the “language” of systems engineering. An improved understanding of

what constitutes model-based systems engineering (MBSE) as opposed to systems modeling can

improve MBSE outcomes. We put forth here that agile systems engineering, enabled by MBSE, is

the bridge that will allow the principles and processes that have been developed through decades of

research and experience to be applied to benefit modern systems.

Introduction

While systems engineering (SE) has roots that reach back even further (Sillitto et al. 2018), it

emerged as a discipline in the 1950s as a means to manage the complexity of large systems, like

spacecraft and weapon systems, that began to be developed around that time (Hoban and Lawbaugh

1993). During the subsequent decades, the discipline matured as it became a field of research and

study, standards emerged, and practitioners accumulated experience. The motivation of SE is to

enable the realization, operation, maintenance, and disposal of systems (a collection of components

and/or components and their relationships that provide a function that cannot be done by any of the

constituent elements individually) that meets stakeholder needs and requirements by completing

a series of defined technical and management processes throughout the system life cycle (Emes,

A. Smith, and Cowper 2005). While it is not the purpose of this paper to recount the full history and

purpose of SE as a discipline, it is important to recognize and appreciate its purpose and origins.

While there is still room to improve to meet current and emerging challenges, SE is a mature
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discipline that has evolved over decades of use and refinement and its principles are not obsolete.

Rather, they are increasingly relevant to the successful delivery of modern systems.

Despite its mature foundation and past successes, SE has experienced significant growing pains

in the information age. As a discipline that concerns itself with the specification and management

of the components and relationships that constitute a system, its work has increased exponentially

with the central role of software in modern systems. Figure 1 shows the exponential growth of

software size in various domains. With this exponential growth, the legacy processes used to manage

these systems through manually generated artifacts (documents, diagrams, spreadsheets, etc.) have

quickly become untenable (Madni and Sievers 2018).
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Figure 1. Historical trends in lines of code in various domains (data from Dvorak 2009; Potocki

de Montalk 1993; Hagen and Sorenson 2013; Schenker, T. Smith, and Nichols 2022).

To illustrate the effects of this growth in system complexity on SE, consider a hypothetical, yet

representative scenario of the software modernization efforts of a large weapon system. With the

increasing complexity of subsystems and components, traditional, document-based SE approaches

became too cumbersome to complete effectively and did not support required system development

timelines within the organization (Kemp, Beasley, and Williams 2015). In addition to schedule and

budget pressure, the challenges associated with this project’s scope made it impossible to adequately

manage SE efforts and artifacts which compromised SE rigor, resulting in a lower-quality product

(Honour 2004; Rousseau 2018). The chief engineer and program manager recognized the need

for a dramatic SE paradigm shift. Agile methods have revolutionized software development, and

because of the software centric nature of the system of interest, it was proposed that agile methods

be adopted at the system level and adapted for SE (Beck et al. 2001). Because agile methods were

developed for software development based on the agile manifesto, there was no direct application of

specific agile methods or processes to SE (Carson 2013). Instead, agile coaches taught the four key

statements and accompanying 12 principles from the agile manifesto, as well as some techniques

for scaling agile methods to a large enterprise (Laanti 2014).

These concepts were applied in the systems engineering context where practical. The most obvious



change was a move away from a waterfall development model where new product deliveries occurred

every 3-5 years with many fully-formed capabilities and major development stages were completed

for the entire system prior to moving on to the next step. Work was broken into increments with

the understanding that capability would be delivered on a set cadence and partial capabilities that

could deliver value to the user would be delivered before the full functionality of the capability

was available. Cross-functional agile teams were formed, and development work commenced.

Unfortunately, most of the changes were to the software development work within the organization,

and there was no accompanying change in how the SE work was done to fit this agile approach.

Systems engineers were forced to reduce the rigor of their processes to move faster and meet the new

release cadence, to the point that they were often only reacting to work that was already in process.

SE technical processes were pared down to the point that there was no one in the organization

fulfilling the role of the traditional “Systems Engineer”. In this particular organization SE died a

slow, quiet death.

In an effort to address a legitimate problem, the inability of traditional SE methods to scale to the

scope of modern systems, we all too often “throw the baby out with the bathwater” or abandon the

valuable aspects of systems engineering in an effort to remove its undesirable qualities (Ammer

1997). This leads to inferior outcomes as SE is not only still relevant to modern systems but

more important than ever. In this paper, we will highlight some aspects of SE that are particularly

important to improving the practice of SE today.

The remainder of the paper is organized as follows. Section 2 addresses the importance of the

continued use of the “language” of SE as cognitive abilities to complete SE tasks can be developed

and improved through the use of an SE language. Section 3 examines the difference between systems

modeling and model-based systems engineering (MBSE) and the implications of these differences.

Section 4 presents agile systems engineering (ASE), supported by MBSE, as a practical approach to

bridge the gap between the burdensome traditional SE processes and agile software development

methods. The conclusions of the paper are in Section 5.

The Language of Systems Engineering

The linguistic relativity hypothesis posits that the language an individual or culture speaks shapes the

way they think and perceive the world (Wolff and Holmes 2011). While there is still debate in the

linguistic world about the strength and scope of this hypothesis, there is a great deal of supporting

evidence and many examples of its application. An example that is particularly relevant to this

discussion has to do with the Pormpuraaw, an aboriginal group in Australia. In their language, Kuuk

Thaayorre, there are no words for relative positions equivalent to “left” or “right” in English. Instead,

all references to the positions of objects are based on the cardinal directions (north, east, south, and

west). As a result, even young children of the Pormpuraaw exhibit exceptional ability to know what

direction they are facing at all times, to a degree that some experts did not think was possible for

humans. This phenomenon is not unique to sense of direction as similar language-based effects

have been observed with color perception and math skills, among others. Cognitive psychologist

Lera Boroditsky has shown that this phenomenon is strong evidence that language not only affects

how an individual thinks and perceives the world but that individuals can develop cognitive ability

based on the language they use (Boroditsky 2011).



Much like the difference between the natural language of individuals or cultures, different fields

of study, professions, and other social groups have developed their own “languages” in the form

of ontologies which are “a collection of standardized, defined terms and relationships between the

terms” (Vaneman 2018). Using a domain-specific ontology allows group members to communicate

with each other in a more direct and precise manner using a more meaningful vocabulary. Based on

Boroditsky’s research on the connection between language and cognitive ability, there is reason

to believe that the adoption and understanding of a domain-specific ontology may improve the

cognitive ability of an individual within that domain.

There have been efforts within the systems engineering community to codify a systems engineering

ontology (Vaneman 2018; Van Ruijven 2013; Honour and Valerdi 2006). The purpose of this

paper is not to argue for or against a single systems engineering ontology or what should or should

not be contained in such an ontology. The reality is that, even in the absence of an authoritative

ontology, systems engineering does have its own “language” based on decades of experience and

research. Individuals who “speak” the language of systems engineering may develop cognitive

abilities specific to doing the work of a systems engineer and shape the way they perceive and

approach problems.

Abandoning the language of systems engineering introduces the risk of sacrificing its associated

cognitive ability. Notably, the cognitive ability associated with language seems to be tied to the

language itself, not specific practices or processes. Innovations and improvements to the application

of SE can, and should, continue while preserving its language. The language of systems engineering

will continue to evolve, as all languages do, but as it does, it should be built on the existing body

of knowledge and experience. This is not to say that a system will be doomed to failure without

this language, but the advantage of proven principles of systems engineering will be lost without it.

Instead of abandoning SE, we need to strengthen the way that SE and its accompanying language is

documented, communicated, and taught to harness the power of the linguistic relativism hypothesis

to develop the cognitive ability to be better systems engineers.

Demand for Effective MBSE Implementation

MBSE has emerged as an approach to systems engineering that specifically addresses the challenges

associated with large, complex systems and managing rapid change inherent to compressed delivery

timelines and agile software development practices. Despite the tendency to always refer to this

approach by its acronym, it is important to recognize that MBSE is still fundamentally systems

engineering. Though specific approaches vary, all of the processes and actions that have been

done in SE traditionally should still be used in an MBSE approach. The primary difference from

the traditional approach is that in an MBSE approach these processes are model-driven and the

outputs are captured in a system model that can function as a single authoritative source of truth

(ASoT) for SE data. As shown in Fig. 2, the exponentially increasing interactions of the traditional,

document-centric approach can be reduced as all stakeholders are able to deliver and access SE data

in the model directly.

This is how MBSE is typically presented on paper, but in practice there are challenges associated

with MBSE adoption that have prevented its adoption to the degree that would be expected based on
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Figure 2. Illustration of traditional document-centric systems engineering and model-based systems

engineering.

its documented benefits (Cameron and Adsit 2020; Madni and Sievers 2018; Chami and Bruel 2018).

The diffusion of innovation theory describes the variability of the adoption rate of innovations

generally (Rogers 2003), and may aid in understanding the adoption rate of MBSE specifically (Call

and Herber 2022).

Another factor that may be affecting MBSE adoption and success is that there is still no wide-

spread understanding of what exactly constitutes MBSE throughout the SE community, leading to

ineffectiveMBSE implementations. A frequently cited definition of MBSE, provided by INCOSE, is

“the formalized application of modeling to support system requirements, design, analysis, verification

and validation activities beginning in the conceptual design phase and continuing throughout

development and later life cycle phases” (Walden et al. 2015). Without an understanding of

exactly what a “formalized application of modeling” entails or what it means to “support” systems

engineering activities throughout the system life cycle, the scope as to what can be considered

MBSE is not immediately clear.

The result can be illustrated using the same hypothetical organization referenced in the introduction.

Because of the atrophied SE activity, as already described, integration challenges arise, and system

quality suffers. MBSE is a popular topic and receives a lot of attention, so the chief engineer

and program manager decide that they will “do MBSE”. Expensive tool licenses are purchased,

several engineers are trained on a modeling language and tool, and these newly trained engineers are

assigned to a development team with the role of “modelers”. Development work continues much as

it has before, with the system modelers capturing architecture and design decisions as they are made



or implemented in a system model. There are occasional times that a potential problem is identified

through the use of the model, but the model is used primarily as a way to document decisions that

have already been made, not as a design tool. Over time modeling efforts wane as no one is really

using the model, and it slows work down more than it helps. The model never delivers value to

the organization, and everyone involved eventually accepts the fact that MBSE is a fad and begins

looking for another path forward to solve their integration and quality challenges.

This hypothetical organization may be somewhat caricatured, but it raises the question of what

constitutes an MBSE approach that has a likely chance of providing value to an organization?

Delligatti builds on the INCOSE definition and identifies three pillars associated with MBSE

— a modeling language, a modeling tool, and a modeling methodology (Delligatti 2013). The

example organization clearly had a modeling language and tool, but no methodology was specified.

A modeling methodology establishes the purpose of the modeling effort and identifies specific

tasks and standards that will be used in the creation of the model. The importance of a modeling

methodology suggests that the mere existence of a system model is not what provides value to

an organization and does not constitute a true MBSE approach (Haskins 2011). Rather, it is the

systems engineering processes that are used and the act of developing the model where the value is

generated.

Vaneman supports the argument against the INCOSE definition of MBSE, making the point that

it does not go far enough. His expanded definition addresses the ambiguity of the term “support”

in the INCOSE definition. He defines MBSE as “the formalized application of modeling (static

and dynamic) to support system design and analysis, throughout all phases of the system lifecycle,

through the collection of modeling languages, structures, model-based processes, and presentation

frameworks used to support the discipline of systems engineering in a model-based or model-driven

context” (Vaneman 2018). This extension of the INCOSE definition specifies what is included in an

MBSE approach. To describe how useful models are produced, this definition stipulates the use of

a modeling language (as opposed to plain English), defined structures, model-based processes (that

is, processes that are centered on the modeling efforts with results that are captured in the model),

and the frameworks by which the modeling artifacts will be presented.

Some other additions that are worth highlighting is that this definition includes both static and

dynamic models. Even if we consider traditional SE artifacts to be models, since they are abstract

representations of the system of interest, they are still only static models. The dynamic models that

are enabled by MBSE yield significant value to the SE process. Finally, the inclusion of systems

engineering activities being model-driven adds further emphasis to the central role of models in

an MBSE approach. Models are not created to capture decisions made using arbitrary processes.

Instead, the models drive and inform new, modified systems engineering processes that are employed

in an MBSE approach. This definition of MBSE is a valuable contribution to the understanding of

what exactly MBSE entails, and its application could lead to improved MBSE outcomes.

Agile Systems Engineering

The introductory section of this paper introduced a hypothetical organization that abandoned SE

rigor in an effort to realize the benefits offered by an approach utilizing agile principles and methods.
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Figure 3. An agile systems engineering approach (adapted from Douglass 2015).

However, this choice between systems engineering rigor and agile methodology is a false dichotomy.

There is no reason why a robust systems engineering approach cannot include agile principles.

While most established agile methods apply specifically to software development, agile principles

are generally related to being adaptive to change, iterative and incremental development, and being

people-oriented (Abbas, Gravell, and Wills 2008).

The desire and need to apply agile methods to SE processes has given rise to the concept of agile

systems engineering (ASE) (Walden et al. 2015). When referring to ASE, it is important to make a

distinction between agile systems engineering and agile systems engineering. The former refers to

the engineering of systems that could be described as agile in their ability to adapt and respond to

change, while the latter refers to a systems engineering approach that incorporates agile principles

that is used to engineer systems that themselves may or may not be agile (Haberfellner and Weck

2005). While the development of agile systems is vital in many instances, the focus of this paper is

on SE approaches, and all future references in the paper to agile systems engineering are in reference

to an agile systems engineering approach. A generic ASE approach that uses incremental and

iterative development to respond to change is depicted in Fig. 3. Note that this figure of an iterative

(and potentially incremental) SE approach explicitly depicts SE activities as cycles that provide

inputs to and receives feedback from preceding and subsequent events, as opposed to discrete events

seen in the traditional systems engineering “vee” model (Walden et al. 2015; Douglass 2015).

ASE does not refer to a specific approach as there is no single, commonly accepted definition of

or process that can be authoritatively referred to as agile systems engineering. In fact, Kemp et al.

have identified four distinct ways that the term agile SE is used (Kemp, Akroyd-Wallis, et al. 2016):

1. Agile System Development — Closest to an agile approach as understood in a software

development context as it is focused on using operational feedback to carry out SE processes

in response to rapid environmental and requirement changes.



2. Higher Tempo Conventional SE — Tailoring of conventional SE processes and tools to re-

duce the overall amount of time spent on SE in support of compressed system delivery

timelines where there is a desire to employ agile methods, but the SE process must be clearly

defined (e.g., safety-critical and/or highly regulated systems).

3. Agile SE Document/Model Development — An approach where users are engaged early on

and agile principles are applied primarily to the development of the system specification

(document or model) for hand off to other engineering disciplines.

4. Snake Oil — This is not really an agile approach at all, but an instance where agile principles

are presented as an excuse to avoid systems engineering rigor or “adopted” to comply with an

expectation or mandate with no understanding of how to do so or evidence of likely success.

This is the approach utilized by the hypothetical organization from the introduction and is,

unfortunately, applied far too often.

The concept of ASE is a natural and necessary progression for SE in a world where software is

a dominant driver of modern systems. Because software is responsible for the implementation

of high-level specifications that are the output of systems engineering processes and the relative

ease of producing software compared to physical components, software size and complexity have

necessarily outpaced the number of components and/or subsystems that contribute to systems

engineering complexity. Because of this, the software development community has been addressing

the challenges of managing this size and complexity for decades. However, as systems have

continued to become more complex and software-centric, the systems engineering community is

now facing many of the same problems associated with the level of complexity that the software

development community encountered that led to the conception and formalization of agile software

development key statements, principles, and processes. Systems engineers have the benefit of

leveraging and adapting research on and development of agile methods that software developers

have developed over the last 25+ years.

The development and maintenance of document-based SE artifacts present challenges in an ASE

approach due to the pace and scope of required changes to those artifacts. However, MBSE and

ASE are very complementary, and not only can but should coexist (Douglass 2015; Huss, Herber,

and Borky 2023). Though they share many attributes, ASE and MBSE are not synonymous and are

distinct specializations of a more generalized SE approach. A systems engineering approach for

an organization could include both ASE and MBSE elements, ASE or MBSE elements, or contain

neither ASE nor MBSE elements as illustrated in Fig. 4.

ASE is not new, and an ASE approach to developing a systems specification has been thoroughly

elaborated by Douglass (Douglass 2015), among others (Haberfellner and Weck 2005; Dove and

LaBarge 2014; Schindel and Dove 2016; Bonnet et al. 2015; Huss, Herber, and Borky 2023).

Though the agile manifesto (Beck et al. 2001) was written for software development, Douglass has

mapped its key statements and principles to systems engineering. While his approach is focused on

the development of a system specification, he identifies some agile best practices that are particularly

suited for an ASE approach utilizing MBSE (Douglass 2015):

• Incremental development of work products

• Continued verification of work products

• Executable requirements models
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Figure 4. Relationships between systems engineering generally, agile SE, and MBSE.

• Model-based specification linked to a textual specification

• Model-based hand off to downstream engineering

• Dynamic planning

Incremental development of work products—When SE activities are strictly carried out serially,

that is, subsequent activities are only begun once the preceding activity is completed, then critical

decisions may be made on incomplete information. The alternative, agile approach would be to

begin subsequent SE activities as soon as “just enough” of the preceding activity is completed. By

working incrementally, lessons learned from subsequent activities can be fed back to preceding

activities and changes made before additional, incorrect work is completed. An MBSE approach,

with its strength in managing change, is well suited for this situation.

Continued verification of work products— The primary means of verifying work products in a

document-based SE approach is through the use of reviews. This is not because there is no desire

for a more robust verification process but primarily due to the absence of any other option. When

SE work products are model-based, validation rules can be built into the modeling tool to ensure

product quality, compliance with standards, and internal consistency. Component and subsystem

behaviors specified in the model can be simulated to verify they yield the desired system behavior.

This MBSE capability allows for identifying and resolving potential defects during the design phase

before they are introduced into the realized system necessitating expensive rework to correct.

Model-based specification linked to textual specification— There are benefits (and sometimes

requirements) to being able to demonstrate traceability from textual requirements to the system

behaviors that satisfy those requirements and the structural elements to which those behaviors are

allocated. With this traceability, stakeholders can be assured that all requirements are accounted

for in the design and allow for system design trade space exploration before development costs are



incurred. An MBSE approach affords this traceability in a way that is prohibitively difficult in a

document-based approach. Using any number of commercially available modeling tools and a robust

modeling methodology, the process of creating, maintaining, and reporting on these traceability

links can be somewhat natural and eventually trivial.

Model-based hand off to downstream engineering—Text-based requirements and specifications

written in a natural language are often ambiguous, which can lead to misunderstanding when they

are to be implemented. The use of a modeling language, like SysML, that has at least semi-formal

semantics can help reduce some of this ambiguity. If downstream engineers are versed in the

modeling language and organizational modeling standards and conventions, then communication

can be more precise and the verified designs generated by the systems engineering team can be

implemented more effectively. Again, when changes are required based on development work by

downstream engineering, those changes are propagated throughout the specification more effectively

and consistently using amodel-based approach. This model-based hand off yields these same benefits

upstream the right side of the vee to systems integration and verification and validation teams.

Dynamic planning— The ability to plan dynamically is one of the most powerful agile principles

that can be applied to SE. Dynamic planning is in contrast to static, or as Douglass refers to it

“ballistic planning”, where a plan is made from the start of a project and then followed (or at least

attempted to be followed) through project completion (Douglass 2015). With a dynamic planning

paradigm, there is an acknowledgment by all the project stakeholders of the many unknowns at

the beginning of a project. Any plans based on the information known at the project’s outset are

almost certainly flawed. General road maps and milestones are appropriate, but detailed planning

should be conducted as incrementally as possible as more is learned about the system and its context

through the SE processes. MBSE is a key enabler of dynamic planning when it comes to systems

engineering work because this planning will result in iterations of systems engineering artifacts at a

pace that cannot be effectively managed using a document-based approach.

It would appear that ASE, especially when it is paired with MBSE, may be able to effectively bridge

the gap between the need to respond faster to changing environments and the benefits of robust

SE. In spite of this, ASE has not received the same level of attention as MBSE. A cursory search

through the proceedings of the INCOSE International Symposium from 2015 to 2022 shows an

average of 4.6 papers published per year that included the term “agile systems engineering” in the

abstract compared to 30 papers per year for “model-based systems engineering”. These findings

are summarized in Fig 5. Many MBSE publications address many of the same problems ASE can

address, but an approach to these problems would likely benefit from more research into expanding

the application of agile principles and ASE along with MBSE.

Conclusions

Even though the practice of SE has enabled the development of many of the products and capabilities

that characterize the modern world, there is pressure within some organizations to abandon traditional

SE approaches. This is due, at least in part, to the role that software has played in drastically

increasing the complexity of modern systems and the success agile methods have had in improving

software development practices. Despite these pressures, it would be a mistake to disregard time-
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tested SE principles.

It is important to appreciate that the value of SE is not derived solely from the delivery of SE artifacts

(document or model-based) like specifications, requirements, and architecture diagrams, even when

those artifacts are properly tailored to a unique system context. Rather, value in SE is generated

primarily from the processes that generate those artifacts. These processes are described by and

utilize a unique SE language or ontology. The study of linguistics and the linguistic relativism

theory has shown the power of language in developing and enhancing the cognitive abilities of its

speakers in specific domains related to the language. The practice of SE can, and should, evolve to

be more relevant to current challenges, but the “language’’ of SE should be preserved to retain and

enhance the cognitive abilities that can be gained through its use.

MBSE addresses many of the limitations of a document-based SE approach. Despite this, MBSE has

not been adopted to the degree that would be expected based on its potential benefits and ongoing

SE challenges. Again, when the focus of SE is on the resulting artifacts (in this case, a system

model) instead of the processes and activities used to develop the system models, much of the value

of SE is not realized. Too many MBSE implementation attempts are ineffective or fail because of a

focus on systems modeling (the artifact) instead of model-based systems engineering (the process).

A renewed emphasis on the importance of an MBSE methodology to focus and motivate modeling

efforts can help to restore the SE to MBSE.

Additionally, an improved, more explicit definition of what constitutes an MBSE approach may

improve the practice of MBSE and improve SE outcomes. Finally, the pressure within organizations

to adopt agile methods in place of traditional SE should not be interpreted as an indictment of

foundational SE principles. The tension between agile methods and traditional SE does expose the

critical need to evolve and adapt the practice of SE when dealing with complex systems, especially



when those systems are software-centric. Agile systems engineering, or the application of agile

principles to systems engineering, is a natural and appropriate evolution of SE in an agile world.

The perceived conflict between agile methods and traditional SE is not due to SE principles and

processes. Instead, it arises from the difficulty in managing and maintaining accurate and consistent

document-based SE artifacts in the face of rapid change. An effectiveMBSE approach provides the

processes and tools to manage SE artifacts in the face of rapid change. Thus, MBSE is a key enabler

to ASE and enables the continued application of SE principles and processes with their associated

benefits.

By harnessing the language of SE in improving and advancing the practice of MBSE-enabled ASE,

organizations will be able to reap the benefits of agile methods and SE to deliver systems that meet

their stakeholder needs in increasingly complex environments.
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