Fig. 4. Thermal photograph of a dc-dc converter with uniform heat distribution.
Fig. 1. BGA heatsinking arrangement.
Fig. 1. Insulated metal substrate construction.
Fig. 1. A D²PAK MOSFET mounted on a PCB board employing bottom-side cooling transfers heat to the aluminum plate heatsink through the thermal vias region.
Fig. 2. The copper core board spreads heat, eliminating hot spots and reducing thermal resistance for higher reliability. The copper core adds a 10°C edge to converter performance.
Fig. 3a. The Cast Carrier is shown in green, with direct contact to a ferrite core, and an encapsulant bath for semiconductors.
Fig. 2. The primary heat path from device silicon to ambient for a D²PAK MOSFET in a bottom-side cooling scheme diverts the majority of heat directly to ambient via the pc board and heatsink.
Fig. 4. IR image of the notebook board running at output current of 90 A.
for maxwellian diet.