Turbulent Velocity Profile

Dr. Pierre Y. Julien
Dept. of Civil and Environmental Engineering
Colorado State University, Fort Collins
pierre@engr.colostate.edu

February 2008

Assisted by: Seema C Shah-Fairbank, P.E
Graduate Research Assistant
sshah@engr.colostate.edu
Turbulent Flow Equations

\[\begin{align*}
\frac{\partial v_x}{\partial t} + v_y \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} &= g_x - \frac{1}{\rho_m} \frac{\partial p}{\partial x} + \nu_m \nabla^2 v_x - \left[\frac{\partial v_x^2}{\partial x} + \frac{\partial v_y^2}{\partial y} + \frac{\partial v_z^2}{\partial z} \right] \\
\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} &= g_y - \frac{1}{\rho_m} \frac{\partial p}{\partial y} + \nu_m \nabla^2 v_y - \left[\frac{\partial v_x v_y}{\partial x} + \frac{\partial v_y^2}{\partial y} + \frac{\partial v_z v_y}{\partial z} \right] \\
\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} &= g_z - \frac{1}{\rho_m} \frac{\partial p}{\partial z} + \nu_m \nabla^2 v_z - \left[\frac{\partial v_x v_z}{\partial x} + \frac{\partial v_y v_z}{\partial y} + \frac{\partial v_z^2}{\partial z} \right]
\end{align*}\]
Incipient Motion
Open Channel

- **Pressure Distribution**
 \[\int_0^h dp = \rho \int_z^h -g \, dz \]
 \[p = \rho g (h - z) \]

- **Shear Stress**
 \[\tau_{zx} = \rho g (h - z) S_f \]
 \[\tau_a = \rho g h S_f \]

- **Shear Velocity**
 \[u_s = \sqrt{\frac{\tau_a}{\rho}} = \sqrt{gh S_f} \]
Saint-Venant Equation

Bed Slope

\[S_o = -\frac{\partial z_o}{\partial x} \]

Free Surface Slope

\[S_w = -\frac{\partial (z_o + h)}{\partial x} = S_o - \frac{\partial h}{\partial x} \]

Energy Slope

\[S_f = -\frac{\partial \left(z_o + h + \frac{V^2}{2g} \right)}{\partial x} = S_o - \frac{\partial h}{\partial x} - \frac{V \partial V}{g} \]

Unsteady Flow Saint-Venant Equation

\[S_f = S_o - \frac{\partial h}{\partial x} - \frac{V \partial V}{g} - \frac{\partial V}{g \partial t} \]
Logarithmic Velocity Profile

\[\frac{v_x}{u_*} = \frac{1}{\kappa} \ln \frac{z}{z_o} \]
Logarithmic Velocity Profile

\[v_x \delta = \frac{11.6 u}{\delta} = 104 z_o \]

\[\delta = \frac{11.6 v}{u_\ast} \]

\[\delta = \begin{cases} 3 d_s < \delta & \text{Smooth} \\ \frac{d_s}{3} & \text{Transition} & 4 < \text{Re}_\ast < 70 \\ d_s > 6 \delta & \text{Rough} & \text{Re}_\ast > 70 \end{cases} \]

\[v = \frac{u_\ast}{\kappa} \ln \left(\frac{9.05 \frac{z u_\ast}{v}}{\nu} \right) \]

\[v = \frac{u_\ast}{\kappa} \ln \left(\frac{30.2 \frac{z \chi}{k_s}}{\nu} \right) \]

\[v = \frac{u_\ast}{\kappa} \ln \left(\frac{30.2 \frac{z}{k_s}}{\nu} \right) \]
Depth Average Velocity

- **One Point Method**
 - Measured down from water surface at 60% of the total flow depth

- **Two Point Method**
 - Average the velocity at 20 and 80% of the total flow depth

- **Three Point Method**
 - Average of the one-point and two-point methods.

- **Surface Method**
 - Determine surface velocity using a float and multiply the velocity by a coefficient to determine the average velocity
Resistance to Flow

\[V = 5 \left(\frac{h}{d_{50}} \right)^{1/6} \sqrt{g \cdot h \cdot S_f} \]

\[\sqrt{\frac{8}{f}} = 5.75 \log \frac{2h}{d_{50}} \]

\[n = 0.064 \cdot d_{50}^{1/6} \text{ with } d_{50} \text{ in m} \]

Manning-Strickler
Example – Rhine River

In 1998 a flood was observed on the Rhine River, in the Netherlands. The following is the data that was obtained on the Rhine on November 3rd.

Q = 9,464 cms
S = 13.12 cm/km
h = 9.9 m (from velocity profile)
W = 260 m
d_{90} = 12.190 mm
d_{50} = 1.182 mm

The velocity profile is given as follows:

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Velocity (m/s)</th>
<th>Depth (m)</th>
<th>Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.74</td>
<td>2.2</td>
<td>1.63</td>
</tr>
<tr>
<td>0.3</td>
<td>0.81</td>
<td>3.5</td>
<td>1.92</td>
</tr>
<tr>
<td>0.3</td>
<td>0.72</td>
<td>4</td>
<td>1.85</td>
</tr>
<tr>
<td>0.4</td>
<td>0.47</td>
<td>4.1</td>
<td>1.86</td>
</tr>
<tr>
<td>0.5</td>
<td>0.84</td>
<td>5.3</td>
<td>1.99</td>
</tr>
<tr>
<td>0.8</td>
<td>1.22</td>
<td>6</td>
<td>1.98</td>
</tr>
<tr>
<td>0.9</td>
<td>1.34</td>
<td>7.3</td>
<td>2.08</td>
</tr>
<tr>
<td>1.2</td>
<td>1.38</td>
<td>8</td>
<td>2.04</td>
</tr>
<tr>
<td>1.3</td>
<td>1.47</td>
<td>9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Determine the shear, mean and fall velocities.
Example - Shear Velocity

\[
u_\ast = \sqrt{ghS_f} = \sqrt{\frac{9.81 m}{s^2} \times 9.9 m \times 0.0001312}
\]

\[
u_\ast = 0.113 \frac{m}{s}
\]
Example - Mean Velocity

- **Method A** – at 60%
 \[h = 9.9m \]
 \[z = h_{60\%} = 3.96m \]
 \[v_{\text{mean}} = 1.86 \frac{m}{s} \]

- **Method B** – at 20% and 80%
 \[h = 9.9m \]
 \[z = h_{20\%} = 7.92m \]
 \[z = h_{80\%} = 1.98m \]
 \[v_{\text{mean}} = \frac{2.04 \frac{m}{s} + 1.59 \frac{m}{s}}{2} \]
 \[v_{\text{mean}} = 1.82 \frac{m}{s} \]

- **Method C** – Average of Method A and Method B
 \[v_{\text{mean}} = \frac{1.86 \frac{m}{s} + 1.82 \frac{m}{s}}{2} \]
 \[v_{\text{mean}} = 1.84 \frac{m}{s} \]
Turbulent Velocity Profiles and Resistance to Flow

Problem #1 (100%)
Field measurements along a vertical profile of the Rhine River are shown below. The navigable channel width covers 260 m. Consider a rectangular section to determine the hydraulic radius. The bed material is typically $d_{10} = 0.4$ mm, $d_{50} = 1.3$ mm and $d_{90} = 10$ mm. The measured slope of the Energy Grade Line was 13.12 cm per km on Nov. 3. Show the velocity profile on linear scale, and also provide a semi-log plot with a fitted line to the data to graphically determine the value of kappa.

Determine the following parameters in SI:

a) flow depth
b) hydraulic radius
c) ratio of hydraulic radius to flow depth
d) shear stress in Pascals
e) shear velocity
f) von Kármán constant
g) mean flow velocity in m/s (3 points)
h) Froude number
i) Manning n
j) laminar sublayer thickness in mm

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Positio from axis</th>
<th>Depth m water</th>
<th>Concentration u mg/l</th>
<th>Depth m of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>981103 120441</td>
<td>120441</td>
<td>0</td>
<td>9.9</td>
<td>494</td>
<td>0.74</td>
</tr>
<tr>
<td>981103 120647</td>
<td>120647</td>
<td>0</td>
<td>9.9</td>
<td>488</td>
<td>0.81</td>
</tr>
<tr>
<td>981103 120856</td>
<td>120856</td>
<td>0</td>
<td>9.9</td>
<td>498</td>
<td>0.72</td>
</tr>
<tr>
<td>981103 121353</td>
<td>121353</td>
<td>0</td>
<td>9.9</td>
<td>398</td>
<td>0.84</td>
</tr>
<tr>
<td>981103 121626</td>
<td>121626</td>
<td>0</td>
<td>9.9</td>
<td>293</td>
<td>1.22</td>
</tr>
<tr>
<td>981103 122217</td>
<td>122217</td>
<td>0</td>
<td>9.9</td>
<td>432</td>
<td>0.47</td>
</tr>
<tr>
<td>981103 122628</td>
<td>122628</td>
<td>0</td>
<td>9.9</td>
<td>132</td>
<td>1.38</td>
</tr>
<tr>
<td>981103 122850</td>
<td>122850</td>
<td>0</td>
<td>9.9</td>
<td>185</td>
<td>1.34</td>
</tr>
<tr>
<td>981103 123057</td>
<td>123057</td>
<td>0</td>
<td>9.9</td>
<td>134</td>
<td>1.47</td>
</tr>
<tr>
<td>981103 123431</td>
<td>123431</td>
<td>0</td>
<td>9.9</td>
<td>83</td>
<td>1.63</td>
</tr>
<tr>
<td>981103 123707</td>
<td>123707</td>
<td>0</td>
<td>9.9</td>
<td>49</td>
<td>1.92</td>
</tr>
<tr>
<td>981103 123944</td>
<td>123944</td>
<td>0</td>
<td>9.9</td>
<td>43</td>
<td>1.86</td>
</tr>
<tr>
<td>981103 124158</td>
<td>124158</td>
<td>0</td>
<td>9.9</td>
<td>43</td>
<td>1.85</td>
</tr>
<tr>
<td>981103 124423</td>
<td>124423</td>
<td>0</td>
<td>9.9</td>
<td>35</td>
<td>1.99</td>
</tr>
<tr>
<td>981103 124704</td>
<td>124704</td>
<td>0</td>
<td>9.9</td>
<td>33</td>
<td>1.98</td>
</tr>
<tr>
<td>981103 124922</td>
<td>124922</td>
<td>0</td>
<td>9.9</td>
<td>26</td>
<td>2.08</td>
</tr>
<tr>
<td>981103 125144</td>
<td>125144</td>
<td>0</td>
<td>9.9</td>
<td>25</td>
<td>2.04</td>
</tr>
<tr>
<td>981103 125425</td>
<td>125425</td>
<td>0</td>
<td>9.9</td>
<td>23</td>
<td>1.90</td>
</tr>
</tbody>
</table>