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Abstract

Optimization of dynamic engineering systems requires an integrated approach that accounts for the

coupling between embodiment design and control system design, simultaneously. Generally known as

combined design and control optimization (co-design), these methods offer superior system performance

and reduced costs. Despite the widespread use of co-design techniques in the literature, extremely limited

research has been done to address the issue of uncertainty in co-design problem formulations. This is prob-

lematic as all engineering models contain some level of uncertainty that might negatively affect the system’s

performance, if overlooked. Accounting for these uncertainties transforms the deterministic problem into

a stochastic one, requiring the use of appropriate stochastic optimization approaches. Therefore, this dis-

sertation serves as the starting point for research on stochastic co-design problems when the uncertainty

is propagated into the system from random design decision variables and/or problem parameters. Specif-

ically, a simultaneous co-design formulation within multidisciplinary dynamic system design optimization

(MDSDO), along with a special class of direct methods, known as direct transcription (DT), are consistently

used throughout this research as the basis for uncertainty considerations. Therefore, the stochastic co-design

formulations proposed in this dissertation are tailored for the DT-variants of stochastic co-design problems.

Using techniques from robust design optimization (RDO), we develop a novel stochastic co-design

formulation within MDSDO, known as robust MDSDO (R-MDSDO). This formulation enables a protective

measure against uncertainties by minimizing the sensitivity of the objective function to variations in design

decision variables and fixed problem parameters. The robust objective function and inequality constraints

are evaluated per usual through their first-order-approximated means and variances, whereas the analysis-

type (physics-based) equality constraints are evaluated deterministically at the means of random decision

variables and fixed problem parameters. The R-MDSDO formulation is applied to two case studies to assess

its effectiveness and implementation challenges.

While RDO techniques focus on minimizing the sensitivity of the objective function to variations in
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design, reliability-based design optimization (RBDO) maintains design feasibility under uncertainty. There-

fore, a more rigorous evaluation of probabilistic constraints is required to ensure reliability. In this disser-

tation, we develop a novel stochastic co-design approach based on the principles of RBDO. We implement

the reliability analysis through a performance measure approach (PMA) and employ a double-loop most-

probable-point (MPP) method, along with a first-order reliability method (FORM) to evaluate the probabilis-

tic constraints. The analysis-type dynamic and algebraic equality constraints are satisfied at the vectors of

mean-values of random decision variables, as well as their MPPs. The inner-loop reliability analysis, which

is performed for every function evaluation of the outer-loop problem to find MPPs, is implemented using

various methods such as advanced mean value (AMV), conjugate mean value (CMV), hybrid mean value

(HMV), and general purpose optimizers. This novel formulation is known as the double-loop reliability-

based MDSDO (RB-MDSDO).

A major concern in the implementation of the proposed double-loop RB-MDSDO is its high computa-

tional cost for the computationally-intensive co-design problems. Specifically, since the reliability analysis

is performed for every function evaluation of the outer-loop problem, a more efficient and practical method

is desired to pave the way for the widespread adoption of RB-MDSDO approaches for real-world complex

systems. Therefore, we use the sequential optimization and reliability assessment (SORA) algorithm to de-

velop a novel single-loop MPP method for RB-MDSDO. In this algorithm, the optimization and reliability

assessment steps are decoupled from each other and run sequentially. Similar to the double-loop formula-

tion, FORM is employed to approximate the probabilistic constraints, while the reliability assessment step is

formulated using PMA. Due to the decoupled nature of this algorithm, the reliability assessment step entails

the satisfaction of the analysis-type dynamic and algebraic equality constraints.

The effectiveness, efficiency, and scalability of the proposed RB-MDSDO formulations are assessed by

solving the complex co-design problem of an automotive active-suspension system. Using a linear quarter-

car model with a rough surface input, and employing high-fidelity mathematical models for a helical com-

pression spring and a single-tube telescopic damper, we solved the double-loop and single-loop RB-MDSDO

co-design problems to identify the optimal spring and damper designs, state trajectories and control trajecto-

ries, such that the multiobjective weighted function of the tire deflection, sprung mass acceleration and active

control is minimized. By comparing the solutions of the double-loop and the single-loop RB-MDSDO, we

concluded that the latter approach offers superior computational efficiency for stochastic co-design prob-

lems while preserving accuracy. We note that despite the smaller inner-loop MPP optimization problem in
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the double-loop RB-MDSDO, and the advantages of utilizing efficient MPP solver methods such as AMV,

CMV, and HMV, the decoupled nature of the single-loop algorithm is more suitable for stochastic co-design

problems.

Finally, the proposed formulations are used to address the real-world complex co-design problem of

hybrid-electric vehicle (HEV) powertrain under uncertainty. These uncertainties may stem from a variety of

sources including imperfect manufacturing processes, measurement errors and/or uncertain operational con-

ditions and may not only impact HEV powertrain component sizing and control strategies, but also overall

vehicle performance and cost —both of which are critically-important in the fiercely competitive automo-

tive industry. Therefore, it is important to quantify and minimize the impact of these uncertainties on the

integrated system solution of HEVs. In this dissertation, we use R-MDSDO, as well as the RB-MDSDO

to explicitly account for random variations within design decision variables and fixed problem parameters

for a power-split HEV powertrain. Moderate-fidelity mathematical models of the major components of

a power-split HEV powertrain including the engine, electric motor, generator and battery pack are used to

identify the optimal plant design variables, state trajectory decision variables, and control trajectory decision

variables, such that the vehicle powertrain cost is minimized under uncertainties. The impact of these un-

certainties within the HEV powertrain model and problem formulation is then demonstrated by comparing

the results from R-MDSDO and RB-MDSDO to those from the associated deterministic co-design problems.
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Chapter 1

Introduction

As dynamics—a system’s state evolution through time—becomes an increasingly critical trait of en-

gineering systems, it is essential to develop new methods to account for the bi-directional dependency of

embodiment design and control system design, such that the issue of inherent uncertainties that prevail over

many dynamic engineering systems is also addressed. During the last few years, the effectiveness of con-

ventional design methodologies has been challenged by multiple novel approaches that take into account

the coupling between plant design and control system design. Generally referred to as combined design

and control optimization, or co-design, these methods have been proven to improve the performance of the

dynamic system when the coupling between the embodiment design and control system design is significant

[1, 2, 3].

However, nearly all of these approaches in the literature are limited to the co-design of deterministic

dynamic systems. This is problematic because without accounting for uncertainty, the deterministic solution

would be suboptimal at best, and infeasible at worst (due to the tendency for deterministic solutions to

be found near the boundary of the decision space). Thus, in this dissertation, we focus on developing

novel formulations that account for the synergistic interactions between plant design and control system

design under uncertainty. Accounting for these uncertainties transforms the standard, deterministic co-

design problem into a stochastic one, thus requiring appropriate stochastic optimization approaches for its

solution. Specifically, a balanced co-design method within the multidisciplinary dynamic system design

optimization (MDSDO) approach is consistently used as the basis to:

• Develop a robust co-design approach, referred to as R-MDSDO.

• Develop a reliability-based co-design approach within MDSDO, referred to as RB-MDSDO, using a

double-loop MPP formulation.
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• Develop a reliability-based co-design approach within MDSDO, referred to as RB-MDSDO, using

the single-loop MPP formulation of the sequential optimization and reliability assessment (SORA).

These formulations are applied to a wide range of problems to assess their effectiveness and scalability.

Specifically, the effectiveness of R-MDSDO is assessed through a simple, mathematical co-design problem

as well as a more complex problem involving the co-design of a hang glider. Similarly, the effectiveness of

the double-loop RB-MDSDO formulation is assessed using a rather complex automotive active suspension

co-design problem, while the effectiveness of the SORA-based RB-MDSDO formulation is assessed using

progressively complex co-design examples, starting with a Van der Pol oscillator and then moving on to the

hang glider and automotive active suspension problems again. Finally, a hybrid-electric vehicle (HEV) pow-

ertrain co-design problem is used to assess the scalability of both R-MDSDO an RB-MDSDO in stochastic

co-design. The remainder of this section is focused on the description of general deterministic co-design

approaches and various methods used for their solution in the literature.

1.1 Deterministic Co-design Methods

Adopting an integrated approach in the optimization of dynamic engineering systems—one that ac-

counts for the coupling between physical plant and control system disciplines—offers clear advantages. A

system-level optimal solution for the optimal plant design variables, state trajectory decision variables and

control trajectory decision variables can be obtained such that the overall system’s performance is improved.

Figure 1.1 shows various strategies that could be employed for a plant and controller optimization problem.

Note that in this figure, dp is the vector of plant design variables and u is the vector of control trajectory deci-

sion variables. Generally, these problems can be solved using sequential, iterative, nested, and simultaneous

approaches [4, 5].

Sequential design approaches generally refer to the legacy design methods where the plant design is

followed by the design of the control artifact. In the conventional single-loop sequential design approaches,

also known as ‘single pass’, the plant is designed first, and then the control system is designed without any

modifications to the plant design. An iterative sequential design attempts to repeatedly find an optimal design

solution and an optimal controller until convergence [6, 7, 8, 9]. While these legacy design approaches are

optimal with respect to every individual discipline, they cannot generate a system-level optimal solution

since the synergistic interactions between plant and control disciplines are lost in the sequential iterative or
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single pass procedures [1, 2, 4, 10, 11]. In the nested approach, the objective function is optimized over a

set of feasible design variables in an outer loop, while an inner loop solves the optimal control problem at

every given deign [2, 4, 11, 12]. Although nested optimization guarantees a system-level optimal solution,

the double-loop nature of this algorithm incurs high computational cost when a closed-form optimal control

solution method such as linear quadratic regulator (LQR) cannot be employed (for instance due to plant

constraints [10]).

The simultaneous solution strategy optimizes the plant design, state trajectory, and control trajectory

decision variables within the same optimization formulation and guarantees a system-level optimal solution.

Since high computational efficiency can be achieved by employing a simultaneous approach for co-design

of complex dynamic systems [13, 1, 2, 14], in this dissertation, we employ a generalized, simultaneous,

optimization method that can be used to solve co-design problems.

Figure 1.1: Plant and controller solution strategies, dp: plant design decision variable u: control trajectory
decision variable ∗: optimal decision variables.

1.2 Research Objectives

Deterministic co-design problem formulations have been extensively studied in the literature and their

application, implementation and corresponding challenges are well-established. However, an issue that has

not been addressed in the co-design literature is the impact of inherent uncertainties within a dynamic system

on its integrated design solution. Therefore, as more researchers investigate the application of co-design

techniques to large-scale and complex dynamic systems, it is necessary to develop formulations that account
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for uncertainties within these systems. The integrated solution of stochastic co-design techniques requires

formulations that (i) minimize the sensitivity of the solution to uncertainties in design decision variables and

fixed problem parameters, and (ii) satisfy the probabilistic inequality constraints with a given probability

of success. Therefore, in this dissertation, we initiate the research on stochastic co-design strategies. By

employing a simultaneous co-design technique within the balanced formulation of MDSDO, we develop

novel formulations that explicitly account for uncertainties within the system and its problem formulation.

These uncertainties may be of aleatory or epistemic types. Aleatory uncertainty includes phenomena such

as uncertain operating conditions or imperfect manufacturing processes, while epistemic uncertainty stems

from the lack of knowledge about a system, such as simplifications in model development. The proposed

formulations specifically account for aleatory uncertainties within random plant design decision variables

and fixed problem parameters. Using the principles of robust design optimization (RDO) and reliability-

based design optimization (RBDO), we define the main objectives of this dissertation as:

• Developing a robust MDSDO (R-MDSDO) formulation for stochastic dynamic systems.

• Developing double-loop and singe-loop reliability-based MDSDO (RB-MDSDO) formulations for

co-design of stochastic dynamic systems and selecting the most efficient yet reasonably accurate ap-

proach for complex co-design problems.

• Investigating the impact and scalability of uncertainties on the real-world, complex co-design problem

of a power-split HEV powertrains using the proposed R-MDSDO and RB-MDSDO.

Several implementation issues, including the high computational cost of calculating the gradient in-

formation in R-MDSDO problems, the satisfaction of the probabilistic analysis-type equality constraints

under uncertainty, and the challenge of trajectory-based performance measure functions in RB-MDSDO ap-

proaches will be discussed in future chapters. The double-loop and single-loop RB-MDSDO formulations

will be applied to the complex co-design problem of an automotive active-suspension system, and their ef-

ficiency and accuracy will be compared for various most-probable-point (MPP) optimization subproblems

and solvers. Finally, the scalability and effectiveness of the proposed formulations will be further demon-

strated by solving a power-split HEV powertrain co-design problem with moderate-fidelity mathematical

models for the engine, electric motor, generator, and battery pack, using R-MDSDO and RB-MDSDO.
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1.3 Summary and Overview

In this chapter, we introduced the general description of deterministic co-design problems and concluded

that due to its computational efficiency for complex dynamic systems, the simultaneous co-design problem

formulation is the most appropriate approach for the purposes of this study. Then, the main objectives of

this dissertation were listed—focusing on the development of stochastic co-design formulations and ulti-

mately investigating their impact and scalability on real-world co-design problems such as power-split HEV

powertrain co-design. The remainder of this dissertation is organized in the following manner:

Chapter 2 briefly describes MDSDO and how to formulate a general deterministic co-design problem

within this optimization framework. This chapter also discusses the traditional RDO and RBDO prob-

lem formulations for static design optimization problems, as well as their corresponding formulations in

the presence of equality constraints. Chapter 3 describes how the RDO approach is integrated into the

MDSDO problem formulation to introduce the novel R-MDSDO problem formulation. The proposed ro-

bust co-design formulation is then applied to two case studies including a mathematical stochastic co-design

problem and a hang glider stochastic co-design problem. Chapter 4 introduces the problem formulation for

the double-loop MPP implementation of RB-MDSDO. This formulation employs a FORM approximation

within a performance measure approach (PMA). The proposed double-loop algorithm is then applied to

solve the complex co-design problem of an automotive active-suspension, the mathematical model of which

is also included in this chapter. Chapter 5 introduces a single-loop MPP formulation using the sequential

optimization and reliability assessment (SORA) algorithm. A general formulation for the traditional SORA

algorithm is described and then SORA is extended to account for equality constraints. The implementation

challenges of the proposed single-loop RB-MDSDO are identified by solving two small-scale case studies,

including a mathematical application as well as the hang glider co-design application again. In addition, the

automotive active-suspension co-design problem is again solved but through the single-loop RB-MDSDO.

and the results are compared with that of the double-loop RB-MDSDO to assess which algorithm is the

most efficient yet reasonably accurate within RB-MDSDO. Chapter 6 describes the mathematical model for

the power-split HEV powertrain, including the propulsion architecture and its major components, the cost

models associated with each component, and the co-design problem formulations within the deterministic

MDSDO as well as R-MDSDO and RB-MDSDO. The results from the implementation of these formula-

tions are also described in Chapter 6. Finally, conclusions and future directions of this research are discussed
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in Chapter 7.
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Chapter 2

Background

Complex engineering systems involve the interaction of multiple disciplines and energy domains. Addi-

tionally, these systems are often dynamic and stochastic in nature, and so their system-level optimal solution

requires an approach that accounts for the coupling between embodiment design and control system design

under uncertainty. Combined design and control optimization, also known as co-design, is generally used

to find the integrated system-level optimal solution of these dynamic systems. Robust design optimization

(RDO) and reliability-based design optimization (RBDO), on the other hand, are generally used to find so-

lutions for stochastic design optimization problems. Therefore, in this chapter, we first introduce a balanced

co-design approach within multidisciplinary dynamic system design optimization (MDSDO). Then, general

formulations for traditional RDO and RBDO problems, along with those for RDO and RBDO problems

containing stochastic equality constraints, reliability-based design optimization (RBDO), and RBDO with

equality constraints are introduced.

2.1 Co-design in MDSDO

Integration of plant design and control strategy decisions in optimization problem formulations, also

known as co-design, has gained momentum as the inherent coupling between these disciplines has been

proven to be significant [4, 7, 15, 16]. By employing techniques from multidisciplinary design optimiza-

tion and optimal control theory, MDSDO integrates the physical plant design and control system design to

achieve a superior system performance [10]. In its most common form, a co-design problem for an active

dynamic system can be solved within MDSDO using a simultaneous approach [10]. The general simultane-

ous problem formulation includes vectors of design decision variables d, state trajectory decision variables

x(t), control trajectory decision variables u(t), and fixed problem parameters p. The objective function φ
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is minimized subject to the vector of inequality constraints g(·), algebraic equality constraints h(·), and dy-

namic system equality constraints ẋ(t)− f(d,x(t),u(t), t;p) = 0. Depending on the problem type, initial and

final times and conditions (e.g. t0, t f , x(t0), x(t f )) could also be decision variables. Therefore, the nominal

simultaneous problem formulation can be written as [10]:

min
d,x(t),u(t)

φ(d,x(t),u(t), t;p)

subject to

g(d,x(t),u(t), t;p)≤ 0

h(d,x(t),u(t), t;p) = 0

ẋ(t)− f(d,x(t),u(t), t;p) = 0

(2.1)

Since the above formulation entails both static and continuous-time-dependent variables, it requires the use

of numerical methods such as direct transcription (DT) to solve the problem. In DT, the infinite-dimensional

problem is transcribed into a finite-dimensional nonlinear programming (NLP) formulation through time

discretization [10, 12]. The transcribed version of Eqn. (2.1) can be written as:

min
d,X,U

φ(d,X,U;p)

subject to

g(d,X,U;p)≤ 0

h(d,X,U;p) = 0

ζ(d,X,U;p) = 0

(2.2)

where X is the matrix of discretized state trajectory decision variables, U is the matrix of discretized control

trajectory decision variables, and ζ is the vector of discretized dynamic constraints.
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Figure 2.1: Robustness in the objective function [22]

2.2 RDO

A significant body of research has been carried out to quantify and diminish the impact of uncertainty

on system’s performance. Generally, these methods can be classified into robust design optimization (RDO)

and reliability-based design optimization (RBDO). In RDO, we attempt to optimize the performance about

the mean-value while minimizing its sensitivity to random parameters [17]. RDO enables a protective mea-

sure against uncertainty in problem parameters, without eliminating the causes of this variability. Several

methods have been proposed to formulate an RDO approach in the literature [18, 19, 20, 21]. Minimizing the

sensitivity of the objective function or constraints to variations in design is usually attained by including the

standard deviation of the response, along with its mean in the objective function[17]. Here, we demonstrate

the application of RDO principles for a simple optimization problem,

min
s

f (s)

subject to gi(s)≤ 0 i = 1, ...,ng

h j(s) = 0 j = 1, ...,nh

(2.3)

where s∈ Rns is the vector of system design variables with ns being the number of design variables. Inequal-

ity constraints are described by gi(s) and equality constraints are expressed by h j(s). ng and nh refer to the

number of inequality and equality constraints, respectively.
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2.2.1 Traditional RDO

Without any loss of generality, we assume that the source of uncertainty is from dependent random de-

sign variables with known variances and covariances. An RDO approach focuses on reducing the sensitivity

of the objective function with respect to variations in random design parameters. Figure 2.1 illustrates the

importance of robustness in problem formulation. Denoting the objective function by f, it is evident that

point B is the minimum. However, if there is uncertainty introduced among the original design variables,

they become random design variables, denoted by S. From the figure, it is clear that any small variation

in each design variable S at point B results in a drastic change in the value of the objective function f, and

so this would not lead to a robust design solution. We can account for this variation by reformulating the

objective function in terms of its expected value and standard deviation.

Figure 2.2: Reduced feasibility of the design space under RDO [23]

In RDO, inequality constraints must be satisfied within a given constraint shift index ki, chosen by the

designer. This constant reflects the probability that a fluctuation will be feasible [24]. This procedure re-

duces the feasible region of the design (Fig. 2.2). Using linear statistical analysis, Parkinson et al. [24]

proposed an approach to maintain feasibility of the design with respect to a given constraint. When a design

solution is very close to the boundaries of a constraint, we must ensure that variations in design do not

cause infeasibility. This can be performed by increasing the value of the constraint by the amount of func-

tional variation. The traditional RDO problem formulation without equality constraints can be formulated as

min
µS

µ f +σ2
f

subject to µg,i + kiσg,i ≤ 0 i = 1, ...,ng

(2.4)
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where µ f is the expected value of the objective function f , µg,i is the expected value of the ith inequality

constraint, σ2
f is the variance of the objective function f and σg,i is the standard deviation of the ith inequality

constraint. Using a first-order Taylor series approximation [25], we have

µ f = f (µS) (2.5)

µg = g(µS) (2.6)

σ
2
f =

ns

∑
i=1

[
∂ f
∂Si

∣∣
Si=µSi

σSi ]
2 +

ns

∑
i=1

ns

∑
j=1,i 6= j

∂ f
∂Si

∣∣
Si=µSi

∂ f
∂S j

∣∣
S j=µS j

Cov(Si,S j) (2.7)

σ
2
g =

ns

∑
i=1

[
∂g
∂Si

∣∣
Si=µSi

σSi ]
2 +

ns

∑
i=1

ns

∑
j=1,i 6= j

∂g
∂Si

∣∣
Si=µSi

∂g
∂S j

∣∣
S j=µS j

Cov(Si,S j) (2.8)

where S is the vector of random design variables. The total number of design variables are denoted by

ns. The standard deviation of f and g can simply be calculated through: σ =
√

σ2. Including these terms

(µ f , σ f ) in the objective function results in a multi-objective optimization problem that requires weight

coefficients and normalization, according to problem type. The issue of weighting factors and normalization

is outside the scope of this study and interested readers are referred to [26, 27] for further details.

2.2.2 RDO with Equality Constraints

Equality constraints create a major challenge under uncertainty and have not been studied as extensively

as inequality constraints. With the exception of a category of constraints mentioned below, strict satisfaction

of equality constraints can generally not be guaranteed. Mattson and Messac classified equality constraint

in RDO into two categories: (i) those that cannot be satisfied because of the inherent uncertainty in RDO

problems (design-type), and (ii) those that must be satisfied regardless of the underlying uncertainty in

the problem (analysis-type) [28]. Generally, the nature of the existing random variables in the equality

constraints plays a significant role in determining their category and consequently, their formulation in

the context of RDO. Authors in Ref.[23] and Ref.[28] presented a comprehensive guideline to distinguish

and formulate each type of equality constraint. Rangavajhala et al. [23] suggests that Type (i) equality

constraints should be constrained at their mean to ensure that they remain as close as possible to zero and
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that their standard deviations remain minimum. An alternative approach to handling design-type constraints

is to relax them into a pair of inequality constraints [23]. In this study, we assume that Type (i) equality

constrains are already included in the vector of inequality constraints g(·) and thus, all remaining equality

constraints h(·) are of analysis-type (Type(ii)).

Type (ii) equality constraints, also called analysis constraints, generally describe the physical laws of

nature or dynamics of a system and must be satisfied regardless of uncertainty. Therefore, these constraints

can be posed in the RDO framework as deterministic equality constraints, evaluated at the mean values of

random variables. The mathematical notation of analysis constraints can be shown as:

h(µS) = 0 (2.9)

2.3 RBDO

While RDO focuses on improving the quality of a product, reliability-based design optimization (RBDO)

attempts to maintain the design feasibility under uncertainty [29] and meet specific probabilistic targets for

the objective and constraints [17]. A performance measure approach (PMA)—which is known to be more

robust and efficient compared to the reliability index approach (RIA)—is used to formulate the reliability

analysis optimization problem within RBDO. A first-order reliability method (FORM) is then employed to

approximate the probabilistic constraint and find the most probable point (MPP) corresponding to the target

reliability level of the performance measure function. The analysis-type (physics-based) dynamic equal-

ity constraints are satisfied at the vectors of the mean-value of uncertain design variables, as well as the

MPPs. We start by introducing the traditional RBDO problem using PMA formulation, along with FORM

approximation..

2.3.1 Traditional RBDO using FORM & PMA

Reliability is defined as the probability that the vector of random design variables S is within the safe

region. This definition is equivalent to the probability that the performance function gi(S) is less than zero,

i.e. Pr{gi(S) ≤ 0} (Fig. 2.3). A general RBDO problem formulation for a simple optimization problem

similar to Eqn. (2.3) but without equality constraints includes the deterministic vector of design variables
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Figure 2.3: Performance measure function in the original uncertain space

µS ∈ Rns and the random vector S ∈ Rnr . The probabilistic constraint is described by the performance

function gi(S). The general RBDO problem without equality constraints can be described as [30]

min
µS

f (µS)

subject to Pr{gi(S)≤ 0} ≥ αi, i = 1, ...,ng

(2.10)

where f is the objective function, Pr{·} denotes the probability of success, αi is the targeted reliability of

the ith probabilistic inequality constraint, and ng is the total number of probabilistic inequality constraints.

Next, we can characterize the success of the performance function gi(S) using the cumulative distribution

function Fgi(0) of the ith probabilistic inequality constraint as [30]:

Pr{gi(S)≤ 0}= Fgi(0)≥ αi (2.11)

where this probability can be evaluated using the joint probability density function of all the random vari-

ables

Fgi(0) =
∫

gi(S)≤0

...

∫
fS(S)dS1...dSnr , i = 1, ...,ng (2.12)

A key step in RBDO methods is to ease the computational difficulties associated with the calculation of
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this equation through simplification of the integrand, as well as the performance measure function. Several

approaches have been proposed to evaluate this equation, including sampling techniques, local expansion,

most probable point (MPP), functional expansion and numerical integration methods [31]. Despite the

advantages of sampling techniques such as Monte Carlo Simulation (MCS) in easy implementation and

solution accuracy, their computational time becomes a significant challenge as the number of random vari-

ables increases—making them impractical for many real-world engineering applications [25, 32]. Local

expansion methods employ a first-order second moment (FOSM) approach to approximate the probabilistic

constraint at the design point µS; however their solution can be highly inaccurate. Numerical integration

methods [33] are generally based on the idea that the first few moments of a random variable adequately

describe the complete probability density function of that variable. These methods, along with functional

expansion methods [34] are more useful for highly nonlinear problems; however, they suffer from the ‘curse

of dimensionality’. The MPP method, on the other hand, can approximate the performance function gi(S)

through a first-order or second-order Taylor series expansion at the most probable point of failure for this

function. While this requires the solution of an additional optimization subproblem to find the MPP, they are

often faster than sampling, numerical integration, and functional expansion methods and are more accurate

than local expansion techniques. In addition, the MPP method is the only known technique in the literature

that can handle probabilistic equality constraints, a fact that is quite useful given that all of the problems in

our work will at least require probabilistic dynamic system equality constraints to be satisfied.. Therefore,

MPP methods are used exclusively to approximate the integral of Eqn. (2.12) in this work.

The optimization subproblem in the MPP approach can be formulated using a reliability index approach

(RIA) or a performance measure approach (PMA). In RIA, the probabilistic constraint is written in terms

of the reliability index β [35], while in PMA, the probabilistic constraint is replaced with its deterministic

counterpart gi(s∗MPP,i) evaluated at the MPP s∗MPP,i through inverse reliability analysis [36, 37]. It is known

that the PMA is inherently more robust and efficient in evaluating inactive probabilistic constraints compared

to RIA [37, 38, 35]. The PMA is further developed to address any lingering issues of instability and slow

convergence, resulting in improved methods such as advanced mean value (AMV) [39, 40], conjugate mean

value (CMV) [35, 36], and hybrid mean value (HMV) [36, 41].

Evaluating Eqn. (2.12) using either MPP approach generally involves two steps. First, the random

variables in S must be transformed into the standard normal random space su,i so that its PDF contours

are symmetric, thus improving the overall numerical approximation of Eqn. (2.12). This is accomplished
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through the Rosenblatt transformation [47]

su,i = Φ
−1
cd f [Fs(s)] (2.13)

where Φ
−1
cd f is the inverse cumulative distribution function of the standard normal distribution. The

second step is to approximate gi(S) through a first-order reliability method (FORM) [42, 43, 44] or a second-

order reliability method (SORM)[44, 45, 46]. Generally, FORM predicts the probability of success with an

accuracy that is sufficient for design applications. These local approximations are constructed around the

MPP itself, which is the point on the target reliability surfaces s∗u,i(β = βti) that maximizes gi(su,i) (Fig. 2.4).

Figure 2.4: Performance measure function in the standard normal space

The traditional double-loop MPP algorithm solves an inner-loop reliability analysis problem (the MPP

subproblem) in the standard normal space that is embedded within an outer-loop design optimization prob-

lem in the original random space. The outer-loop problem formulation using PMA that corresponds to the

general RBDO formulation of Eqn. (2.10) is simply

min
µS

f (µS)

s.t. gi(s∗MPP,i)≤ 0, i = 1, ...,ng

(2.14)
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where, s∗MPP,i denotes the MPPs associated with µS. The MPPs are obtained by solving the following inner-

loop problem:

min
su,i

−gi(su,i)

s.t.
∥∥su,i

∥∥−βti = 0

where βti = Φ
−1
cd f (αi)

(2.15)

Note that general optimization algorithms can be used to solve the MPP subproblem in Eqn. (2.15). How-

ever, more efficient methods such as AMV, CMV, and HMV are of particular interest due to the high com-

putational costs of RBDO problems in general. Here, we briefly introduce these algorithms [36, 30]:

Advanced Mean Value AMV is a simple and efficient approach that can be used to solve the MPP opti-

mization problem in PMA. To implement the first-order AMV method, the first iteration must generate an

estimate s∗uMV,i
of the MPP based on the mean-value (MV) method using sui = 0 as a starting point:

s∗uMV,i
= βtin(0), n(0) =− ∇gi(0)

‖∇gi(0)‖ (2.16)

In the above, n(0) is the normalized steepest descent direction at the mean value, which must be updated in

the following iterations to predict the MPP based on the AMV method:

s(1)uAMV,i = s∗uMV,i
, s(k+1)

uAMV,i = βtin(s
(k)
uAMV,i)

n(s(k)uAMV,i) =−
∇gi(s

(k)
uAMV,i)

‖∇gi(s
(k)
uAMV,i)‖

(2.17)

Here, n(s(k)uAMV,i) is the steepest descent direction at the current estimate s(k)uAMV,i of the MPP using the AMV

method during the kth iteration. Note that this algorithm behaves well for a convex performance measure

function, however, it exhibits numerical instability and inefficiency for concave functions.

Conjugate Mean Value To improve the rate of convergence and stability for concave functions, one can

use the current, as well as the previous MPP information. CMV combines these information with equal

weight to improve the search direction, such that it is directed towards the diagonal of the last three consec-
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utive steepest descent directions:

s(0)uCMV,i = 0, s(1)uCMV,i = s(1)uAMV,i , s(2)uCMV,i = s(2)uAMV,i

s(k+1)
uCMV,i = βti

n(s(k)uCMV,i)+n(s(k−1)
uCMV,i)+n(s(k−2)

uCMV,i)

‖n(s(k)uCMV,i)+n(s(k−1)
uCMV,i)+n(s(k−2)

uCMV,i)‖
, k ≥ 2

n(s(k)uCMV,i) =−
∇gi(s

(k)
uCMV,i)

‖∇gi(s
(k)
uCMV,i)‖

(2.18)

Hybrid Mean Value The HMV approach identifies the type of the performance measure function before

formulating the search direction. The function-type criteria employs the steepest descent direction at three

consecutive iterations:

ξ (k+1) = (n(k+1)−n(k)).(n(k)−n(k−1))

sign(ξ (k+1))


> 0 = Convex at s(k+1)

uHMV,i w.r.t µS

≤ 0 = Concave at s(k+1)
uHMV,i w.r.t µS

(2.19)

In the above, ξ (k+1) is the performance function-type criterion and n(k) is the steepest descent direction for a

performance measure function at s(k)uHMV,i . Once the type of the performance measure function is is identified,

AMV and CMV can be adaptively used for the MPP search. If the performance function type is convex or

k < 3, the MPP is calculated using the AMV method. Conversely, and when the performance function type

is concave, CMV is used to find the MPP.

2.3.2 RBDO with Equality Constraints

As mentioned earlier, in this work we assume that all Type (i) equality constraints are already included

in the vector of inequality constraints g(·) through constraint relaxation and all of the remaining equality

constraints h(·) are of the analysis-type (Type(ii)). To satisfy the analysis-type equality constraints within

RBDO, Du and Huang developed a numerical procedure that includes the equality constraints in the RBDO

model [48]. Defining the analysis-type equality constraint as a function of the random design variables

S ∈ Rnr , we have:

h j(S) = 0, j = 1, ...,nh (2.20)
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where nr denotes the number of random design variables and nh describes the number of analysis-type equal-

ity constraints. Assuming nr− nh statistically independent random variables, we can partition the random

design variables S into independent random design variables Sx and dependent random design variables Sy,

such that S = [Sx,Sy]
T . We can rewrite Eqn. (2.20) in terms of the functional relationships between Sx and

Sy [48]:

Sy = a(Sx) (2.21)

where a is the functional relationship between Sx and Sy. Using the FORM approximation within the PMA

for RBDO, and denoting the MPP of the constraint function gi as s∗xMPP,i
, the algorithm initially becomes

min
µSx

f (µSx)

subject to gi[s∗xMPP,i
,a(s∗xMPP,i

)]≤ 0, i = 1, ...,ng

(2.22)

where µSx is the mean vector of the independent random design variables. Introducing design variables at

the mean values of dependent random design variables µSy , their MPPs at s∗xMPP,i
as s∗yMPP,i

such that s∗yMPP,i
=

a(s∗xMPP,i
), the RBDO model can be rewritten as:

min
µSx ,µSy ,s∗yMPP,i

f (µSx ,µSy)

subject to gi[s∗xMPP,i
,s∗yMPP,i

]≤ 0, i = 1, ...,ng

h j(µSx ,µSy) = 0, j = 1, ...,nh

hk(s∗xMPP,i
,s∗yMPP,i

) = 0, k = 1, ...,nh×ng, i = 1, ...,ng

(2.23)

In the above equation, the equality constraints are satisfied at the mean values of all random variables, as

well as their MPPs. Note that since every inequality constraint has its own MPP, the total number of equality

constraints at the MPP would be nh× ng. This problem is equivalent to Eqn. (2.14) and thus it requires a

MPP search algorithm. The reliability analysis step is then formulated using a FORM approximation within

the PMA:
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min
su,i

−gi(su,i,s∗yMPP,i
)

subject to
∥∥su,i

∥∥−βti = 0

where βti = Φ
−1
cd f (αi)

su,i = Φ
−1
cd f [Fsx(sx)]

(2.24)

2.4 Summary

In this chapter, we introduced a dynamic system optimization formulation known as MDSDO to solve

simultaneous co-design problems. This formulation enables the inclusion of physically meaningful plant

design variables, such that the final co-design problem does not favor the control system design. To develop

the proposed stochastic co-design formulation, we then introduced the traditional formulations for RDO and

RBDO and addressed the issue of probabilistic equality constraints within each formulation. In the next

chapters, we integrate the principles of RDO and RBDO with a simultaneous MDSDO problem formulation

and propose three novel stochastic co-design formulations.
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Chapter 3

Robust Co-Design Formulation for Stochastic Dynamic Systems

This chapter is focused on the development and implementation of the nominal, robust simultaneous

co-design in MDSDO or R-MDSDO formulation. The issue of the analysis-type dynamic-system equality

constraints is addressed through the systematic approach explained in the previous chapter. The effectiveness

of the proposed formulation is then assessed for two case studies, with the results indicating the important

role of the robust approach on the integrated system solution and its performance.

3.1 Robust MDSDO Problem Formulation

To implement a simultaneous R-MDSDO problem formulation, we assume that the source of uncertainty

is from design-related decision variables and fixed problem parameters. The uncertainty is then propagated

to the state trajectory decision variables, objectives and constraint functions. Therefore, we treat state deci-

sion variables as random processes. Due to the open-loop control design structure of the MDSDO problem

formulation, the vector of control trajectory decision variables will remain deterministic [49]. Without any

loss of generality, we assume that the design variables and parameters will be treated as random variables

with known variance and covariance characteristics. Specifically, design-related decision variables are as-

sumed to be independent random variables, and hence their covariance terms are zero. Similarly, the fixed

problem parameters are assumed to be independent random variables and therefore have no covariance

terms. The cross-covariance term associated with the random state trajectory decision variables is assumed

to be zero [50, 51]

CXY (t,s) = 0 ∀ t,s (3.1)
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where X and Y are distinct state decision trajectories. This assumption remains valid unless an algebraic

system equality constraint defines a dependency among state variables. Moreover, we assume that the auto-

covariance term of every distinct state trajectory decision variable at different time steps is zero and we only

assign non-zero values for the variance term, such that [50]:

CXX(t,s) =


0 ∀ t 6= s

Var [X(t)] ∀ t = s

(3.2)

Here, the auto-covariance function of the state trajectory decision variable X at pairs of time instances t and s

is denoted by CXX(t,s) and the variance of state trajectory decision variable X at time instant t = s is denoted

by Var[X(t)]. Dynamic equality constraints and algebraic equality constraints are evaluated and satisfied at

the expected values of the random decision variables. A constraint shift index ki, chosen by the designer, is

used in inequality constraints to enforce ki standard deviation satisfaction of the inequality constraint i. The

nominal, robust simultaneous co-design formulation in MDSDO can be written as

min
µD,µX (t),u(t)

wφ(µD,µX(t),u(t), t;µP)+(1−w)σ2
φ

subject to

gi(µD,µX(t),u(t), t;µP)+ kiσgi ≤ 0 ∀ i

h(µD,µX(t),u(t), t;µP) = 0

µ̇X(t)− f(µD,µX(t),u(t), t;µP) = 0

(3.3)

where µD is the vector of mean values of random design variables, µX(t) is the vector of mean values

of random state variables, u(t) is the vector of control variables and µP is the vector of mean values of

random parameters, which are assumed to be the same as their deterministic values p. h(·) denotes the

vector of mean values of the algebraic equality constraints, whereas the mean dynamic equality constraints

are described through µ̇X(t)− f(µD,µX(t),u(t), t;µP) = 0. The mean value of the ith inequality constraint

and its standard deviation are denoted by gi(.) and σgi , respectively and w and (1−w) are the weighting

factors associated with the multiobjective problem formulation, which consists of the mean φ(·) and variance

σ2
φ

of the objective function. Note that a first-order Taylor series approximation is used to calculate the
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variance/standard deviation quantities in both the objective and inequality constraint functions:

σ2
fr
=

nd

∑
i=1

[ ∂ fr
∂Di

∣∣
D=µD

σDi ]
2 +

np

∑
i=1

[ ∂ fr
∂Pi

∣∣
P=µP

σPi ]
2 +

nx

∑
i=1

[ ∂ fr
∂Xi

∣∣
X=µX (t)

]2Var [Xi(t)] (3.4)

In the above, nd is the total number of design variables, σDi is the standard deviation of the ith design

variable, np is the total number of parameters, σPi is the standard deviation of the ith parameter, and nx is the

total number of state trajectory decision variables. In addition, fr is a random function, referring to either

φ(·) or gi(·). Applying DT, the parameterized version of this equation takes the following form:

min
µD,MX ,U

wφ(µD,MX ,U;µP)+(1−w)σ2
φ

subject to

gi(µD,MX ,U;µP)+ kiσgi ≤ 0 ∀ i

h(µD,MX ,U;µP) = 0

ζ(µD,MX ,U;µP) = 0

(3.5)

Here, MX is the matrix of discretized random state trajectory decision variables, U is the matrix of discretized

control trajectory decision variables and ζ(·) is the vector of discretized dynamic equality constraints. It

should be noted that in DT approaches, the interpolating polynomial cannot satisfy the dynamic equations

at any time within two consecutive collocation points [52, 53, 54]. To improve the solution accuracy, a

more refined discretization might be required, resulting in higher computational expense. Therefore, it is

imperative to account for the trade-offs between solution accuracy and computational expense, particularly

when uncertainty is introduced into the problem formulation. Algorithms that allow a more flexible mesh

refinement strategy are highly suitable for this purpose. In particular, the hp-adaptive algorithm employed

in GPOPS-II [55] allows the number of mesh intervals and the degree of interpolating polynomials within

each interval to vary. Thus, the solution benefits from the exponential convergence at smooth regions and

more collocation points at regions where the solution changes rapidly [55]. These algorithms enable a more

robust solution in between the mesh intervals,thereby creating a reliable platform to investigate the impact of

uncertain design variables in co-design problem formulations. Implementation of the proposed formulation

is investigated next in two case studies.
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3.2 Robust Co-design Case Studies using R-MDSDO

3.2.1 Mathematical Application

The first example is a simple analytical optimal control problem, modified for a co-design problem

formulation. The original problem was taken from Ref. [56]. While extremely simplified, this problem

offers obvious advantages in identifying implementation challenges. The deterministic problem is to find

the optimal plant design d = [d1,d2], state trajectories x(t) = [x1(t),x2(t)], and control trajectory u(t) to

minimize the objective function φ :

min
d,x(t),u(t)

φ =
∫ 1

0

1
2

[
2d1x2

1(t)+d1x2
2(t)+u2(t)

]
dt

subject to

ẋ1(t)+d2d1x2(t) = 0

ẋ2(t)+ x1(t)−d1[1− x2
1(t)]x2(t)+u(t) = 0

dmin ≤ d≤ dmax

xmin ≤ x≤ xmax

(3.6)

The problem is subject to the following boundary conditions: x(0) = [0,0]T and x(1) = [1,10]T . Introducing

uncertainty to the design variables requires a robust co-design formulation similar to the one introduced in

the previous section. The nominal R-MDSDO problem formulation can then be shown as
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min
µD,µX,u

φ = w

∫ 1

0

1
2

[
2µD1 µ2

X1
(t)+µD1 µ2

X2
(t)+u2(t)

]
dt +(1−w)(σ f )

2

subject to

˙µX1(t)+µD2 µD1 µX2(t) = 0

˙µX2(t)+µX1(t)−µX1 [1−µ2
X1
(t)]µX2(t)+u(t) = 0

µDmin +3σD ≤ µD ≤ µDmax−3σD

µXmin +3
√

CXX(t, t)≤ µX ≤ µXmax−3
√

CXX(t, t)

(3.7)

where w = 0.5 is the weight coefficient associated with the multiobjective problem formulation. The stan-

dard deviation of the random plant decision variables is equal to σD1 = 0.2, σD2 = 0.5 and the variance

of the random process for X1 and X2 is denoted by CX1X1(t, t) = 0.09 and CX2X2(t, t) = 0.09, respectively.

The constraint shift index k = 3 is chosen throughout the whole study. The problem was implemented in

the commercially available MATLAB-based software, GPOPS-II [55], which approximates the continuous-

time optimal control problems using a new class of variable-order Gaussian quadrature methods. GPOPS-II

employs a DT-based approach to transcribe the infinite dimensional problem into a problem formulation

similar to that of Eqn. (2.2). The transcribed problem is then solved with an appropriate NLP solver such as

IPOPT [57]. The problem was solved on a 32 GB of RAM and an Intel(R) Xenon(R) CPU E5-2637 v3 @

3.50 GHz processor system, with the key GPOPS-II settings listed in Table. 3.1.

Table 3.1: GPOPS-II settings

Field Setting

Mesh method hp-LiuRao-Legendre

Mesh tolerance 10−4

NLP solver IPOPT

IPOPT tolerance 10−5

IPOPT max iterations 5000
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Table 3.2 compares the solution of deterministic MDSDO and R-MDSDO problem formulations. The results

indicate the critical impact of uncertainty on the optimal solution of a robust co-design problem formulation.

The vector of plant design variables has changed significantly compared to the deterministic case (50.03%).

Although the value of the objective function has increased by 2.29% in R-MDSDO approach, the risk

associated with this design is much less. In other words, the results are robust against uncertainties in

design.

Table 3.2: Co-design results for mathematical application

d1 d2 Objective t(s)

MDSDO a -0.07 3 54.6 0.31

R-MDSDO b -0.13 1.5 55.85 0.32

Diff c 50.03% 2.29%

a Deterministic MDSDO solution, b R-MDSDO solution, c Percent difference

Optimal state and control trajectories are illustrated in Fig. 3.1 and Fig. 3.2. This result also indicates

the impact of including robust measures in co-design problem formulations. Although the optimal state

trajectories are very similar, the optimal control strategy has undergone obvious change. We note that,

despite the slight variations in optimal state and control trajectories, the co-design solution of the problem

has significantly changed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

2

4

6

8

10

12

u(
t) MDSDO

R-MDSDO

Figure 3.1: Optimal control trajectory u(t) for MDSDO and R-MDSDO of mathematical application
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Figure 3.2: Optimal state trajectories for MDSDO and R-MDSDO of mathematical application

3.2.2 Engineering Application: Hang Glider Co-Design

A more complex co-design problem is chosen for the engineering application. This problem is a mod-

ified version of the range maximization flight of a hang glider. Originally taken from [58], the problem

is modified to include design variables. Here, the hang glider is approximately described as a point mass

subject to its weight W , a lift force L and drag force Dr. The motion of the glider is described by four state

equations. A distribution for the thermal updraft with respect to the horizontal distance x1 is given by the

upward wind velocity [59]

va(x1) = vamax exp(−(x1

R
−2.5)2)(1− (

x1

R
−2.5)2) (3.8)

where, R = 100 m and vamax = 2.5 m/s. The difference between initial and final altitude is used to maximize

the horizontal range. The problem is modified to include the calculation of a trapezoidal wing surface area,

such that a1 and a2 are the bases and b is the height of the wing. The problem is constructed with a plant

design d = [a1,a2,b]T , state trajectories x = [x1(t),x2(t),x3(t),x4(t)]T and u = cl(t). The state trajectories

x1(t) and x2(t) are horizontal and vertical positions, respectively, and x3(t) and x4(t) denote horizontal and
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vertical absolute velocity components of the glider. The glider is controlled through the lift coefficient cl(t).

We note that x1(t f ) and t f are decision variables. The deterministic co-design problem using MDSDO can

be formulated as:

min
d,x(t),u(t),x1(t f ),t f

− x1(t f ) (3.9a)

subject to

ẋ1(t)− x3(t) = 0 (3.9b)

ẋ2(t)− x4(t) = 0 (3.9c)

ẋ3(t)−
1
m
(−Lsin(η)−Dr cos(η)) = 0 (3.9d)

ẋ4(t)−
1
m
(Lcos(η)−Dr sin(η)−W ) = 0 (3.9e)

L/Dr−7.6≤ 0 (3.9f)

(2b+ fl)
2

S
−11≤ 0 (3.9g)

Smin ≤ S≤ Smax (3.9h)

xmin ≤ x(t)≤ xmax (3.9i)

a1min ≤ a1 ≤ a1max (3.9j)

a2min ≤ a2 ≤ a2max (3.9k)

bmin ≤ b≤ bmax (3.9l)

Total mass of the pilot and glider is m = 100 kg and W = mg is the corresponding weight with g being the

gravitational constant. fl is the fuselage length and assumed to be constant. Equation (3.9b) to (3.9e) are

dynamic equations and Eqns. (3.9f) to (3.9h) represent the bounds on glide ratio, aspect ratio and the wing

surface area, and are included in the design to keep the problem realistic [60]. The relative velocity vr is at

angle η to the horizontal plane, and the two are calculated by:
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vr =
√

x2
3 +(x4− va(x1))2

η = arctan( x4−va(x1)
x3

)
(3.10)

Lift L and drag Dr forces are calculated through:

L = 1
2 clρSvr

2

Dr =
1
2 cdρSvr

2

cd = 0.034+0.069662cl
2

(3.11)

where cl and cd are lift and drag coefficients and S describes the area of trapezoidal wings, calculated through

S = 2[1
2(a1+a2)b]. Air density corresponding to standard pressure and temperature at an altitude of 1000 m

is equal to ρ = 1.3 kg/m3. The glider is controlled through lift coefficient and is restricted by:

cl ≤ clmax = 1.4 (3.12)

The problem is solved with the following boundary conditions:

x1(0) = 0 m

x2(0) = 1000 m

x2(t f ) = 900 m

x3(0) = x3(t f ) = 13.23 m/s

x4(0) = x4(t f ) =−1.288 m/s

(3.13)

Before we introduce uncertainty to the system, we remind the reader that there are two terms in every

robust objective function: One evaluated at the expected value of the design and one that corresponds to the

standard deviation. In order to formulate the robust objective function in this problem, the standard deviation

of the final condition on x1(x1(t f )) is treated as a decision variable and is included in the objective function

of the robust co-design problem formulation. The constraint shift index of k = 3 is chosen to guarantee
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constraint satisfaction within k standard deviations of the mean. The robust co-design problem formulation

can be written as

min
µD,µX,u,µx1 (t f ),σxi (t f ),t f

−wµX 1(t f )+(1−w)(σX 1(t f ))
2

˙µX1(t)−µX3(t) = 0

˙µX2(t)−µX4(t) = 0

˙µX3(t)− 1
m(−µL sin(µη)−µDr cos(µη)) = 0

˙µX4(t)− 1
m(µL cos(µη)−µDr sin(µη)−W ) = 0

(µL/µDr)≤ 7.6

(2µb+0.5)2

µS
+3σg_3.9g ≤ 11

µSmin +3σg_3.9h ≤ µS ≤ µSmax−3σg_3.9g

µXmin +3ΣX ≤ µX ≤ µXmax−3ΣX

µa1min +3σa1 ≤ µa1 ≤ µa1max−3σa1

µa2min +3σa2 ≤ µa2 ≤ µa2max−3σa2

µbmin +3σb ≤ µb ≤ µbmax−3σb

(3.14)

where w = 0.5 is the weight coefficient associated with the multiobjective nature of robust design optimiza-

tion problems. The problem was solved with the assumption that the standard deviations for random plant

decision variables are: σa1 = 0.04, σa2 = 0.04, σb = 0.04. The covariance matrix of the random process for

the vector of state decision trajectories is denoted by ΣX , in which Cx2x2(t, t) = 0.0625, Cx3x3(t, t) = 0.1225,

and Cx4x4(t, t) = 0.09, respectively. The problem was implemented in the commercially available software,

GPOPS-II [55], with the same basic settings introduced in Table 3.1 and was solved on a 32 GB of RAM

and an Intel(R) Xenon(R) CPU E5-2637 v3 @ 3.50 GHz processor system.
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Table 3.3: Co-design results for hang glider co-design

a1(m) a2(m) b(m) σx1 xt f (m) t (s)

MDSDO 1.7 2.54 4.01 - 1274.6 27.3

R-MDSDO 1.51 2.41 4.12 0.2 1267.5 96.04

Diff 5.06% 0.56%
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Figure 3.3: Optimal control trajectory u(t) for MDSDO and R-MDSDO of hang glider

The results from both the deterministic MDSDO and R-MDSDO formulations are compared in Table

3.3. The vector of plant design has changed by 5.06% compared to the deterministic case. Also, the

maximum range is reduced by 0.56% in the RDO approach. Although less favorable, the associated risk with

this design is much less. The trajectories of the optimal control and state decision variables are illustrated

in Fig. 3.3 and Fig. 3.4, respectively. It can be observed that under uncertainty, optimal control and state

trajectories of the system tend to deviate from the solution of the deterministic problem. While the robust

problem takes longer time to solve, its solution is much less sensitive to variations in design.
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Figure 3.4: Optimal state trajectories for MDSDO and R-MDSDO of hang glider
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3.3 Summary

In this chapter, we developed a nominal R-MDSDO formulation for the co-design of stochastic dynamic

systems. The proposed formulation was applied to a mathematical co-design test problem and an engineer-

ing application (hang glider co-design problem), where the results indicated the significant impact of the

robust approach on the integrated system-level solution of these dynamic systems. Specifically, by account-

ing for uncertainties through R-MDSDO, a more conservative solution was obtained that was less sensitive

to design variations.
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Chapter 4

Reliability-based Co-Design Formulation for Stochastic Dynamic Systems

To ensure that the design feasibility is maintained in a reliable manner within the co-design formulation,

a more rigorous evaluation of probabilistic constraints is needed. Thus, in this chapter, we use RBDO

principles to develop a novel reliability-based MDSDO formulation for stochastic dynamic systems. In

particular, in this chapter we develop a double-loop MPP formulation for the RB-MDSDO approach. The

proposed formulation addresses the issue of the analysis-type dynamic and algebraic equality constraints

for direct transcription (DT) variants of the simultaneous MDSDO [61]. The application of the proposed

double-loop RB-MDSDO approach is investigated for the complex co-design problem of an automotive

active-suspension.

4.1 Reliability-based MDSDO Problem Formulation

The double-loop RB-MDSDO with MPP approach includes the vector of mean values of uncertain plant

design decision variables µD, the vector of mean values of state trajectory decision variables µX(t), the

MPPs of design decision variables d∗MPP,i, the MPPs of state decision variables x∗MPP,i(t), and the vector of

deterministic control variables u(t). The objective function φ is optimized over the set of decision variables

[µD,µX(t),x∗MPP,i(t),u(t)] and subject to the probabilistic inequality constraints g(·), algebraic equality con-

straints h(·), and dynamic system equality constraints. Both the algebraic equality constraints and dynamic

system equality constraints must be satisfied at the mean value vector of design decision variables and state

trajectory decision variables, as well as their MPPs:
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min
µD,µX (t),x∗MPP,i(t),u(t)

φ(µD,µX(t),u(t))

subject to gi(d∗MPP,i,x∗MPP,i(t),u(t))≤ 0, i = 1, ...,ng

h(µD,µX(t),u(t)) = 0

hi(d∗MPP,i,x∗MPP,i(t),u(t)) = 0, i = 1, ...,ng

µ̇X(t)− f (µD,µX(t),u(t)) = 0

µ̇X(t)− fi(d∗MPP,i,x∗MPP,i(t),u(t)) = 0, i = 1, ...,ng

(4.1)

The MPP problem in the standard normal space can then be formulated as:

min
du,i

−gi(du,i,x∗MPP,i(t),u(t))

s.t.
∥∥du,i

∥∥−βti = 0

(4.2)

where

du,i = Φ
−1
cd f [Fgi(d)] (4.3)

Note that in the above formulation, the time-dependent performance measure function requires careful at-

tention. This is because in reliability-based co-design problem formulations, probabilistic path constraints

must be treated as performance measure functions. As a result, in the proposed formulations, one can em-

ploy a worst-case approach that identifies the least reliable point of the trajectory. Another approach is to

identify the least reliable design point by maximizing the integral of the probabilistic path constraint. The

general MPP optimization problem pertaining to this point is then implemented as usual. Applying DT, we

can write the transcribed version of Eqn. (4.1) as
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min
µD,MX ,x∗MPP,i,U

J(µD,MX ,U)

subject to gi(d∗MPP,i,x∗MPP,i,U)≤ 0, i = 1, ...,ng

h(µD,MX ,U) = 0

hi(d∗MPP,i,x∗MPP,i,U) = 0, i = 1, ...,ng

ζ(µD,MX ,U) = 0

ζi(d∗MPP,i,x∗MPP,i,U) = 0, i = 1, ...,ng

(4.4)

where d∗MPP,i denotes the vector of design-related MPPs of the ith constraint and x∗MPP,i denotes the matrix of

discretized state trajectory decision variables at d∗MPP,i. The MPP optimization problem can be formulated

as:

min
du,i

−gi(du,i,x∗MPP,i,U)

s.t.
∥∥du,i

∥∥−βti = 0

(4.5)

4.2 Reliability-based Co-design Case Study Using RB-MDSDO

Implementation of the proposed formulation is investigated in a complex co-design problem of an auto-

motive active-suspension, developed in Ref. [1]. Here, we only employ the model to solve the co-design

problem of the automotive active-suspension when it is excited through a rough surface. In the following,

we briefly introduce the development of the models. Further details can be found in Ref. [1].

4.2.1 Co-design of an Automotive Active-suspension system

The vehicle active-suspension model developed here is a linear quarter-car model. This linearity implies

that the force acting on the spring is directly proportional to the vertical extension or compression of the

spring. The model entails the sprung mass and its vertical position as ms and zs, respectively, and the

unsprung mass and its vertical position as mus and zus, respectively (see Fig. (4.1)). As the vehicle travels
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Figure 4.1: Quarter car active suspension model with active control

with the speed v= 20 m/s, it is excited by road variations, denoted by z0. Th road input profile was generated

from Ref. [1] using a Gaussian random number generator and a series of filtering steps [62, 63], with the

international roughness index (IRI) of 7.37. This value corresponds to an unpaved road or a damaged paved

road and demonstrates the amount of suspension travel in meters per a kilometer of longitudinal distance.

The active suspension model of the system can be described using linear state-space differential equations

that entail the realization of control trajectory decision u(t) via an actuator and five state trajectory decision

variables x(t), where x1(t) is the tire deflection, x2(t) is the unsprung mass velocity, x3(t) is the suspension

stroke, and x4(t) is the sprung mass velocity. Note that the fifth state decision variable x5(t), is the damper

fluid temperature, described later in the damper model development section. The dynamic system equality

constraints for the first four state decision variables are described below:

ẋ(t) = Ax(t)+Bu(t)+Cż0 (4.6)

where x(t), A, B and C can be described as:

x(t) =



zus− z0

żus

zs− zus

żs


, A =



0 1 0 0

− 4kt
mus

−4(cs+ct)
mus

4ks
mus

4cs
mus

0 −1 0 1

0 4cs
ms

−4ks
ms
−4cs

ms


, B =



0

− 1
mus

0

1
ms


, C =



−1

4ct
mus

0

0
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In this formulation, kt is the tire stiffness, ks is the spring stiffness for the sprung mass, ct is the damping

ratio of the tire and cs is the damping ratio of the sprung mass.

4.2.1.1 Spring Model

A helical compression spring with round wire and squared ground ends is developed in a coil-over

configuration that allows the coil spring and the damper to be integrated coaxially into a single assembly

[64]. The vector of plant design decision variables for the spring model includes the helix diameter Dh,

wire diameter dw, spring pitch p and the number of active coils Na. Note that Na is treated as a continuous

variable in this study. Then the spring constant can be formulated as:

ks =
d4

wG

8D3
hNa(1+

1
2C2 )

(4.7)

where G is the shear modulus of elasticity associated with alloy steel wire, made of Chromium-Silicon

ASTM A401, and C is the spring index, defined as C = Dh/dw. The free length of the spring L0 and its solid

length Ls can be calculated as:

L0 = pNa +2dw

Ls = d(Na +Q−1)

(4.8)

where Q = 1.75 is a correction factor for squared, ground ends. The static suspension deflection can be

calculated as δg =
msg
4ks

, where g = 9.81 m/s2. The spring shear stress τ at maximum deflection is modeled

in the following. Note that since helical springs are never used as both compression and extension springs,

the application of helical springs fall under the condition of fluctuating load, resulting in the midrange shear

stress τm and the amplitude shear stress τa. These values are estimated using the Bergsträsser factor, KB, to

account for the shear, as well as the curvature effect:

τ = KB
8FDh

πd3
w

(4.9)

τm = KB
8FmDh

πd3
w

(4.10)
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τa = KB
8FaDh

πd3
w

(4.11)

where KB =
4C+2
4C−3

and the axial force F , its mean Fm and its amplitude Fa can be calculated as:

F = ks(L0−Ls) (4.12)

Fm =
Fmin +Fmax

2
(4.13)

Fa =
Fmin−Fmax

2
(4.14)

where Fmin = ks(δg− x3(t)) and Fmax = ks(x3(t) + δg). In these equations, x3(t) describe the maximum

spring deflection on a rough surface. The shear yield strength Ssy is assumed to be proportional to the

ultimate tensile strength of the spring Sut where Ssy = 0.65Sut . The ultimate tensile strength is obtained

through an empirical equation Sut =
A

dm
w

with A as the intercept and m as the slope. Note that dw is measured

in mm. All the spring model parameters are included in Table 4.1.

4.2.1.2 Damper Model

A single-tube telescopic damper is modeled with three plant design decision variables, where D0 is the

valve diameter, Dp is the piston diameter, and Ds is the damper stroke chosen as an independent design

variable. Similar to the spring design, damper model assumes linear damping, implying that the force

exerted on the damper is proportional to the damper piston velocity. In developing this model, we further

assume that the effects of the foot valve is neglected and the piston valves are assumed to be spring-biased

spool valves. The spool valve frontal area is described as A0 =
πD2

0
4

and the maximum valve lift at maximum

allowed damper pressure Pallow = 4.75×106 Pa is denoted by:

xm =
A0Pallow

kv
(4.15)
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Table 4.1: Spring model parameters

Parameter Value Unit

Sprung mass (ms/4) 325 kg

Unsprung mass(mus/4) 65 kg

Tire stiffness (kt) 232.5 × 103 N/m

Tire damping ratio(ct) 0 Ns/m

Correction factor (Q) 1.75 -

Shear modulus (G) 77.2 GPa

Maximum spring length (L0,max) 0.4 m

Maximum outer spring diameter (D0,max) 0.25 m

Spring damper clearance (δs) 0.009 m

Damper piston diameter (td) 0.002 m

Bumpstop thickness (LB) 0.02 m

Design factor (nd) 1.2 -

Effective stress (A) 1974×106 Pammm

Exponent (m) 0.108 m

Vehicle speed (v) 20 m/s

where kv = 7500 N/m is the spool valve spring constant. The damper valve coefficient is calculated as:

C2 = ηA f
√

xm (4.16)

where A f = 0.1 is an area factor. The suspension damping coefficient can then be calculated as:

cs =
D4

p

8CdC2D2
0

√
πkvρ

2
(4.17)

where ρ = 850kg/m3 is the damper fluid density and Cd = 0.7 is the discharge coefficient for for spool valves.

The energy dissipation in the damper results in fluid temperature increase, which is an integral part of the

damper design. Heat generation in the damper is calculated as qgen = csẋ2
3, where ẋ3 is the damper piston

velocity. The fluid volume can be calculated as v f = πD2
p

Ds + ld1 + ld3

4
, where ld1 and ld3 represent the
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space required for damper valving and casting extensions, respectively. The shell height can be calculated

as L2 = Ds + ld1 + ld3 and the external surface area of the shell can be calculated as A4 = 2πr2L2, where r2

is the outer shell radius. The heat flow from the damper fluid through the shell can be modeled as a DAE,

which can be converted to a single ordinary differential equation:

Ṫ1 =−
b2b3

b1b2 +b1b3
T1 +

b2b3

b1b2 +b1b3
T4 +

qgen

b1
(4.18)

where T1 and T4 are the damper fluid temperature and the constant atmospheric temperature, respectively.

b1, b2, and b3 are calculated as:

b1 = ρv f cpl (4.19)

b2 =
2πL2k2

ln(
r2

r1
)

(4.20)

b3 = hA4 (4.21)

where cpl is the heat capacity of the damper fluid, k2 is the conduction coefficient of the steel damper tube,

r1 is the inner shell radius,

Pmax =
4cs(x4− x2)

πD2
p

(4.22)

xv,max =
A0Pmax

kv
(4.23)

where x2 and x4 are the second and forth state decision trajectories. All the values for parameters in the

damper design can found in Table 4.2.
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Table 4.2: Spring model parameters

Parameter Value Unit

Function coefficient (η) 0.9 -

Seal max pressure (Pallow) 4.75×106 Pa

Spool vale spring constant (kv) 7500 N/m

Area factor (A f ) 0.1 −
Damper fluid density (ρ) 850 kg/m3

Discharge coefficient (Cd) 0.7 −
Damper fluid heat capacity (cpl) 2500 J/kgK

Damper tube conduction factor (k2) 60.5 W/mK

Atmospheric temperature (T4) 300 K

Convection coefficient (h) 50 W/m2K

Damper valving space (ld1) 0.02 m

Damper component space (ld2) 0.04 m

Casting extension space (ld3) 0.02 m

Maximum damper temperature (T1allow) 390 K

Maximum damper stroke velocity (ẋ3allow) 5 m/s

Maximum spool valve lift (xv,allow) 0.03 m

4.2.2 Active suspension co-design formulation

The co-design problem within MDSDO can now be formulated using the spring and damper models.

The objective function is defined as the weighted sum of the tire deflection zus−z0, sprung mass acceleration

z̈s, and active control u:

min
d,x(t),u(t)

φ =

∫ t f

0

[
w1(zus− z0)

2 +w2z̈2
s +w3u2

]
dt (4.24a)

subject to

4≤C ≤ 12 (4.24b)

L0−5.26Dh ≤ 0 (4.24c)
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L0

L0,max
−1≤ 0 (4.24d)

dw +Dh

D0,max
−1≤ 0 (4.24e)

dw +Dh +Dp +2(δs + td)≤ 0 (4.24f)

x3−L0 +Ls +LB +δg ≤ 0 (4.24g)

ndτ

Ssy
−1≤ 0 (4.24h)

0.15+1− L0−Ls

δg +1.1x3
≤ 0 (4.24i)

τa

Se2
+

τm

Ssy
−1≤ 0 where Se2 =

0.24Sut

nd
(4.24j)

ndτa

241×106 −1≤ 0 (4.24k)

L0−Ls−Ds ≤ 0 (4.24l)

2Ds + ld1 + ld2

L0,max
−1≤ 0 (4.24m)

T1

T1allow
−1≤ 0 (4.24n)

Pmax

Pallow
−1≤ 0 (4.24o)

x4− x2

x3allow
≤ 1 (4.24p)

xv,max

xv,allow
≤ 1 (4.24q)

ẋ(t)− f(d,x(t),u(t), t) = 0 (4.24r)

The problem is solved for t f = 2 s, which is treated as a fixed parameter. The objective weights w1 = 104,

w2 = 0.5, and w3 = 10−5 are to ensure the same order of magnitude for every term in the objective function.

Similarly, a normalization scheme is employed to keep the constraints within the same order of magnitude.
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Equation (4.24b) ensures that the spring index is within a reasonable range to avoid entanglement and to be

realistic. To prevent buckling, Eqn. (4.24c) must be satisfied. The uncompressed length of the spring must

fit within the specified pocket length. This constraints is described in Eqn. (4.24d). To prevent interface

with vehicle components, Eqn. (4.24e) ensures that the outer spring diameter does not exceed D0,max. The

spring must fit around the damper with a certain clearance, as described in Eqn. (4.24f). Suspension case

space constraint is described in Eqn. (4.24g). Spring shear stress τ at maximum deflection must not exceed

shear yield stress. This constraint is described in Eqn. (4.24h). To ensure the linearity of Eqn. (4.6) and

the validity of the model, Eqn. (4.24i) must be satisfied. Soderberg fatigue criterion with Zimmerli data

are described in Eqn. (4.24j) and Eqn. (4.24k). Eqn. (4.24l) ensures adequate damper range of motion and

Eqn. (4.24m) makes sure that the damper fits within the pocket length. Maximum damper fluid temperature

must not exceed the maximum allowable temperature and the maximum damper pressure must not exceed

the seal maximum pressure. These two requirements are described in Eqn. (4.24n) and Eqn. (4.24o). To

protect the suspension system from excessive velocities, Eqn. (4.24p) is imposed. The clearance requirement

for the maximum amount of spool valve lift is included in Eqn. (4.24q). Finally, dynamic-system equality

constraints from Eqn. (4.6) and Eqn. (4.18) are included in Eqn. (4.24r).

The proposed double-loop RB-MDSDO problem formulation is then used to solve the co-design problem

of the automotive active-suspension. Due to the complexity of the model, and to reduce the number of

probabilistic inequality constraints, the vector of uncertain design variables only include the damper valve

diameter D0, the damper piston diameter Dp, and the damper stroke Ds. These uncertain design variables

result in the total of five performance measure functions:

G1 : Pr{Eqn. (4.24 f )} ≥Φcd f (5)

G2 : Pr{Eqn. (4.24l)} ≥Φcd f (5)

G3 : Pr{Eqn. (4.24m)} ≥Φcd f (5)

G4 : Pr{Eqn. (4.24o)} ≥Φcd f (5)

G5 : Pr{Eqn. (4.24p)} ≥Φcd f (5)
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where the reliability target of βt = 5 is assumed for all performance measure functions. We assume Gaussian

distribution for uncertain design variables where, σD0 = 0.001, σDp = 0.001, and σDs = 0.003. Note that

the design space of random design decision variables is reduced using a constraint shift index of k = 3. By

employing the proposed formulations, we can formulate the double-loop RB-MDSDO problems.

4.2.3 Results and Discussion

The double-loop RB-MDSDO problem was implemented in the commercially available software, GPOPS-

II [55] on a 32 GB of RAM and an Intel(R) Xenon(R) CPU E5-2637 v3 @ 3.50 GHz processor system, with

the setting shown in Table 4.3.

Table 4.3: GPOPS-II settings.

Field Setting

Mesh method hp-LiuRao-Legendre

Mesh tolerance 10−4

NLP solver IPOPT

IPOPT tolerance 10−5

IPOPT max iterations 1000

In this study, we exploit the potential computational benefit that can be gained for the double-loop RB-

MDSDO problem formulation by using methods such as AMV, CMV, HMV. The gradient information,

which are required for the implementation of such algorithms, are expected to incur a computational burden

on the optimizer—thereby increasing the computational time. Therefore, the gradient information for G1,

G2, and G3 was calculated manually, while the gradient information for G4, and G5 was calculated through

forward differentiation in ADIMAT toolbox [65]. The solution of these methods are compared to the solution

of a general optimizer such as MATLAB’s fmincon function, using an interior-point algorithm.

The results are described in Table. 4.4 and indicate that accounting for uncertainties in the co-design of

automotive active suspension has a significant impact on its system-level solution. Specifically, all of the
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Table 4.4: Automotive suspension co-design solution using double-
loop RB-MDSDO approaches

Field DETa AMV b CMVc HMVd GOe Unit

dw 0.016 0.017 0.017 0.017 0.017 m

Dh 0.156 0.157 0.157 0.157 0.157 m

p 0.037 0.035 0.035 0.035 0.035 m

Na 7.055 6.66 6.66 6.66 6.61 -

µD0 0.007 0.008 0.008 0.008 0.008 m

µDp 0.03 0.033 0.033 0.033 0.033 m

µDs 0.17 0.155 0.155 0.155 0.155 m

φ 1.3975 1.4634 1.4634 1.4634 1.4634 -

t 93 2611 3580 3665 100,246 s

ks 23760 29457 29457 29457 29457 Nm−1

cs 724.54 750.07 750.07 750.07 750.07 Nsm−1

a Deterministic b Advanced mean value c Conjugate mean value d Hybrid mean value e General optimization using fmincon

plant design decision variables have changed compared to the deterministic case. In total, the vector of plant

design decision variables has undergone a 5.6% change. These variations have a direct impact on critical

intermediate variables such as ks and cs, which have changed dramatically, by 23.98% and 3.52%, respec-

tively. Therefore, these variations significantly impact the performance of the vehicle under rough surface

input. Finally, the value of the objective function has increased by 4.72% compared with the deterministic

case.

According to Table. 4.4, solving the MPP optimization problem through AMV approach offers compu-

tational efficiency for this problem; however, this is a problem-dependent outcome. Nevertheless, reliability

methods such as AMV, CMV, and HMV are expected to surpass generic optimization algorithms in compu-

tational efficiency. Due to the numerical stability of the HMV approach, it is recommended for a larger class

of co-design problems. The control decision trajectory, and sprung mass response to the rough surface are

illustrated in Fig. (4.2) and Fig. (4.3), respectively. As we can see from these figures, the control input and

the sprung mass response for the deterministic solution is slightly different from the solution of stochastic

approaches.
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Figure 4.2: Control force for active automotive suspension: (a) com-
plete time-history (b) magnified trajectory for t ∈ [0.5 0.9].

Figure 4.3: Sprung mass response to rough surface input: (a) complete
time-history (b) magnified trajectory for t ∈ [0.5 0.9].

46



4.3 Summary

The integration of balanced co-design optimization methods such MDSDO with stochastic optimization

techniques is necessary for the real-world application and implementation of many complex dynamic sys-

tems. In this chapter, we developed a novel RB-MDSDO formulation for co-design of stochastic dynamic

systems. Using efficient reliability methods such as AMV, CMV, HMV for the solution of the inner-loop

MPP optimization problem, we implemented and solved multiple double-loop RB-MDSDO approaches for

the co-design of an automotive active-suspension system and demonstrated the significance of these ad-

vanced formulation on a complex co-design problem. In addition, the results indicated the computational

advantage of these efficient methods compared to general optimization algorithms.
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Chapter 5

Assessment of Single-Loop MPP Reliability Analysis for RB-MDSDO

This chapter develops a single-loop RB-MDSDO formulation to improve the computational efficiency of

RB-MDSDO for co-design problems. Developing a more efficient approach for RB-MDSDO is necessary

because the number of decision variables in the problem formulation grows exponentially as the number

of analysis-type equality constraints and/or probabilistic inequality constraints are increased. Using the se-

quential optimization and reliability assessment (SORA) algorithm, we decouple the previously proposed

problem formulation, such that the optimization problem is solved within the deterministic step, while the

reliability analysis is performed in the standard normal random space. This single-loop approach is expected

to improve the efficiency of the double-loop RB-MDSDO approach and offer a practical methodology for

the widespread application of the RB-MDSDO approaches. In order to identify the implementation chal-

lenges, we first solve the proposed formulation for two small-scale co-design problems. In the next step,

the complex, co-design problem of an automotive active-suspension, which was introduced in Chapter 4, is

solved and the results are compared to the solution of the double-loop MPP approach.

5.1 Traditional SORA

The idea behind SORA is to develop a single-loop MPP strategy where the deterministic optimization

and the reliability assessment are decoupled from each other and are executed sequentially, until some con-

vergence criteria are achieved. Du and Chen [66, 67] employed a series of sequential cycles of optimization

and reliability assessment using an efficient MPP search algorithm. In SORA, the deterministic optimiza-

tion is performed first to achieve an optimal solution, then the reliability analysis is executed to verify the

satisfaction of reliability constraints and to provide improvement directions for the next cycle of the SORA

algorithm [48]. Here, for the sake of brevity, we only describe the problem formulations in each major step
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of this algorithm. Further details about the convergence criteria and the flowchart of the algorithm can be

found in [66, 67].

The SORA algorithm starts with a deterministic problem that includes the mean value vector of the ran-

dom design variables µS. After the first cycle, the deterministic optimization problem uses the information

from the reliability assessment step of the previous cycle. In other words, after the first cycle of SORA,

the constraints within the deterministic optimization are modified to shift the MPPs into the feasible region

of the deterministic bounds. Therefore, we employ shifting vectors, similar to the ones introduced by Du

and Chen [68] to establish the equivalent deterministic optimization problem in each cycle of SORA. These

shifting vectors are described by v:

v(m)
i = µ

(m−1)
S − s∗,(m−1)

MPP,i (5.1)

where s∗,(m−1)
MPP,i is the MPP of the vector of uncertain design variables from the (m− 1)th SORA cycle and

µ
(m−1)
S is the vector of mean values from the (m− 1)th cycle. The deterministic optimization problem for

the mth cycle of SORA can then be formulated as:

min
µ

(m)
S

f (µ(m)
S )

subject to gi(µ
(m)
S −v(m)

i )≤ 0, i = 1, ...,ng

(5.2)

The output of Eqn. (5.2), denoted by µ(m)
S , will be the input to the reliability assessment step, where a

transformation into the random normal space will be performed. The MPP of the random design variables

associated with the ith performance measure is found through the following formulation

min
s(m)

u,i

−gi(s
(m)
u,i )

subject to
∥∥∥s(m)

u,i

∥∥∥−βti = 0

where s(m)
u,i = Φ

−1
cd f [Fgi(s(m))]

(5.3)

This sequential algorithm has been implemented for multiple applications within the RBDO literature. For
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more details, interested readers are referred to [69, 70, 48].

5.2 SORA with Equality Constraints

Here, we employ the approach developed by Du and Huang to address the issue of analysis-type equality

constraints [48]. Using the FORM approximation within the PMA for RBDO, and denoting the MPP of the

constraint function gi in (m− 1)th cycle of SORA for independent random variables as s∗,(m−1)
xMPP,i , and for

dependent random variables as s∗,(m−1)
yMPP,i , Du and Huang formulated the deterministic step of the SORA

algorithm as:

min
µ

(m)
Sx ,µ

(m)
Sy ,s∗,(m)

yMPP,i

f (µ(m)
Sx

,µ
(m)
Sy

)

subject to gi(µ
(m)
S −v(m)

i ,s∗,(m)
yMPP,i)≤ 0, i = 1, ...,ng

h j(µ
(m)
Sx

,µ
(m)
Sy

) = 0, j = 1, ...,nh

hk(µ
(m)
S −v(m)

i ,s∗,(m)
yMPP,i) = 0, k = 1, ...,nh×ng, i = 1, ...,ng

(5.4)

where v(m)
i denotes the shifting vector associated with the ith inequality constraint, resulted from the pre-

vious cycle of SORA. The equality constraints are satisfied at the mean values of all random variables, as

well as their MPPs. Note that since every inequality constraint has its own MPP, the total number of equal-

ity constraints at the MPP will be nh× ng. Moreover, note that s∗,(m−1)
xMPP,i come from the previous cycle of

SORA and are included in the deterministic optimization through the shifting vector v(m)
i . The MPPs of the

dependent random variables s∗,(m)
yMPP,i are obtained during the (m)th cycle of SORA. This problem is equivalent

to Eqn. (5.2) and thus it requires a MPP search algorithm. The reliability assessment is then formulated us-

ing a FORM approximation within the PMA. Note that the MPP subproblem must satisfy the analysis-type

equality constraints, as well as the usual reliability constraint during optimization.
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min
s(m)

u,i ,s
(m)
y

−gi(s
(m)
u,i ,s

(m)
y )

subject to
∥∥∥s(m)

u,i

∥∥∥−βti = 0

h j(s
(m)
u,i ,s

(m)
y ) = 0, j = 1, ...,nh

where s(m)
u,i = Φ

−1
cd f [Fgi(s

(m)
x )]

(5.5)

5.3 RB-MDSDO Problem Formulation Using SORA

The integrated nature of co-design formulations results in the propagation of uncertainties from random

plant design decision variables to the analysis-type equality constraints, thereby affecting the open-loop

optimal control trajectories. To quantify the impact of these uncertainties on the system-level co-design

solution, we propose the novel single-loop RB-MDSDO formulation using SORA.

The single-loop MPP formulation in RB-MDSDO executes the deterministic optimization problem first,

followed by the reliability assessment. The deterministic optimization problem, which is the first major

block in SORA algorithm, doesn’t explicitly account for the random variations or processes in the design

decision variables or state trajectory decision variables; rather it employs shifting vectors v(m)
i to shift the

MPPs of the design decision variables into the feasible region of the deterministic bounds, while making

sure that the state dynamics are satisfied at the mean values, as well as the MPPs. It is still assumed that the

overall MPP strategy will consist of the PMA in conjunction with the FORM to solve the problem robustly

and efficiently. This problem formulation includes the vector of mean values of the plant design decision

variables µ(m)
D , the mean values of state decision decision variable µ(m)

X (t), the MPPs of design decision

variables d∗,(m)
MPP,i, the MPPs of state decision variables x∗,(m)

MPP,i(t), the shifting vectors v(m)
i and the vector of

deterministic control variables u(m)(t) at the (m)th cycle of SORA. The objective function φ is optimized

over the set of decision variables [µ(m)
D ,µ

(m)
X (t),x∗,(m)

MPP,i(t),u
(m)(t)] and subject to the probabilistic inequality

constraints g(·), algebraic equality constraints h(·), and dynamic system equality constraints. Note that both

algebraic equality constraints and dynamic system equality constraints must be satisfied both at the the mean

values and the MPPs of design and state decision variables. This formulation can be described as
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min
µ

(m)
D ,µ

(m)
X (t),x∗,(m)

MPP,i(t),u(m)(t)
φ(µ

(m)
D ,µ

(m)
X (t),u(m)(t))

subject to gi(µ
(m)
D −v(m)

i ,x∗,(m)
MPP,i(t),u

(m)(t))≤ 0, i = 1, ...,ng

h(µ(m)
D ,µ

(m)
X (t),u(m)(t)) = 0

hi(µ
(m)
D −v(m)

i ,x∗,(m)
MPP,i(t),u

(m)(t)) = 0, i = 1, ...,ng

µ̇X(t)− f(µ(m)
D ,µ

(m)
X (t),u(m)(t)) = 0

ẋ∗,(m)
MPP,i(t)− fi(µ

(m)
D −v(m)

i ,x∗,(m)
MPP,i(t),u

(m)(t)) = 0, i = 1, ...,ng

(5.6)

where the shifting vector for the (m)th cycle of SORA can be found using v(m)
i = µ

(m−1)
D −d∗,(m−1)

MPP,i . The

MPP subproblem in the reliability assessment step can then be formulated as:

min
d(m)

u,i (t),x
(m)
i (t)

−gi(d
(m)
u,i ,x

(m)
i (t),u∗,(m)(t))

subject to
∥∥∥d(m)

u,i

∥∥∥−βti = 0

h(d(m)
u,i ,x

(m)
i (t),u∗,(m)(t)) = 0

ẋ(t)− f(d(m)
u,i ,x

(m)
i (t),u∗,(m)(t)) = 0

where d(m)
u,i = Φ

−1
cd f [Fgi(d(m))]

(5.7)

This formulation requires the use of numerical methods such as DT. The transcribed version of Eqn. (5.6)

can be described as
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min
µ

(m)
D ,M(m)

X ,x∗,(m)
MPP,i,U(m)

φ(µ
(m)
D ,M(m)

X ,U(m))

subject to gi(µ
(m)
D −v(m)

i ,x∗,(m)
MPP,i,U

(m))≤ 0, i = 1, ...,ng

h(µ(m)
D ,M(m)

X ,U(m)) = 0

hi(µ
(m)
D −v(m)

i ,x∗,(m)
MPP,i,U

(m)) = 0, i = 1, ...,ng

ζ(µ
(m)
D ,M(m)

X ,U(m)) = 0

ζi(µ
(m)
D −v(m)

i ,x∗,(m)
MPP,i,U

(m)) = 0, i = 1, ...,ng

(5.8)

where M(m)
X is the matrix of discretized, state trajectory mean-value decision variables in (m)th SORA cy-

cle. This problem is equivalent to the general RBDO problem and thus, requires a reliability assessment

algorithm within the standard normal space to find the MPPs. The MPP subproblem can then formulated as:

min
d(m)

u,i ,X
(m)
i

−gi(d
(m)
u,i ,X

(m)
i ,U∗,(m))

subject to
∥∥du,i

∥∥(m)−βti = 0

h(d(m)
u,i ,X

(m)
i (t),u∗,(m)(t)) = 0

ζ(d(m)
u,i ,X

(m)
i ,U∗,(m)) = 0

where d(m)
u,i = Φ

−1
cd f [Fgi(d(m))]

(5.9)

Note that the deterministic optimal control solution from the deterministic optimization block of SORA

is a fixed input trajectory into the reliability assessment step. The SORA flowchart of the RB-MDSDO

formulation is described in Fig. 5.1. We note that the output of the deterministic step at the (m)th cycle

of SORA to the reliability assessment block is the optimal mean value of independent design variables,

µ
(m)
D , and optimal control decision trajectory U∗,(m). For the first SORA cycle, since there’s no information

available from the reliability assessment step, the the MPP of the independent random design variables

d∗,(0)MPP,i is prescribed as the mean of the independent random design variables µ(0)
D , such that v(0)i = 0. After

the initial cycle of SORA, the reliability analysis step inputs the MPP of the independent random design
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variables of the previous cycle d∗,(m−1)
MPP,i to the deterministic step, through the shifting vector. Note that the

inclusion of the analysis-type equality constraints in the reliability analysis step is to ensure their feasibility.

Figure 5.1: SORA within RB-MDSDO

A major challenge in the implementation of the proposed RB-MDSDO algorithm arises when state tra-

jectory decision variables are bounded through inequality path constraints. As opposed to the conventional

static inequality constraints, the dynamic nature of these trajectories necessitates a different approach when

the associated performance measure function is formulated. This makes the implementation of the RB-
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MDSDO problem formulation a challenging task. One could treat each discretized path constraint at every

single collocation point as an inequality constraint—employed within RB-MDSDO problem formulation

as a performance measure function. This, however, is not practical as the number of performance measure

functions will be directly influenced by the total number of collocation points in the discretized problem. To

address this issue, we identify the least reliable design point for each probabilistic path constraint by max-

imizing the integral of the probabilistic path constraint at every reliability assessment step. This approach

enables the determination of plant designs and state trajectories that would cause the highest constraint vio-

lation over the whole trajectory under uncertainty. The stopping criteria is then set as the convergence of the

optimization subproblems, as well as the satisfaction of the performance measure function at the MPP. It is

noteworthy to mention that while this approach is limiting in the sense that it does not provide insights into

the characteristics of this random process, it does address the reliability requirements of the RB-MDSDO

formulation when the uncertainty is propagated into the system only from plant design decision variables or

problem parameters.

5.4 Reliability-based Co-design Case Studies Using Single-loop RB-MDSDO

Implementations

Implementation challenges and the efficiency of the proposed formulation is investigated in three case

studies. The first example is a simple analytical constrained Van der Pol oscillator optimal control problem,

modified for a co-design problem formulation. The original problem was taken from Ref.[71, 72]. While

extremely simplified, this problem offers obvious advantages in identifying implementation challenges. The

second example is the range maximization co-design problem of a hang glider, introduced in Chapter 3.2.2.

Finally, the last case study solves the co-design problem of an automotive active-suspension system and

compares the results with those obtained from Chapter 4.2. This comparison allows us to interpret the

effectiveness and efficiency of the proposed RB-MDSDO approaches for complex co-design problems.

5.4.1 Van der Pol oscillator

The deterministic problem is to find the optimal plant design d = [d1,d2], state trajectories x(t) =

[x1(t),x2(t)], and control trajectory u(t) to minimize the objective function φ :
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min
d,x(t),x(t f ),u(t)

φ =
∫ 5

0

[
x2

1(t)+ x2
2(t)+u2(t)

]
dt

subject to

ẋ1(t)− x1(t)(1− x2
2(t))+D2D1x2(t)−u(t) = 0

ẋ2(t)− x1(t) = 0

dmin ≤ d≤ dmax

xmin ≤ x≤ xmax

umin ≤ u(t)≤ umax

g =−0.4− x1(t)≤ 0

(5.10)

The problem is subject to the following boundary conditions: x(0) = [0,1]T . We note that x(t f ) is a decision

variable and is already included in the vector of state decision variables. Assuming that both design variables

D1 and D2 are uncertain normal variables with σD1 = 0.02 and σD2 = 0.03, and the reliability target of βt = 3

for the performance measure function g : − 0.4− x1(t) ≤ 0, the RB-MDSDO problem can be formulated

such that in the deterministic step of the SORA algorithm, the following optimization problem is solved:

min
µ

(m)
D ,µ

(m)
X (t),x∗,(m)

MPP (t),u
(m)(t)

J =
∫ 5

0

[
µ

2,(m)
X1

(t)+µ
2,(m)
X2

(t)+u2,(m)(t)
]
dt

(5.11)

The objective function is subject to the following constraints.

µ̇
(m)
X1

(t)−µ
(m)
X1

(t)(1−µ
2,(m)
X2

(t))+µ
(m)
D2

µ
(m)
D1

µ
(m)
X2

(t)−u(m)(t) = 0 (5.12)

µ̇
(m)
X2

(t)−µ
(m)
X1

(t) = 0 (5.13)

ẋ∗,(m)
1,MPP(t)− x∗,(m)

1,MPP(t)(1− x2,∗,(m)
2,MPP (t))+d∗,(m−1)

2,MPP d∗,(m−1)
1,MPP x∗,(m)

2,MPP(t)−u(m)(t) = 0 (5.14)

ẋ∗,(m)
2,MPP(t)− x∗,(m)

1,MPP(t) = 0 (5.15)

µDmin +3σd ≤ µD ≤ µDmax−3σd (5.16)
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µXmin ≤ µX(t)≤ µXmax (5.17)

umin ≤ u(t)≤ umax (5.18)

G =−0.4−X∗1 (t)≤ 0 (5.19)

Note that the design space of the plant decision variables is reduced under uncertainty. The reliability as-

sessment step then pertains to finding the MPP associated with the maximum violation of the performance

measure trajectory within the standard normal space du,i. Due to the assumption of normality for the uncer-

tain plant design variables, the Rosenblatt transformation [47] would be linear:

du,i =
D−µD

σD
(5.20)

Then the reliability assessment step can be formulated as:

min
d(m)

u ,x(m)(t)
−
∫ 5

0

[
−0.4− x(m)

1 (t)
]
dt

subject to ∥∥∥d(m)
u

∥∥∥−βti = 0

ẋ(m)
1 (t)− x(m)

1 (t)(1− x2,(m)
2 (t))+(µ

(m)
D2

+d2,uσ2)(µ
(m)
D1

+d1,uσ1)x2
(m)(t)−u∗,(m)(t) = 0

ẋ(m)
2 (t)− x1

(m)(t) = 0

(5.21)

The problem was solved using the commercially available MATLAB c©-based software, GPOPS-II [55]. We

solved both the deterministic and the reliability assessment steps of the RB-MDSDO SORA algorithm on

a 32 GB of RAM and an Intel(R) Xenon(R) CPU E5-2637 v3 @ 3.50 GHz processor system, with the key

GPOPS-II settings introduced in Table 5.1.
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Table 5.1: GPOPS-II settings.

Field Setting

Mesh method hp-LiuRao-Legendre

Mesh tolerance 10−6

NLP solver IPOPT

IPOPT tolerance 10−7

IPOPT max iterations 5000

Table 5.2 compares the solution of the deterministic and the proposed RB-MDSDO problem formulations.

The results indicate the critical impact of uncertainty on the optimal solution of co-design formulations

within MDSDO and the necessity to account for this uncertainty through stochastic approaches such as the

proposed RB-MDSDO formulation.

Table 5.2: Co-design results for Van der Pol oscillator

d1 d2 d∗1,MPP d∗2,MPP J Time (s)

MDSDO a 0.324 0.21 - - 1.969 0.82

RB-MDSDO b 0.008 0.014 -0.035 -0.051 1.978 8.02

Diff c 96.31% 0.46%

a Deterministic MDSDO solution, b Single-loop RB-MDSDO solution, c Percent difference

The solution converged in m = 7 SORA cycles, and the vector of plant design variables has changed sig-

nificantly compared to the deterministic case (96.31%). Although the value of the objective function has

increased by 0.46% in RB-MDSDO approach, the associated solution is more reliable compared to the de-

terministic case. The probability of failure for the probabilistic path constraint, G, was benchmarked through

MCS, where n = 100,000 points were sampled about the MDSDO and RB-MDSDO solutions, respectively.
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Figure 5.2: Comparison of deterministic and stochastic optimal con-
trol trajectory u(t) for Test Problem 1

The simulation results show that the probability of failure has dropped from Pr f ,MDSDO{G} = 0.294 in

MDSDO to Pr f ,RB−MDSDO{G} = 0.03097 in RB-MDSDO—indicating the effectiveness of the proposed

approach. The probability of failure can be further improved by increasing the reliability target or using

SORM. Figures 5.3 and 5.4 show the results of the MCS for the state decision trajectories about the solu-

tion of the MDSDO and RB-MDSDO approach, respectively. A sample size of n = 1,000 is used to create

the MCS plots. From this figure, it is evident that the resultant trajectories violate G more often than the

RB-MDSDO solution shown in Fig. 5.4.

Figure 5.3: Van der Pol oscillator: MCS about the solution of
MDSDO, Pf = 0.294
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Figure 5.4: Van der Pol oscillator: MCS about the solution of RB-
MDSDO for state trajectories: (a) x1(t) (b) x2(t)

5.4.2 Hang glider

The problem statement and formulation for the hang glider problem was introduced in Chapter 3.2.2. To

avoid repetition, this section only discusses the details pertaining to RB-MDSDO formulation. Interested

readers are referred to Section 3.2.2 for more details on the hang glider problem. In order to formulate the

single-loop RB-MDSDO problem, we assume a reliability target of β = 3. The standard deviation of the

independent plant design variables is assumed to be σa1 = 0.1, σa2 = 0.1, σb = 0.1. We note that since

the Eqn. (3.9f) is completely deterministic, we are left with two performance measure functions, namely

Eqn. (3.9g) and Eqn. (3.9h). These performance measure functions are distinguished by index i = 1 and

i = 2, respectively. Using a single-loop MPP formulation in RB-MDSDO, along with FORM and PMA, the

objective for the deterministic step of SORA for hang glider co-design can be formulated as

min
µ

(m)
d ,µ

(m)
x (t),x∗,(m)

MPP,i(t),u(m)(t),µ(m)
x1 (t f ),t f

−µ
(m)
x1 (t f ) (5.22)
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where (m) denotes the mth cycle of SORA. This is subject to the following constraints:

µ̇
(m)
x1 (t)− µ̇

(m)
x3 (t) = 0 (5.23)

µ̇
(m)
x2 (t)− µ̇

(m)
x4 (t) = 0 (5.24)

µ̇
(m)
x3 (t)− 1

m
(−µL sin(µη)−µDr cos(µη)) = 0 (5.25)

µ̇
(m)
x4 (t)− 1

m
(µL cos(µη)−µDr sin(µη)−W ) = 0 (5.26)

ẋ(m)
1MPP,i

(t)− ẋ(m)
3MPP,i

(t) = 0 i = 1,2 (5.27)

ẋ(m)
2MPP,i

(t)− ẋ(m)
4MPP,i

(t) = 0 i = 1,2 (5.28)

ẋ(m)
3MPP,i

(t)− 1
m
(−LMPP,i sin(ηMPP,i)−DrMPP,i cos(ηMPP,i)) = 0 i = 1,2 (5.29)

ẋ(m)
4MPP,i

(t)− 1
m
(LMPP,i cos(ηMPP,i)−DrMPP,i sin(ηMPP,i)−W ) = 0 i = 1,2 (5.30)

L
Dr
−11≤ 0 (5.31)

(2bMPP,1 + fl)
2

SMPP,1
−g1,max ≤ 0 (5.32)

SMPP,2−Smax ≤ 0 (5.33)

µxmin ≤ µx(t)≤ µxmax (5.34)

µa1min
+3σa1 ≤ µa1 ≤ µa1max

−3σa1 (5.35)

µa2max
+3σa2 ≤ µa2 ≤ µa2max

−3σa2 (5.36)

µbmin +3σb ≤ µb ≤ µbmax−3σb (5.37)

Note that in this formulation, the dynamic system equality constraints are satisfied at both the vector of

mean values, as well as the MPPs. All the deterministic decision variables including the vector of mean

values of plant design variables µ(m)
d , optimal control trajectory u(m)(t), and t(m)

f will be inputs to the re-
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liability assessment step. Moreover, under uncertainty, it is customary to push the design space inward so

as to avoid the boundaries of the design space under uncertainty. This would be a trivial case of making

the box constraints reliable when they have a Gaussian distribution. Solving the MPP subproblem in the

reliability assessment step requires relaxation of the final boundary conditions on the system. This makes

sense because it is reasonable to assume that the initial conditions of the systems could still be prescribed

by the designer under uncertainty, however, this uncertainty will be propagated into the system and thus, we

cannot guarantee that the final conditions will always be met under uncertainty. Thus, the MPP subproblem

must be solved with the following condition:

x(m)
1 (t0) = 0 m

x(m)
2 (t0) = 1000 m

x(m)
3 (t0) = 13.23 m/s

x(m)
4 (t0) =−1.288 m/s

(5.38)

min
du,i,xi(t)

−gi

subject to

ẋ1,i(t)− x3(t) = 0

ẋ2,i(t)− x4(t) = 0

ẋ3,i(t)− 1
m(−Li sin(ηi)−Dri cos(ηi)) = 0

ẋ4,i(t)− 1
m(Li cos(ηi)−Dri sin(ηi)−W ) = 0∥∥du,i

∥∥−βti = 0

(5.39)
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where

du,i = Φ
−1
cd f [Fgi(d)]

g1 =
(2b+ fl)

2

S −g1,max ≤ 0

g2 = S−Smax

(5.40)

The problem was solved using the commercially available software, GPOPS-II [55] on a 32 GB of RAM

and an Intel(R) Xenon(R) CPU E5-2637 v3 @ 3.50 GHz processor system, with the setting shown in Table

3.1.

Figure 5.5: Hang glider: Optimal control trajectory

Table 5.3: Co-design results for hang glider

a1 a2 b x1(t f ) t (s)

MDSDO a 1.62 2.48 4.63 1,290.4 13.58

RB-MDSDO b 1.44 2.46 4.3 1,272.7 289.8

Diff c 6.85% 1.37%

a Deterministic MDSDO solution, b RB-MDSDO solution, c Percent difference
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Figure 5.6: Hang glider: MCS about the solution of RB-MDSDO for
state trajectories
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The problem was solved in m = 4 SORA cycles and the results from both deterministic MDSDO and

single-loop RB-MDSDO formulations are compared in Tab. 5.3. The vector of plant design has changed

by 6.85% compared to the deterministic case. Also, the maximum range is reduced by 1.37% in the RB-

MDSDO approach. Although less favorable, the associated risk with this design is much less. The MPPs

associated with plant design variables at m= 4 SORA cycle for i= 1 and i= 2 are found to be a∗,(4)1,MPP,i = 1.62,

a∗,(4)2,MPP,i = 2.63, and b∗,(4)MPP,i = 4.47. and a∗,(4)1,MPP,i = 1.25, a∗,(4)2,MPP,i = 2.27, and b∗,(4)MPP,i = 4.44, respectively. The

probabilities of failure for both of the performance measure functions are then benchmarked MCS with

n = 100,000 samples as indicated in Table 5.4:

Table 5.4: Probabilities of failure using Monte Carlo Simulation with
n = 100,000 samples

MDSDO RB-MDSDO

Pr f {G1} 0 0

Pr f {G2} 0.4986 0.0468

The optimal control and state trajectories are illustrated in Fig. 5.5 and Fig. 5.6, respectively. The state

trajectories are plotted against state trajectories that are obtained by performing MCS about the solution of

RB-MDSDO. A sample size of n = 1000 is used to create these figures. It can be observed that under uncer-

tainty, optimal control trajectories and states of system tend to deviate from the solution of the deterministic

problem.

5.4.3 Active suspension co-design problem

This case study solves the co-design problem of an automotive active-suspension system under uncer-

tainty. By solving and implementing the proposed single-loop RB-MDSDO for this complex problem, and

comparing the results to the double-loop RB-MDSDO solution from Chapter 4, we discuss the scalability

and efficiency of RB-MDSDO problem formulations for complex co-design problems under uncertainty.

The problem statement and its formulation was introduced in Chapter 4.2. Here, to avoid repetition, we

only present the results from the single-loop RB-MDSDO approach and compare them with the solutions
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Table 5.5: Automotive suspension co-design solution using double-loop and
single-loop RB-MDSDO approaches

Field DETa AMV b CMVc HMVd GOe SORA f Unit

dw 0.016 0.017 0.017 0.017 0.017 0.017 m

Dh 0.156 0.157 0.157 0.157 0.157 0.157 m

p 0.037 0.035 0.035 0.035 0.035 0.035 m

Na 7.055 6.66 6.66 6.66 6.61 6.66 -

µD0 0.007 0.008 0.008 0.008 0.008 0.008 m

µDp 0.03 0.033 0.033 0.033 0.033 0.033 m

µDs 0.17 0.155 0.155 0.155 0.155 0.155 m

φ 1.3975 1.4634 1.4634 1.4634 1.4634 1.4634 -

t 93 2611 3580 3665 100,246 2125 s

ks 23760 29457 29457 29457 29457 29457 Nm−1

cs 724.54 750.07 750.07 750.07 750.07 750.07 Nsm−1

a Deterministic b Advanced mean value c Conjugate mean value d Hybrid mean value e General optimization using fmincon
f Sequential optimization and reliability assessment

obtained from Section 4. These results are described in Table. 5.5 and indicate that the single-loop RB-

MDSDO approach is more efficient compared with the double-loop RB-MDSDO approaches. Even though

efficient double-loop reliability methods such as AMV, CMV, and HMV offer a significant computational

advantage for the double-loop MPP-based algorithms, the single-loop nature of SORA enables a more time-

efficient framework for co-design of stochastic dynamic systems. The control decision trajectory, and sprung

mass response to the rough surface are illustrated in Fig. (5.7) and Fig. (5.8), respectively. As we can see

from these figures, the control input and the sprung mass response for the deterministic solution is slightly

different from the solution of stochastic approaches.
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Figure 5.7: Control force for active automotive suspension: (a) complete time-
history (b) magnified trajectory for t ∈ [0.5 0.9].

Figure 5.8: Sprung mass response to rough surface input: (a) complete time-
history (b) magnified trajectory for t ∈ [0.5 0.9].
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5.5 Summary

This chapter introduced a single-loop MPP-based reliability analysis for RB-MDSDO problem formu-

lation. The analysis-type dynamic equality constraints, and the algebraic equality constraints were satisfied

at the vector of mean values, as well as the MPPs. The proposed formulation was then solved for three case

studies to identify the implementation challenges. By solving the complex co-design problem of an automo-

tive active suspension system and comparing the results with the double-loop RB-MDSDO, we concluded

that the single-loop RB-MDSDO offers computational efficiency and is more suitable for complex dynamic

systems.
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Chapter 6

Application to Co-design of Hybrid-Electric Vehicle Powertrain

In the past few decades, environmental concerns have motivated more fuel-efficient vehicle alternatives

in the transportation sector. Electrification of road transport through HEVs presents a viable solution to this

challenge by reducing tailpipe emissions through efficient, yet more complex energy management strategies.

These strategies are inherently coupled with powertrain design and thus, their identification requires methods

such as co-design, resulting in a system-level optimal solution and improved performance of the vehicle.

The application of co-design approaches to HEVs has been widely investigated in the literature. The

tradeoffs between fuel consumption and emissions in a simultaneous co-design problem formulation for a

parallel HEV was investigated using fuzzy set theory [73]. Patil calculated a unidirectional coupling term to

account for the dependence of the optimal control problem on plant design for a plug-in hybrid electric vehi-

cle (PHEV) [74]. By calculating this term, he optimally sized the battery in a co-design formulation. Bayrak

et al. introduced a heuristic approach to enumerate feasible HEV modes and find an optimal hybrid-electric

powertrain architecture with the optimal control strategy determined for each mode in a nested algorithm

[75]. The authors extended their study to account for a variety of loading scenarios in Ref. [76]. A convex

programming approach has also been used for the simultaneous energy management and component sizing

of HEVs [77, 13]. Houshmand implemented a simultaneous co-design problem formulation using multidis-

ciplinary dynamic system design optimization for component sizing and supervisory energy management of

a PHEV in Ref. [78]. A decomposition-based design optimization framework has also been used to find the

powertrain design, component sizing and optimal energy management in a nested combined physical and

control system design problem formulation in Ref. [79]. By simultaneously exploiting design and control

spaces, these studies successfully implemented various co-design methodologies to achieve system-level

optimal plant design and energy management strategies. A comprehensive review of the application of these
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system-level optimization methods to HEVs can be found in Ref. [80].

Despite the successful implementation of deterministic co-design formulations for HEVs, not much re-

search has been performed to account for the uncertainties that prevail in the design and control of these

systems. These uncertainties may stem from a variety of sources including imperfect manufacturing pro-

cesses, measurement errors and/or uncertain operational conditions and could potentially have a significant

impact on HEV component sizing and control strategies. Consequently, this could also impact key vehi-

cle performance measures such as energy efficiency and cost. Therefore, it is important to quantify and

minimize the impact of these uncertainties on the integrated system solution of HEVs.

In this chapter, we address some of the limitations of the literature on stochastic co-design of HEVs

by formulating and solving two co-design problems for a power-split HEV powertrain that account for

uncertainties in both design decision variables and fixed problem parameters. Specifically, we implement

and solve the complex co-design problem of a power-split hybrid-electric vehicle (HEV) powertrain using

(i) an R-MDSDO, and (ii) an RB-MDSDO formulation. Moderate-fidelity mathematical models of the

major components of a power-split HEV powertrain including the engine, electric motor, generator and

battery pack are used to identify the optimal plant design variables, state trajectory decision variables, and

control trajectory decision variables, such that the vehicle powertrain cost is minimized. This Chapter clearly

demonstrates the utility of the previously proposed formulations by solving a real-world complex co-design

problem under uncertainties.

6.1 Model development

A single-mode, power-split HEV powertrain model of the MY2004 Toyota Prius, along with its major

components including the engine, electric machines, and battery was developed based on [78] and is illus-

trated in Fig. (6.1). The power-split HEV configuration combines the benefits of series and parallel hybrid

configuration by employing a planetary gear set that enables a mechanical as well as an electrical path for

the power output of the engine. To model the cost of the vehicle powertrain, cost models associated with

each component are also presented in this section.
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Figure 6.1: Power-split HEV powertrain configuration and components [81].

6.1.1 Powertrain model

The HEV powertrain model is characterized by one plant design variable: final drive of the transmis-

sion, FDR; two distinct state trajectory decision variables: engine speed, ωe, and electric motor speed, ωmg2;

and three control trajectory decision variables: engine torque, τe, electric motor torque, τmg2, and genera-

tor torque τmg1. Dynamic equations for this model are based on longitudinal vehicle dynamics with the

assumption of zero pinion gear inertia [82].



Je 0 0 R+S

0 Jmg1 0 −S

0 0 J′mg2 −R

−(R+S) S R 0





ω̇e

ω̇mg1

ω̇mg2

F


=



τe

τmg1

τ ′mg2

0


(6.1)

ωmg1 = (1+
R
S
)ωe−

R
S

ωmg2 (6.2)

J′mg2 = Jmg2 +(Jw +mvehr2
tire)/FDR2 (6.3)

τ
′
mg2 = τmg2−Froadrtire/FDR (6.4)
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The interaction force between the sun and planet gears is denoted by F . The number of teeth on the ring

and sun gear are described by R and S, respectively. The rotational inertias of the engine, generator, electric

motor, and wheels are described by Je, Jmg1, Jmg2, and Jw, respectively. Tire radius is described by rtire, and

J′mg2 and τ ′mg2 are the effective rotational inertia and torque of the electric motor, respectively. The vehicle’s

mass mveh, is calculated through:

mveh = me +mmg1 +mmg2 +mbatt +mchassis +m f t +mdriver (6.5)

where me, mmg1, mmg2, mbatt , mchassis, m f t and mdriver are the engine, generator, motor, battery pack, chassis,

full fuel tank and the driver masses, respectively. Road load on the vehicle Froad is estimated by calculating

the rolling force Froll and Fdrag

Froad = Froll +Fdrag = µmvehg+
1
2

ρA f rCd(
ωmg2rtire

FDR
)2 (6.6)

where the rolling friction coefficient and the gravitational constant are denoted by µ , and g, respectively. ρ

is the air density, A f r is the vehicle frontal area, and Cd is the drag coefficient of the vehicle. The rotational

acceleration of the engine ω̇e, and electric motor ω̇mg2 can be obtained by rearranging Eqn. (6.1) into its

state-space form

ω̇mg2 =
τmg2−

rtire

FDR
(Froad)+Cτe +

C(R+S)−R
S

τmg1

J′mg2 + Jmg1(
R
S
)2−CJmg1

R(R+S)
S2

(6.7)

C =
Jmg1R(R+S)

S2(Je + Jmg1(
R+S

S
)2)

(6.8)

ω̇e =
τe +(

R+S
S

)τmg1 + Jmg1
R
S2 (R+S)ω̇mg2

Je + Jmg1(
R+S

S
)2

(6.9)

Table 6.1 describes the fixed parameters and constants for the powertrain model.
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Table 6.1: Constants and fixed parameters for Toyota Prius 2004 powertrain.

Parameter Notation Value Unit

Air density ρ 1.225 kg/m3

Gravitational constant g 9.81 m/s2

Ring gear teeth number R 78 -

Rolling friction µ 0.007 -

Rotational inertia of the wheels Jw 0.74 kg.m2

Sun gear teeth number S 30 -

Tire radius rtire 0.282 m

Vehicle chassis mass mchassis 900 kg

Full fuel tank mass m f t 33.74 kg

Driver mass mdriver 82.65 kg

Vehicle frontal area A f r 1.746 m2

6.1.1.1 Engine model

A four-stroke internal combustion engine model was developed that consists of three plant design vari-

ables: engine stroke length Lst , engine bore diameter Db, and compression ratio CR; one state trajectory

decision variable: ωe; and one control trajectory decision variable: τe. This model estimates the maximum

allowable engine torque, fuel consumption rate, engine mass and rotational inertia. Maximum torque of the

engine can be obtained by:

τe,max(ωe) =
bmepmax(ωe)Vdis

4π
(6.10)

where the maximum brake mean effective pressure bmepmax, is estimated empirically though interpolation

[83] and engine displacement Vdis is calculated as a function of the number of cylinders ncyl , Db, and Lst as:

Vdis = ncyl
π

4
D2

bLst (6.11)
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Fuel consumption rate is then calculated as a function of indicated mean effective pressure imep, indicated

thermal efficiency ηIT , and lower heating value of the fuel LHV = 43.448 kJ/g [84]:

ṁ f uel =
imepVdis

ωe

2π

2000ηIT LHV
(6.12)

Indicated mean effective pressure can be obtained as:

imep = bmep+ f mep (6.13)

where the engine brake mean effective pressure bmep and its friction mean effective pressure f mep, can be

estimated for engine displacements of 845 cc up to 2000 cc:

bmep =
4πτe

Vdis
(6.14)

f mep = 97+15(
ωe

1000
(

60
2π

))+5(
ωe

1000
(

60
2π

))2 (6.15)

The indicated thermal efficiency can be obtained in terms of CR and heat capacity ratio κ = 1.5

ηIT = 1− 1
CRκ−1 (6.16)

For the sake of simplicity, engine mass and its inertia are estimated based on constant peak power-to-

weight/inertia ratios:
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me =
τe,max(ωe = 5000 rpm∗ 2π

60
)

0.6869
(6.17)

Je =
me

839
(6.18)

6.1.1.2 Electric machine models

The generator and electric motor models were developed based on the mathematical formulations for

the interior permanent magnet synchronous machines (IPMSM) from Ref. [85]. These models assume

a symmetric performance curve with respect to the axes, and positive and negative values of torque and

speed as appropriate. The variables for the electric machines are distinguished by mgi, where i = 1 and

i = 2, such that mg1 is associated with the generator and mg2 is associated with the electric motor. These

moderate-fidelity models predict the maximum electric machine torque at a given speed, the maximum

electric machine speed, the electrical power generation/consumption at a given torque and speed, and the

electric machine mass and rotational inertia. These models consist of three design-related decision variables:

the stack length Lmgi, the stator inner diameter Dmgi, and the maximum stator current Imgi,max; one state

trajectory decision variable: ωmgi; and one control decision trajectory: τmgi. The maximum torque of the

machines is calculated by

τmgi,max =


mp pi(ψm,iImgi,ocosγi,max +

1
2(ξi−1)LdiI

2
mgi,osin2γi,max), 0≤ ωmgi pi ≤ ωmgi,b pi

mp pi(ψm,iImgi,ocosγi(ωmgi pi)+
1
2(ξi−1)LdiI

2
mgi,osin2γi(ωmgi pi)), ωmgi,b pi ≤ ωmgi pi ≤ ωmgi,max pi

(6.19)

where the number of phases in the electric machines is mp, the number of pole pairs is pi, the magnetic flux

linkage is denoted by ψm,i, and ξi =
Lqi
Ldi

is the saliency ratio calculated through d-q axis phase inductance

Ldi and Lqi . Note that the rated current per phase Imgi,o is computed as Imgi,o =
Imgi,max√

2
. With the exception of

pi and mp, which are fixed parameters, the other variables are intermediate terms that are functions of the

design variables. Interested readers can refer to Ref. [78] for details. Equation (6.19) divides the calculation

75



of torque per ampere current angle γi into speeds before and after the electric machine base or rated speed

ωmgi,b. At ωmgi ≤ ωmgi,b, the torque per ampere current angle is a maximizer γi,max for the torque and is

calculated by differentiating Eqn. (6.19) with respect to γi:

sinγi,max =


−ψm,i +

√
ψ2

m,i +8(ξi−1)2L2
di

I2
mgi,o

4(ξi−1)LdiImgi,o
if ξi > 1

0 ifξi = 1

(6.20)

The torque per ampere current angle γi(ωmgi pi) at any speed ωmgi ≥ ωmgi,b is obtained by a curve-fitting

model which is a function of the electric machine design variables. The rated speed itself is given by

ωmgi,b =
1
pi
(
−CB±

√
(C2

B−4CACC)

2CA
) (6.21)

where CA, CB and CC are related to the stator phase resistance Rsi and maximum rated voltage Vmgi,max of

each electric machine as prescribed in the following equations:

CA =
1

pi(LqiImgi,ocosγi,max)2 +(−LqiImgi,osinγi,max +ψm,i)2 (6.22)

CB = 2Rsi(LqiI
2
mgi,ocosγi,maxsinγi,max−LdiI

2
mgi,osinγi,maxcosγi,max +ψm,iImgi,ocosγi,max) (6.23)

CC = (RsiImgi,o)
2−V 2

mgi,max (6.24)

Note that Vmgi,max can be obtained based on the maximum rated DC voltage VDC,max as Vmgi,max =
VDC,max√

2
2
π

.

Also, note that Rsi is a function of the electric machine design variables, the details of which can be found in

[85]. The maximum electric machine speed ωmgi,max occurs when the maximum torque of the electric ma-

chine reaches zero (τmgi,max(ωmgi ∗ pi) = 0). The electrical power generation/consumption Pmgi is calculated
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as a function of d-q axis stator voltages Vdi and Vqi :

Pmgi = mp(−VdiImgisinγi(ωmgi pi)+VqiImgicosγi(ωmgi pi)) (6.25)

Vdi =−RsiImgisinγi(ωmgi pi)−ωmgi piLqiImgicosγi(ωmgi pi) (6.26)

Vqi = RsiImgicosγi(ωmgi pi)−ωmgi piLdiImgisinγi(ωmgi pi)+ωmgi piψm,i (6.27)

Here, Imgi is obtained by solving the following equation for a given τmgi:

τmgi = mp pi(ψm,iImgicosγi(ωmgi pi)+
1
2
(ξi−1)LdiI

2
mgisin2γi(ωmgi pi)) ∀ ωmgi pi ∈ [0,ωmgi,max pi] (6.28)

Electric machine mass is calculated by accounting for the mass of stator core msci , stator teeth msti , stator

winding mswi , rotor core mrci and the permanent magnet mpmi :

mmgi = msci +msti +mswi +mrci +mpmi (6.29)

msci =
π

4
ρs(D2

soi
− (Dmgi +2hsli)

2)Lmgi (6.30)

msti = NslotiρshsliwtbiLmgi (6.31)

mrci = ρsLmgi(π((
Dmgi

2
−gmechi)

2−D2
rii)−Npmiwmihmi) (6.32)

mpmi = Npmiρpmlpmihpmiwpmi (6.33)

mswi = mpρcuAcui lconi (6.34)

Here, ρcu is the density of copper, gmechi is the mechanical air gap, Npmi is the number of permanent magnets,

Nsloti is the number of stator slots, ρpm is the density of the permanent magnet material, and ρs is the density

of steel. All of the latter quantities are fixed problem parameters, described in Table 6.2. The remaining

quantities are intermediate variables that are functions of the electric machine design variables and are
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Table 6.2: 2004 Toyota Prius electric machines parameters.

Parameter mg1 mg2 Unit

ρcu 8690 kg/m3

gmechi 0.64 0.73 mm

Npmi 16 16 -

mp 3 3 -

pi 4 8 -

Nsloti 48 48 -

ρpm 7550 kg/m3

ρs 7800 kg/m3

VDC,max 500 500 V

explained in Refs. [86, 87, 88]. Dsoi is the outer stator diameter, hsli is the stator slot depth, wtbi is the width

of a stator tooth at its base, Drii is the rotor inner diameter, lconi is the total length of the copper winding, and

Acui is the cross-sectional area of copper. Also, lpmi , wpmi , and hpmi denote the permanent magnet length,

width, and height, respectively. Finally, the rotational inertia of the machines are obtained by:

Jmgii =
1
8
(mrci +mpmi)(D

2
rii +(Dmgi−2gmechi)

2)+
1
2

ρs(
π

4
D2

riiLmgi)
D2

rii
4

6.1.1.3 Battery pack model

A lithium-ion battery model based on the work of [89] is used to predict the rate change of the battery

pack state of charge, battery pack charging and discharging power limits, and battery pack mass. The number

of battery cells in series Ns and parallel Np constitute design-related decision variables, and the battery state

of charge SOC is a state trajectory decision variable. The SOC rate of change is calculated as

˙SOC =
Voc(SOC)−

√
V 2

oc(SOC)−4PbattRi(SOC)

2QRi(SOC)
(6.35)
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where Pbatt is the battery power calculated as Pbatt = Pmg1 +Pmg2. Battery internal resistance is denoted by

Ri(SOC), and its capacity is Q. The open circuit voltage Voc(SOC) is defined as the voltage of the battery

when it is disconnected from any circuit. These terms can be calculated as:

Voc(SOC) = NsVoc,cell(SOC) (6.36)

Ri(SOC) =
Ns

Np
Ri,cell(SOC) (6.37)

Q = NpQcell (6.38)

The specifications of an A123 Systems ANR26650M1A battery cell used in Toyota Prius 2004 are used to

develop this model. The map for the open circuit voltage of the battery cell Voc,cell(SOC), and its internal

resistance Ri,cell(SOC) are is obtained from [90]. Battery cell capacity Qcell is equal to 2.3 Ah. The mass of

the battery pack mbatt is based on the mass of each individual cell mcell = 0.0727 kg and is calculated as:

mbatt = NsNpmcell (6.39)

Finally, for the proper operation and safety of battery cells, their charging and discharging current is limited

based on the allowable current Ilimcell (SOC) and allowable voltage Vlim(SOC):

Ilimcell (SOC) =
Voc,cell(SOC)−Vlim(SOC)

Ri,cell(SOC)
(6.40)

In the above, Vlim(SOC) is calculated at minimum and maximum allowable battery SOC, equivalent to 2.08 V

and 3.7 V for discharging and charging, respectively. Accordingly, the battery pack power limit Plim(SOC)

can be calculated as:
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Plim(SOC) =Voc(SOC)NpIlimcell (SOC)−Ri(SOC)[NpIlim(SOC)]2 (6.41)

For more details on the battery model, interested readers are referred to [89] and [91].

6.1.2 Component cost model

6.1.2.1 Engine cost model

A capital cost model for an in-line four cylinder engine was developed in this section [92]. This model

outputs the engine cost in USD ($) as a function of its maximum brake power Pe,max in kW at 5000 rpm.

Note that the engine capital cost Ce is independent of the manufacturing year and is valid up to 2030.

Ce = 14.5Pe,max +531 (6.42)

6.1.2.2 Electric machine cost models

A capital cost model for the electric machines was developed as a function of the manufacturing year

Y between 2015 and 2030 [93, 94, 95]. This model outputs the capital cost of the motor/generator, Cmgi in

USD ($) as a function of the motor/generator power rating Pmgi,max in kW.

Cmgi = (−0.6193Y +1268.4)Pmgi,max +425 (6.43)

6.1.2.3 Battery pack cost model

The cost of the battery pack for hybrid and plug-in hybrid applications has been widely investigated in

the literature [96]. This model is based on a linear regression approach to the data from [97, 95, 98, 99, 96,

94]. The model represents the battery cost Cbatt in USD ($) as a function of the manufacturing year Y , rated

battery energy Ebatt,max, and rated battery power Pbatt,max
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Cbatt($) = (−17.056Y +34947)Ebatt,max +22Pbatt,max +680 (6.44)

Note that the coefficient of Pbatt,max is a specific constant cost factor in $/kW and the manufacturing cost

is $ 680 [94]. The battery usable energy curve, along with the power-to-energy ratio curve were used to

estimated the maximum battery power.

6.2 HEV powertrain co-design formulations

In this section, we develop the deterministic HEV powertrain co-design problem formulations. The ob-

jective is to minimize the total vehicle powertrain cost over a standard US06 duty cycle, which represents

aggressive driving behavior with intermittent fluctuations in speed and acceleration over 8.01 miles and

596 seconds. An acceleration performance criteria is also included as a dynamic phase in both the deter-

ministic and robust formulations. Therefore, each co-design formulation is posed as a two-phase dynamic

optimization problem, where Phase (1) constrains the 0−100 kph acceleration performance time and Phase

(2) minimizes the HEV powertrain cost over the standard duty cycle. This formulation results in obtaining

the optimal powertrain component designs, the optimal state and control trajectories during each phase of

the problem, and the optimal 0−100 kph acceleration time.

6.2.1 Deterministic MDSDO formulation

The deterministic HEV powertrain co-design problem formulation shown is based on the nominal

MDSDO formulation described in Eqn. (2.1). The decision variables include

d = [Ns,Np,Lmgi,Dmgi, Imgi,max,Lst ,Db,CR,FDR]

x(t) = [ωe,ωmg2,SOC]

u(t) = [τe,τmg1,τmg2]
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and 0− 100 kph acceleration time t100 = t f 1, where t f 1 is the final time of Phase (1) of the co-design

problem. Because the number of fixed parameters in p are quite numerous, they are not explicitly shown

here but are generally assumed to be present in the objective function and constraints as appropriate. With

these definitions, the objective function is given by

min
d,x(t),u(t),t f 1

∫ t f 2

t f 1

[
C f uelṁ f uel(d,x(t),u(t), t;p)]dt +Ccap(d;p) (6.45)

where C f uel = $ 2.76/gallon is the gasoline price, assumed to be constant throughout vehicle’s lifetime, and

t f 2 is the final time of Phase (2) of the co-design problem. The capital cost Ccap(d;p) consists of the cost

of the major powertrain components including the engine Ce(d;p), generator Cmg1(d;p), motor Cmg2(d;p),

and battery Cbatt(d;p). Using a linear depreciation cost model, we can distribute the capital costs over the

driving distance [100]:

Ccap(d;p) =
dcyc

dyryv
(Ce(d;p)+Cmg1(d;p)+Cmg2(d;p)+Cbatt(d;p)) (6.46)

In this equation, dcyc = 8.01 mi is the distance of the US06 driving cycle. dyr = 10,650 mi is the average

annual mileage, estimated based on the maximum and minimum average annual miles for vehicles by vehicle

age [101]. Accordingly, the average vehicle lifetime, yv = 9 yr, is estimated from the same data, and based

on the fact that automotive companies warrant the battery in HEVs for 8 to 10 years. The objective function

in Eqn. (6.45) is subject to multiple constraints:

0≤ τe ≤ τe,max(d,x(t), t;p) (6.47)

0≤ ωe ≤ ωe,max (6.48)
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ω̇e,min ≤ ω̇e ≤ ω̇e,max (6.49)

−τmg1,max(d,x(t), t;p)≤ τmg1 ≤ τmg1,max(d,x(t), t;p) (6.50)

−ωmg1,max(d;p)≤ ωmg1 ≤ ωmg1,max(d;p) (6.51)

τmg1ωmg1 ≤ 0 (6.52)

−τmg1ωmg1− τeωe ≤ 0 (6.53)

−τmg2,max(d,x(t), t;p)≤ τmg2 ≤ τmg2,max(d,x(t), t;p) (6.54)

0≤ ωmg2 ≤ ωmg2,max(d;p) (6.55)

SOCmin ≤ SOC ≤ SOCmax (6.56)

SOCt f 1 = SOCt f 2 = 0.8 (6.57)

Plim,min(d,x(t), t)≤ Pbatt(d,x(t),u(t), t;p)≤ Plim,max(d,x(t), t) (6.58)

Ebatt,min ≤ Ebatt(d)≤ Ebatt,max (6.59)

Vveh,min(t)≤
ωmg2rtire

FDR
≤Vveh,max(t) (6.60)

Vveh,min(t f 1)≤
ωmg2(t f 1)rtire

FDR
≤Vveh,max(t f 1) (6.61)

t f 1 ≤ t f 1,max (6.62)

dmin ≤ d≤ dmax (6.63)

ẋ(t)− f(d,x(t),u(t), t;p) = 0 (6.64)

Engine performance maps and the rate of change in engine speed are described in Eqns. (6.47)-(6.49).

Performance map constraints for the generator are shown in Eqns. (6.50) and (6.51), and its proper operation

is given by Eqns. (6.52) and (6.53). Equations (6.54) and (6.55) describe the performance map constraints

for the electric motor. Battery operation and safety is ensured by limiting the battery pack’s state of charge

as in Eqn. (6.56). Equation (6.57) ensures that the battery pack has the same SOC at the end of the trip. The

power of the battery pack is maintained within the allowable range through Eqn. (6.58) and its energy is
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maintained within the feasible range for HEVs through Eqn. (6.59). Constraint (6.60) is included to ensure

that the vehicle follows the US06 driving cycle with a tolerance of ±5 km/hr. The vehicle’s acceleration

performance corresponding to 0− 100 kph is included in Eqns. (6.61) and (6.62), where t f 1 is the final

time of Phase (1). We note that the bounds on V (t f 1) are tight enough to ensure 0− 100 kph constraint

satisfaction in no more than t f 1,max = 10 seconds. Finally, design variables are bounded in Eqn. (6.63) and

dynamic constraints are described in Eqn. (6.64).

6.2.2 Integer value constraint heuristics

Battery design variables Ns and Np are discrete in nature and thus, require methods from mixed-integer

nonlinear programming to be solved. Here, we treat Ns and Np as continuous variables and relax all of

the integer-related constraints [102, 103]. Then, we augment the objective function with penalty terms

for integer constraint violation. We employed a continuously differentiable penalty function with constant

penalty terms P̂1 and P̂2

P(Ns,Np) = P̂1 sin(Nsπ)
2 + P̂2 sin(Npπ)2 (6.65)

where the penalty terms P̂1 = 10 and P̂2 = 10 are weighting factors, emphasizing the significance of each

term in the objective function. This penalty function is augmented to the objective functions introduced in

Eqn. (6.45).

6.3 Robust MDSDO of HEV powertrain

The co-design problem of HEV powertrain under uncertainty can be addressed through the proposed

R-MDSDO problem formulation. Therefore, in this section, we formulate and solve a robust co-design

problem for a power-split HEV powertrain that accounts for uncertainties in both design decision variables

and fixed problem parameters. The impact of these uncertainties within the HEV powertrain model and

problem formulation is demonstrated by comparing the results from R-MDSDO to those from the associated

deterministic co-design problem.
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6.4 R-MDSDO formulation

The robust HEV powertrain co-design problem formulation is based on the nominal R-MDSDO problem

formulation shown in Eqn. (3.3). In this study, we assume that the sources of uncertainty are from random

plant design variables Db, Lst , Lmgi, and Dmgi as well as random problem parameters C f uel , dyr, yv, mdriver,

copper resistivity coefficient Rcu, copper wire diameter Dcu. For simplicity, all random variables are assumed

to be Gaussian. Because the random design variables are all geometric, they are assumed to have uncertainty

due to machining variations, and their standard deviations were obtained or estimated from the literature as

appropriate [104]. It is well-known that C f uel is highly-variable due to volatile market conditions, and so

its standard deviation was estimated using the maximum of the weekly price data from January 1990 to

March 2012 [105]. Similarly, mdriver is known to be highly-uncertain due to the wide array of potential

drivers, and so its standard deviation was extracted from Ref. [106] for men and women between the ages

of 20-39. The randomness in Rcu is driven by the fluctuating temperature conditions that the vehicle must

operate in; therefore, its standard deviation was estimated over a 20 deg temperature difference. A 1 mm

measurement tolerance is used as the basis for the uncertainty in Dcu. The uncertainty in dyr is estimated

based on the minimum and the maximum miles per vehicle by vehicle age according to Ref. [101]. Finally,

since automotive companies warrant the battery pack in HEVs for 8 to 10 years, the range of variations

for this parameter is estimated to be two years. The standard deviation for the latter three parameters is

estimated with the assumption of Gaussian distribution for the range of ±3σ variations for the associated

uncertain parameters. Note that the standard deviation values for all random variables can be found in Table

6.3.

The uncertainties propagated onto the state trajectory decision variables are accounted for by considering

measurement errors and tolerances for each quantity as appropriate. For example, a percentage uncertainty

of 0.51 is used from Ref. [107] to estimate the variance in the engine and electric motor speed measurements.

The SOC variance was chosen to keep the estimation error less than 5%. Note that the variance value for

each state trajectory decision variable can be found in Table III. With all the uncertainties now defined, the

objective function for the R-MDSDO problem formulation of the HEV powertrain co-design problem can

be shown as
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Table 6.3: Standard Deviations/Variances of Random Design
Variables, Parameters, and State Trajectories.

D P X

σLmg1 = 0.01 σC f uel = 0.95
Var[ωe(t)] = 0.89

σDmg1 = 0.01 σmdriver = 32.86

σLmg2 = 0.01 σdyr = 950
Var[ωmg2(t)] = 1.60

σDmg2 = 0.01 σyv = 0.333

σDb = 0.01 σRcu = 5.5×10−9
Var[SOC(t)] = 0.0083

σLst = 0.01 σDcu1
= 1.67×10−4

min
d,µD,µX (t),u(t),t f 1

φ = w

[ ∫ t f 2

t f 1

[
µC f uel ṁ f uel(µD,µX(t),u(t), t;µP)

]
dt +Ccap(d,µD;µP)

]
+(1−w)σ2

φ

(6.66)

Here, d = [Ns,Np, Imgi,max,CR,FDR], µD = [µLmgi ,µDmgi ,µLst ,µDb ], µP = [µC f uel ,µmdriver ,µRcu ,µDcu ,µdyr ,µyv ],

and σφ is the standard deviation of the objective function. Also, w = 0.85 is the weighting factor associated

with the multiobjective problem formulation. Defining S = (d,µD,µX(t),u(t), t;µP), the constraints are:

0≤ τe ≤ τe,max(S)− k6.47σ6.47 (6.67)

0≤ µωe ≤ ωe,max− kωe

√
Var[ωe(t)] (6.68)

ω̇e,min + k6.49σ6.49 ≤ µ̇ωe ≤ ω̇e,max− k6.49σ6.49 (6.69)

−τmg1,max(S)+ k6.50σ6.50 ≤ τmg1 ≤ τmg1,max(S)− k6.50σ6.50 (6.70)

−ωmg1,max(d,µD;µP)+ k6.51

√
Var[ωmg1(t)]≤ µωmg1 ≤ ωmg1,max(d,µD;µP)− k6.51

√
Var[ωmg1(t)] (6.71)

τmg1µωmg1 ≤ 0 (6.72)

−τmg1µωmg1− τeµωe ≤ 0 (6.73)

−τmg2,max(S)+ k6.54σ6.54 ≤ τmg2 (6.74)
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≤ τmg2,max(S)− k6.54σ6.54 (6.75)

0≤ µωmg2 ≤ ωmg2,max(d,µD;µP)− kωmg2

√
Var[ωmg2(t)] (6.76)

SOCmin + kSOC
√

Var[SOC(t)]≤ µSOC (6.77)

≤ SOCmax− kSOC
√

Var[SOC(t)] (6.78)

µSOC(t f1) = µSOC(t f2) = 0.8 (6.79)

Plim,min(d,µX , t)+ k6.58σ6.58 ≤ Pbatt(S)≤ Plim,max(d,µX , t)− k6.58σ6.58 (6.80)

Ebatt,min ≤ Ebatt(d)≤ Ebatt,max (6.81)

Vveh,min(t)+ k6.60σ6.60 ≤
µωmg2rtire

FDR
≤Vveh,max(t)− k6.60σ6.60 (6.82)

Vveh,min(t f 1)+ k6.61σ6.61 ≤
µωmg2(t f 1)rtire

FDR
(6.83)

≤Vveh,max(t f 1)− k6.61σ6.61 (6.84)

t f 1 ≤ t f 1,max (6.85)

dmin ≤ d≤ dmax (6.86)

µDmin + kDσD ≤ µD ≤ µDmax− kDσD (6.87)

µ̇x(t)− f(S) = 0 (6.88)

In all of the above equations, k(.) = 3 and all σ(.) with numerical subscripts represent the standard deviation

of the corresponding equation from the deterministic formulation. Note that since Eqns. (6.72) and (6.73) are

functionality constraints of the generator, they are treated deterministically to allow for real-world operation

of these machines. Also, note that boundary conditions are assumed to be of Type (i) equality constraints

[50], and thus are only satisfied at their expected value.

6.4.1 Results and Discussion

The co-design problems were solved using the commercially-available MATLAB R©-based software,

GPOPS−II [55]. The required Jacobian information for the robust co-design problem was obtained by
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forward differentiation in ADIMAT toolbox [65]. The problems were solved on two Intel Xeon E5-2637 v3

processors containing 32GB RAM and using the key GPOPS-II settings introduced in Table 6.4.

Table 6.4: GPOPS-II settings.

Field Setting

Mesh method hp-LiuRao-Legendre

Mesh tolerance 10−3

NLP solver IPOPT

IPOPT tolerance 10−4

IPOPT max iterations 1000

The optimal design variables from the R-MDSDO problem formulation are compared with the deterministic

case in Table 6.5. As expected, uncertainties in d and p significantly affect several component designs

of the HEV powertrain. In particular, Ns has dropped, resulting in 4.11% and 3.92% reductions in mbatt

and rated battery capacity, respectively. Although the rated generator capacity remains relatively flat, Dmg1

has decreased dramatically, resulting in a 25.43% reduction in mmg1. For the electric motor, Img2,max has

increased by 8.07%, which in turn boosts the rated power by 7.3%. The only component designs that

remain relatively unaffected by uncertainties in d and p in this study are the engine and transmission final

drive.
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Table 6.5: Numerical Results for Deterministic and Robust HEV Powertrain
Co-Design Problem Formulations.

Component Quantity MDSDO R-MDSDO Unit

Battry Pack

Ns 76 73 -

Np 27 27 -

mbatt 149.18 143.29 kg

Rated Capacity 15.57 14.96 kWh

Generator

Dmg1 156.86 129.82 mm

Lmg1 27.90 27.93 mm

Img1,max 67.50 67.55 A

mmg1 12.76 9.5188 kg

Rated Power 31.92 31.98 kW

Electric Motor

Dmg2 145.71 146.31 mm

Lmg2 92.4 91.81 mm

Img2,max 118.58 128.15 A

mmg2 29.5 29.5 kg

Rated Power 55.38 59.74 kW

Engine

Db 67.97 68.01 mm

Lst 76.23 76.29 mm

CR 13 12.99 -

me 39.59 39.67 kW

Rated Power 110.08 110.31 kg

Transmission FDR 2.7 2.7 -

Operational Cost 0.154 0.178 $

Capital Cost 1.113 1.092 $

Total Cost 1.267 1.270 $

Run Time 13,827 20,521 s
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Figure 6.2: State and control trajectories for Phase (1): acceleration perfor-
mance.

Optimal state and control decision trajectories from the deterministic and R-MDSDO formulations are

compared in Figs. 6.2-6.4. The results illustrate how HEV powertrain energy management strategies are

significantly impacted when we account for uncertainties in co-design problem formulations. Figure 6.2

describes these trajectories during the 0−100 kph acceleration time, or Phase (1). Note that the 0−100 kph

requirement is satisfied more aggressively in the R-MDSDO formulation because its associated powertrain

design solution results in a more conservative estimate of total optimal powertrain cost, the latter of which

often competes with vehicle acceleration performance. According to Fig. 6.2 (f) and due to the higher

efficiency and instant torque that electric machines can deliver—especially at low speeds—the electric motor

operates at a higher torque to ensure the satisfaction of the 0−100 kph acceleration requirement in a robust

manner. Consequently, due to the larger power demand from the motor, the battery power demand is larger

and SOC drops more aggressively for the R-MDSDO solution (Fig. 6.2 (c)). This in turn leads to the engine

operating at a slightly lower power under robust considerations.

The trajectories associated with the US06 driving cycle, or Phase (2) are described in Fig. 6.3 and

Fig. 6.4. According to Fig. 6.3 (c) Fig. 6.4 (a), in the robust case, the engine runs at a more consistent power

level and the SOC drops more significantly during the highway drive portion. Specifically, the fluctuations

in engine torque and speed in the robust case are not nearly as much as in the deterministic case (in fact,

the powertrain never even enters into an EV operation mode), and the motor pulls more electrical power
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Figure 6.3: State trajectories for Phase (2): US06 drive cycle.

from the battery during the highway drive portion of the drive cycle. This behavior can be justified because

given the large uncertainty in C f uel , it is preferable to avoid operating the engine over-aggressively. Instead,

more electrical power could be used from the battery rather than the engine-generator set during high-power

operation such as highway driving. The detailed breakdown of cost in each case is also displayed in Table

6.5. As expected, the total cost of the objective function has increased by 0.24% compared to the deter-

ministic case. While this percent difference appears almost negligible, there was still a significant impact of

uncertainty on the component designs and energy management strategy. In fact, in the R-MDSDO solution,

the operational cost has increased by 13.48%, while the capital cost has dropped by 1.89%. The reduced

sensitivity of the R-MDSDO solution to uncertainties is characterized in Fig. 6.5. Finally, the proposed R-

MDSDO approach incurs a high computational cost that is mainly associated with computing the derivative

information to estimate the variance quantities of both the objective and inequality constraint functions. The

computational efficiency of R-MDSDO could be significant reduced using alternative techniques such as

automatic differentiation.
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Figure 6.4: Control trajectories for Phase (2): US06 drive cycle.
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6.5 Reliability-based MDSDO of HEV powertrain

R-MDSDO and RB-MDSDO approaches are both effective methods in dealing with uncertainties in co-

design problem formulations. However, RB-MDSDO provides a more rigorous evaluation of the probabilis-

tic constraints—resulting in a more reliable solution. Although the single-loop RB-MDSDO formulations

are superior in terms of computational cost, in this chapter, we use a double-loop RB-MDSDO because of

their simple implementation. Here, we examine the application and impact of the proposed double-loop

RB-MDSDO approach on the co-design of HEV powertrain problem.

6.5.1 RB-MDSDO of HEV powertrain

The RB-MDSDO HEV powertrain co-design problem formulation is based on the nominal problem

formulation shown in Eqn. (4.1). In this section, we assume that the sources of uncertainty are from random

plant design variables Db, and Lst , as well as random problem parameters C f uel , average annual mileage S,

and average vehicle lifetime yv. For simplicity, all random variables are assumed to be Gaussian. Because

the random design variables are all geometric, they are assumed to have uncertainty due to machining

variations, and their standard deviations were obtained or estimated from the literature as appropriate [104].

The standard deviation/variance information for fixed problem parameters C f uel , S, and yv are similar to

those introduced in Chapter 6.4. With all the uncertainties now defined, the objective function for the RB-

MDSDO problem formulation of the HEV powertrain co-design problem can be shown as

min
d,µD,µX (t),x∗MPP(t),u(t)

φ =

[ ∫ t f =596

0

[
µC f uel ṁ f uel(µD,µX(t),u(t), t;µP)

]
dt +Ccap(d,µD;µP)

]
(6.89)

Here, d = [Ns,Np,Lmgi,Dmgi, Imgi,max,CR,FDR], µD = [µLst ,µDb ], µP = [µC f uel ,andµdyr ,µyv ]. Defining S =

(d,µD,µX(t),u(t), t;µP), the constraints are:

τe− τe,max(d,µD,µX(t),x∗MPP(t),u(t), t;µP)≤ 0 (6.90)

0≤ µωe ≤ ωe,max (6.91)
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ω̇
∗
e,MPP− ω̇e,max ≤ 0 (6.92)

−τmg1,max(d,µX(t),u(t), t;µP)≤ τmg1 ≤ τmg1,max(d,µX(t),u(t), t;µP) (6.93)

−ωmg1,max(d;µP)≤ µωmg1 ≤ ωmg1,max(d;µP) (6.94)

τmg1µωmg1 ≤ 0 (6.95)

−τmg1µωmg1− τeµωe ≤ 0 (6.96)

−τmg2,max(d,µD,µX(t),u(t), t;µP)≤ τmg2 ≤ τmg2,max(d,µD,µX(t),u(t), t;µP) (6.97)

0≤ µωmg2 ≤ ωmg2,max(d;µP) (6.98)

SOCmin ≤ µSOC ≤ SOCmax (6.99)

µSOC(t0) = µSOC(t f ) = 0.8 (6.100)

Plim,min(d,µX , t)≤ Pbatt(d,µD,µX(t),u(t), t;µP)≤ Plim,max(d,µX , t) (6.101)

Ebatt,min ≤ Ebatt(d)≤ Ebatt,max (6.102)

Vveh,min(t)≤
µωmg2rtire

FDR
≤Vveh,max(t) (6.103)

dmin ≤ d≤ dmax (6.104)

µDmin + kDσD ≤ µD ≤ µDmax− kDσD (6.105)

µ̇x(t)− f(d,µD,µX(t),u(t), t;µP) = 0 (6.106)

ẋ∗MPP,i(t)− f(d,µD,µX(t),u(t), t;µP) = 0 i = 1,2 (6.107)

This formulation entails two stochastic inequality constraints: Eqns. (6.90) and (6.92). These constraints are

reliably satisfied at their MPPs, which are obtained for the reliability of β = 3. Note that since Eqns. (6.72)

and (6.73) are functionality constraints of the generator, they are treated deterministically to allow for real-

world operation of these machines. Also, note that boundary conditions are assumed to be of Type (i)

equality constraints [50], and thus are only satisfied at their expected value.
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6.5.2 Results and Discussion

Similar to the previous problems, the solution to the RB-MDSDO was obtained using the commercially-

available MATLAB R©-based software, GPOPS−II [55], with the same setting introduces in Table 6.4.

Table 6.6: Numerical Results for Deterministic and RB-MDSDO HEV
Powertrain Co-Design Problem Formulations.

Component Quantity MDSDO RB-MDSDO Unit

Battry Pack

Ns 66 74 -

Np 32 27 -

mbatt 153.54 145.25 kg

Rated Capacity 16.03 15.17 kWh

Generator

Dmg1 156.45 145.04 mm

Lmg1 32.96 33.55 mm

Img1,max 67.56 67.56 A

mmg1 14.37 12.9 kg

Rated Power 31.93 31.95 kW

Electric Motor

Dmg2 131 129.52 mm

Lmg2 100.02 86.93 mm

Img2,max 98.08 120.88 A

mmg2 29.5 29.5 kg

Rated Power 45.98 56.43 kW

Engine

Db 67.98 76.5 mm

Lst 76.27 86.07 mm

CR 12.99 13 -

me 110.18 157.46 kg

Rated Power 39.63 56.63 kW

Transmission FDR 2.7 2.7 -

Operational Cost 0.165 0.223 $

Capital Cost 1.119 1.117 $

Total Cost 1.28 1.34 $

Run Time 12,964 135,190 s
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The optimal design variables from the RB-MDSDO problem formulation are compared with the de-

terministic case in Table 6.6. As expected, uncertainties in d and p significantly affect several component

designs of the HEV powertrain. In particular, Ns and Np have changed by 12.12% and 15.63%, respectively,

resulting in 5.4% and 5.37% variations in mbatt and rated battery capacity, respectively. Although the rated

generator capacity remains relatively flat, Dmg1 has decreased dramatically, resulting in a 10.23% reduction

in mmg1. For the electric motor, Lmg2 and Img2,max has increased by 13.09% and 23.25%, respectively, which

in turn boosts the rated power by 22.73%. The engine design variables Db and Lst have changed dramatically

by 12.5% and 12.85%, respectively, resulting in an increase in me and rated power by 42.9%, and 42.9%,

respectively. The only component design that remain relatively unaffected by uncertainties in d and p in this

study is the transmission final drive.

Optimal state and control decision trajectories from the deterministic and RB-MDSDO formulations are

compared in Figs. 6.6 and 6.7. According to these trajectories, the engine runs at higher speeds in RB-

MDSDO, which along with higher engine power, allows the reliable satisfaction of Eqn. (6.90). In addition,

the motor is pulling more power from the battery during the highway drive portion of the drive cycle, which

results in the higher SOC drop in in RB-MDSDO.

The detailed breakdown of cost in each case is also displayed in Table 6.6. As expected, the total

cost of the objective function has increased by 4.69% compared to the deterministic case. In the RB-

MDSDO solution, the operational cost has increased by 35.15%, while the capital cost has dropped by

0.18%. Finally, the proposed RB-MDSDO approach incurs a higher computational cost that is mainly

associated with estimating the reliability of the performance measure functions.
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Figure 6.6: State trajectories for the US06 drive cycle.
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Figure 6.7: Control trajectories for the US06 drive cycle.
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Chapter 7

Conclusions and Future work

With the growing complexity of dynamic engineering systems, it is necessary for designers to imple-

ment multidisciplinary approaches in developing new artifacts. MDSDO employs techniques from multi-

disciplinary design optimization and optimal control theory to create a balance formulation for co-design

problems. Until recently, these approaches have been limited to the deterministic co-design formulations.

However, uncertainties have a significant impact on the integrated solution and performance of dynamic

systems. Therefore, in this dissertation, we proposed novel formulations that systematically account for

uncertainties within design decision variables and fixed problem parameters.

7.1 R-MDSDO Conclusions

In Chapter 3, we established a robust co-design formulation for stochastic dynamic systems. Using a si-

multaneous formulation within the balanced framework of MDSDO, we developed the first robust MDSDO

problem formulation, known as R-MDSDO. The proposed robust formulation was applied to two case stud-

ies and results indicated the significant impact of the robust approach on the overall system solution, as well

as its performance. Consequently, this study demonstrated the importance of applying RDO principles to

co-design problems.

One unique challenge in the implementation of the proposed methodology was to prescribe the full

covariance matrix for the entire set of random variables. Design-related decision variables were assumed

to be independent, while the distinct state decision variables were assumed to be independent (having a

cross-covariance of zero), unless an algebraic equality constraint defines their statistical dependency. Fi-

nally, we assumed that the auto-covariance term associated with state trajectories at different time steps was

zero and we only prescribed non-zero values for the variance term. This assumption facilitated the robust
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procedure significantly and provided a good approximation. By employing this assumption, we could obtain

reasonably meaningful solutions to the robust co-design problems.

Another limitation is imposed due to the inherent nature of RDO problems: the need for numerical

differentiation to estimate the variances of functions of random variables. In this study, we obtained the

derivatives analytically when possible, and used numerical differentiation for complex problems. This might

lead to a computationally expensive problem formulation when applied to RDO-based co-design problems

with a large number of variables. A potential remedy for this high computational time would be the usage

of automatic differentiation.

7.2 RB-MDSDO Conclusions

Despite the relative simplicity of R-MDSDO, more rigorous techniques are required to reliably satisfy

the stochastic inequality constraints. Therefore, we developed and implemented the first known reliability-

based MDSDO approach for stochastic co-design problems. Using the robust and efficient PMA along with

FORM in an MPP-based formulation, we first developed a double-loop RB-MDSDO algorithm and solved

it for a complex automotive active-suspension co-design problem using AMV, CMV, HMV, and a general

optimizer such as MATLAB’s fmincon.

To improve the computational efficiency of the proposed formulation for the computationally-intensive

co-design problems, we used the principles of SORA to develop a single-loop RB-MDSDO problem. By

comparing the results for the automotive active-suspension with those obtained from the double-loop for-

mulation, we concluded that in general, despite the advantages of the double-loop formulations in having

a smaller MPP optimization subproblem, the decoupled nature of the single-loop SORA algorithm better

suits the complexities, as well as the computational time of complex co-design formulations. Among the

double-loop RB-MDSDO approaches, AMV is more computationally efficient; however, HMV is generally

more numerically stable and thus, is recommended for a larger class of problems.

7.3 HEV application Conclusions

HEVs generally operate under uncertain conditions and are subject to imperfect manufacturing pro-

cesses. The impact of these uncertainties on powertrain design and energy management strategies of HEVs

99



was captured within the balanced formulation of R-MDSDO and RB-MDSDO. These formulations ac-

count for uncertainty in design variables, and fixed problem parameters; therefore they offer significant

improvement over other proposed approaches in the literature. Accounting for these uncertainties results

in a system-level optimal solution that generally exhibits large variations compared to the the deterministic

case. These variations directly impact vehicle’s key characteristics and thus, affect its performance and over-

all cost. These studies clearly demonstrate the utility of the proposed approaches to real-world co-design

problems.

7.4 Future work

Despite the benefits of the proposed formulations, the multidisciplinary nature of stochastic co-design

requires methods not only from the design discipline, but also from the stochastic optimal control theory. An

important future direction of this research is to implement techniques that capture the impact of uncertainties

from state trajectory decision variables and control trajectory decision variables. This future research direc-

tion addresses one of the limitations of this study: the assumption that the uncertainty in the state trajectory

decision variables is only a result of uncertainties from design decision variables and problem parameters.

In reality, the states are directly subject to external noise that affects their auto-covariance and/or cross-

covariance characteristics. In addition, since any practical implementation of co-design problems requires

a closed-loop control structure, an important future direction for this research would be to close the control

loop in the co-design problem. For the current study, this structure results in stochastic optimal control

trajectory decisions. This issue needs to be addressed in the future research.

Another direction of this research is to ease the computational expense of the proposed problem for-

mulations. Both R-MDSDO and RB-MDSDO formulations require the estimation of gradient information

to perform the reliability analysis or estimate the variance/covariance information. Techniques such as au-

tomatic differentiation, along with more advanced reliability approaches could reduce the computational

burden of stochastic co-design problems.

A more accurate evaluation os the probabilistic constraint within RB-MDSDO formulations requires

a second-order reliability method (SORM). Specifically, since a lot of real-world engineering problems

entail nonlinear dynamics and performance measure functions, the usage of SORM within RB-MDSDO can

improve the accuracy of their final solution. In addition, implementing more advanced stochastic methods
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such as a simultaneous robust and reliable MDSDO formulation, known as R2−MDSDO could further

advance the state of the art formulations for stochastic co-design.

Finally, with the availability of large amounts of data through sensor deployment in many engineering

applications, including electrified vehicles, and the current attempts in the literature to utilize this data for de-

sign or control purposes, a certain future direction of the deterministic and stochastic co-design approaches

is to investigate the utility and application of artificial intelligence to the simultaneous design and control

optimization problem of dynamic systems. Specifically, this data can be used to capture the uncertainties

that are present in the environment in order to create models that adapt to variations in the environmental

conditions.
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