Fate and Transport of Metals and Sediment in Surface Waters

Pierre Y. Julien

January 2002
Upland Erosion and Contaminant Transport

Introduction
and Deposition
STUDY OBJECTIVE

Develop computer modeling tools for the analysis of point source and non-point source metals and fine sediments in surface waters
• Use models like the 2-D hydrologic and erosion model CASC2D-SED to simulate the response of the watershed to different rainfall events
• Find a field site in collaboration with other members of the HSRC for the simulations and analysis.
UPLAND EROSION (2-D)

Modified Kilinc and Richardson equation for the overland:

\[q_t \ (tons / m^* s) = 25,500 \ S_o^{1.66} \left(\frac{Q}{W} \right)^{2.035} \frac{K}{0.15} C P \]
Modified Kilinc and Richardson equation for the channels:

\[q_t (m^3) = 8 \times S_o^{1.664} \left(\frac{Q}{W_{ch}} \right)^{2.035} \times W_{ch} \]
Goodwin Creek Watershed

- Location: Panola County (MS)
- Area: 21Km²
- Monitored by ARS-NSL (Oxford, MS)
 - 37 rain gages
 - 14 stream gages (water and sediment)
 - Channel surveys
 - GIS data
INPUT DATA (DEM)

Derive:
1. Channel Network
2. Slope distribution
INPUT DATA (soil type)

Approach

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Soil Index</th>
<th>Hydr. Cond. [cm/h]</th>
<th>Suction Head [cm]</th>
<th>Moisture Deficit [cm/cm³]</th>
<th>Sand [%]</th>
<th>Silt [%]</th>
<th>Clay [%]</th>
<th>Kₚ [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calloway</td>
<td>1</td>
<td>0.350</td>
<td>25</td>
<td>0.29</td>
<td>0.25</td>
<td>0.55</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Fallaya</td>
<td>2</td>
<td>0.350</td>
<td>25</td>
<td>0.29</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Grenada</td>
<td>3</td>
<td>0.300</td>
<td>20</td>
<td>0.32</td>
<td>0.25</td>
<td>0.55</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Loring</td>
<td>4</td>
<td>0.300</td>
<td>25</td>
<td>0.3</td>
<td>0.25</td>
<td>0.55</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Collins</td>
<td>5</td>
<td>0.200</td>
<td>20</td>
<td>0.29</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Memphis</td>
<td>6</td>
<td>0.350</td>
<td>25</td>
<td>0.35</td>
<td>0.25</td>
<td>0.55</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Gulled Land</td>
<td>7</td>
<td>0.200</td>
<td>15</td>
<td>0.29</td>
<td>0.25</td>
<td>0.55</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Number of different soil types: 7
INPUT DATA (land use)

Approach

Land Use

![Excel Spreadsheet](image)

Land Use Parameters

Number of different land use classes: 4

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Land Use Index</th>
<th>Manning n [-]</th>
<th>Interception [mm]</th>
<th>C<sub>USLE</sub> [-]</th>
<th>P<sub>USLE</sub> [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>1</td>
<td>0.25</td>
<td>3</td>
<td>0.007</td>
<td>1</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cultivated</td>
<td>3</td>
<td>0.15</td>
<td>1</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>Pasture</td>
<td>4</td>
<td>0.2</td>
<td>1.5</td>
<td>0.07</td>
<td>1</td>
</tr>
</tbody>
</table>
10/17/81 event:
Duration: 3.5 hr.
Depth: 73 mm.
10/17/81 event:
Peak Flow: 6.7 mm/h
Time to peak: 278 min.
OBSERVED EVENT

Sediment peak flow: 7.2 tons/ha/day
Time to peak: 262 min.

10/17/81 event:
Peak Flow: 6.7 mm/h
Time to peak: 278 min.
Total erosion/deposition

- Erosion
+ Deposition

Output
CONCLUSION

- There is an opportunity to adapt CASC2D-SED to small mining watersheds for the analysis of the fate and transport of metals and sediment in surface waters.

- There is also an opportunity for multi-disciplinary research.