Series RLC

\[f_{RL} = \frac{R}{2\pi L} \]

\[f_{RC} = \frac{1}{2\pi RC} \]

\[Z_C \text{ series with } R \]

\[Z_{RL} \text{ series with } R \]

Finally \(R-L-C \)
Series RLC

\[Z_{in} = \frac{1}{j \omega C} + \frac{1}{R} + \frac{1}{j \omega L} \]

1. Log Z vs. f

2. Frequency Range

- \[f_1 = \frac{1}{2\pi RC} \]
- \[f_2 = \frac{R}{2\pi L} \]
- \[f_R = \frac{1}{2\pi \sqrt{LC}} \]

3. Phase Angle

\[\frac{1}{\omega d} = \frac{1}{\omega L} @ \omega R \]

4. Resonance

\[\omega_R = \sqrt{\frac{1}{LC}} \]

5. Quality Factor

\[Q = \frac{\omega R}{\omega} \]

6. Characteristics

- \[Z_C = Z_2 @ \omega R = \sqrt{\frac{L}{C}} \equiv Z_C \]

Above case for \(R > Z_C \)
Case: $R L \sqrt{L C} = \sqrt{\frac{L}{C}}$

Resonance: Z_L canceled by Z_C

$Q = \text{Deviation from asymptote}$

$\frac{Z_L}{R} = \frac{Z_C}{R}$

$Q(\omega) = \frac{Z_C(\omega)}{R} - \frac{R(\omega)}{L}$

If Z_{in} "g's" down then $i(t)$?

$i_{in} \rightarrow v_{2}$
Resonant Buck

\[V_R \quad V_{in} \quad C \quad L \quad f_{sw} \]

\[f_{sw} = f_R \quad V_R = V_{in} \]

\[f_{sw} \neq f_R \quad V_R \neq V_{in} \]

\(\frac{f_L}{f_R} : \text{Capacitive} \)

\(\frac{f_R}{f_T} : \text{Inductive} \)

\(ZVS \text{ for } FET \)

\(ZCS \text{ for } FET \)
Fig. 11 - Variable Frequency Continuous Resonance
Figure 8 - Classifying Resonant Converters

1. Series or Parallel Loaded
2. Fixed or Variable Frequency
3. Continuous / Discontinuous Resonance
4. Zero Current or Voltage Switching
5. Half or Full Cycle Conduction
Fig. 1. The classical synchronous buck converter uses two switching MOSFETs: the high-side (control) device, QHS, and the low-side synchronous synchronous rectifier, QLS.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging Problems</td>
<td></td>
</tr>
<tr>
<td>RFI and EMI</td>
<td>100 to 500 kHz</td>
</tr>
<tr>
<td>Diode Recovery Time</td>
<td></td>
</tr>
<tr>
<td>Losses in Ls and Cs</td>
<td></td>
</tr>
<tr>
<td>Power MOSFET Switches</td>
<td></td>
</tr>
<tr>
<td>Small Sizes</td>
<td></td>
</tr>
<tr>
<td>Magneticics Become Important</td>
<td></td>
</tr>
<tr>
<td>Fast Bipolar Transistor</td>
<td>20 to 100 kHz</td>
</tr>
<tr>
<td>Above Audible Range</td>
<td></td>
</tr>
<tr>
<td>Large Ls and Cs</td>
<td></td>
</tr>
<tr>
<td>Slow Bipolar Switches</td>
<td></td>
</tr>
<tr>
<td>Audible Noise</td>
<td>5 to 20 kHz</td>
</tr>
</tbody>
</table>