Lecture 52

I. Accurately Measuring or Calculating Loop Gain, $T_{mv}(s)$ or $T_{mi}(s)$, by Voltage or Current Injection: Theory versus Experiment

A. Why Fixate on Loop Gain?

B. How to Measure Loop Gain accurately

1. Voltage, V, injection Method: $\frac{Z_1}{Z_2} < 1$

 a. Art of choosing the injection point

 b. Conditions for $T_m(s) = T(s) = T_C(s)$

 c. Analysis of Two Injection Conditions
 (1) Z_1 (looking back) $< Z_2$ (looking forward)
 (2) $|T| >> Z_1/Z_2$

 d. Op amp examples
 (1) V injection @ Z_{out}
 (2) Voltage divider’s for analyzing $T_{mv}(s)$

2. Current, I, Injection Method: $\frac{Z_2}{Z_1} < 1$

 a. Artful choice for i injection
 Z_2(looking forward) $<< Z_1$ (looking
3. General Injection Point

\[\frac{Z_1}{Z_2} \ll 1 \quad \frac{Z_2}{Z_1} \ll 1 \quad \frac{Z_1}{Z_2} \approx 1 \]

\(v \) injection \quad i \) injection \quad ?

4. Measuring T(s) in Unstable Systems

C. Example: Erickson Pbm 9:10
I. Accurately Measuring or Calculating Loop Gain, $T_{mv}(s)$ or $T_{mi}(s)$, by Voltage or Current Injection: Theory versus Experiment

A. Why Measure Loop Gain?
Our intent is to accurately measure loop gain, in order to analyze it and determine if we could improve it. In order to apply $G_C(s)$ compensation networks we first have to first know the true state of the uncompensated $T(f)$ and then tailor it to achieve better closed loop performance we desire for the converter. For single pole $T(f)$ one would say it is always stable in closed loop and therefore in no need of improvement. However, we show below that single pole $T(f)$ is also a big beneficiary of COMPENSATION.
The above Bode plot contains both the uncompensated and compensated versions as well as the gain bandwidth limits of the op-amp employed in compensation networks. The gain curves for the uncompensated $T(f)$ are in the lower portion of the figure, starting from 20 db and with a single pole, at f_{fp}. Note the pole location varies with load because $f_{fp} \approx 1/ R(\text{load}) C(\text{filter cap})$. This single pole response is characteristic of current controlled converters as described in Chapter 11 of Erickson, as well as of the DCM mode of voltage controlled converters as described in Erickson chapter 10. The zero in the $T(f)$ is caused by?? This $T(f)$ would be stable in closed loop operation so why bother with additional compensation to $T(f)$? Clearly for better closed loop transient response, we would like to INCREASE the f_C of $T(f)$ up to the limit $f_C < f_{SW}/5$. The op-amp G_C plot to accomplish this is also shown in the figure starting at 50 db for DC and possessing a
SINGLE pole at a location f_{ep}. The potential problem is that we must be careful that the compensation not exceeds the gain bandwidth product of the op-amp, which is plotted to the far right hand side of the gain plots versus frequency. The overall or compensated $T(f)$ plots are shown on the very top of the figure starting at 70 db, near DC, and exhibiting an average slope of 20 db/decade throughout the entire frequency region. This is accomplished by carefully placing the G_C single pole compensation, f_{ep}, right near the ESR zero location at the frequency, f_Z (ESR). The op-amp provides 180 degrees of phase shift from DC onwards and the single pole will kick-in at f_{EP} to add another 90 degrees starting at the frequency $f= f_{PE}/10$ and completing the full 90 degrees at $f=10 f_{PE}$ as shown on the top of page 5.

The key design choice is to place

$$f_{EP} \sim f_Z(ESR)$$

Given this condition of an average slope of 20 db/decade for the compensated loop gain, the combination of the uncompensated DC gain, $G_{VD}(uncompensated)=G_{DC}$ in db units, and the op-amp compensator gain at DC, $G_C= G_{XO}$ in db units, will determine the f_C of the overall or compensated loop gain since $G_{XO} + G_{DC} = 20 \log (f_{XO}/ f_{FP})$. Note in absolute units, we have A_A and A_{XO} for the absolute gain of the op-amp and the original uncompensated converter response respectively. Where f_{XO} is the uncompensated loop gain crossover frequency. The op-amp implementation to achieve a single pole compensation network, with in-band gain limiting, is shown below.
The amount of **extra gain need below the single compensation pole to hit the desired** f_c is given by:

$$G_A = G_{XO} + 20 \log \left(\frac{f_{XO}}{f_{EP}} \right) \text{ in } \text{db}$$

The resistor value R_2 is related to R_1 by the relation:

$$A_A(\text{in absolute units}) = 10^{\frac{G(A)}{20}} \text{ and } R_2 = A_A R_1$$

Finally, the value of the R_1 and the filter capacitor must satisfy the a simple relationship to the single pole location:

$$f_{EP} = \frac{1}{2\pi R_1 C A_{XO}}$$
Owing to the high DC gain and high f_c desired we may find that the op-amp gain-bandwidth product MUST BE such as to easily exceed the compensation network gain bandwidth product. This limit of the op-amp is shown as the dashed curve in the gain plots to the far right hand side. The wrong choice of op-amp frequency response could kill the efficacy of this method of G_c.

Let's recount two points about $T(s)$ functions and feedback.

3. The introduction of feedback causes the transfer functions from disturbances to the output to be multiplied by the factor $H/(1+HT(s))$. At frequencies where \mathcal{Z} is large in magnitude (i.e., below the crossover frequency), this factor is approximately equal to $1/\mathcal{Z}$. Hence, the influence of low-frequency disturbances on the output is reduced by a factor of $1/\mathcal{Z}$. At frequencies where \mathcal{Z} is small in magnitude (i.e., above the crossover frequency), the factor is approximately equal to 1. The feedback loop then has no effect. Closed-loop disturbance-to-output transfer functions, such as the line-to-output transfer function or the output impedance, can easily be constructed using the algebra-on-the-graph method.

4. Stability can be assessed using the phase margin test. The phase of \mathcal{Z} is evaluated at the crossover frequency, and the stability of the important closed-loop quantities $T/(1+T)$ and $1/(1+T)$ is then deduced. Inadequate phase margin leads to ringing and overshoot in the system transient response, and peaking in the closed-loop transfer functions.

These two points should always be kept in mind as we apply compensation to original $T(s)$ that we encounter. However ACCURATE determination of the original $T(s)$ is crucial. How to we insure that our calculations on $T(s)$ or measurements of $T(s)$ are accurate?? See section B on page 7. Indeed if we have an inaccurate measure of uncompensated $T(s)$, the cure via a new G_c may be worse that the original perceived malady.
B. How to Measure or Calculate $T(f)$ Accurately

We will cover both voltage (section 1) and current injection methods (section 2) to either measure or calculate loop gain $T(s)$. Comparisons between theory and experiment are very revealing.

1. Voltage Injection Method of Measuring $T(s)$
 a. Artful choice of v injection location.
 This means a point near an ideal v source where the impedance looking back from the injection point is nearly zero. This is a difficult choice unless we employ an op-amp in the compensator network. Z_{IN} for an ideal op-amp is high and Z_{OUT} is low so it’s use offers the location of a near ideal voltage injection point as shown.

 V_x is the loop voltage input and V_y is the loop voltage output. We inject $V_z(f)$ and measure $\frac{V_y(f)}{V_x(f)}$ as a function of frequency. Below if we measure $T(s)$ with a break point between Z_1 and Z_2, we will find:

 $$T(s) = G_1(s) * \left(\frac{Z_1}{Z_1 + Z_2} \right) G_2(s) H(s)$$

What occurs if $Z_1 << Z_2$? What about $Z_1 >> Z_2$?
In practice when we break the feedback loop we have to be careful to preserve the DC levels that pre-existed before we intruded to make $T(f)$ measurements. We also have to consider that the ideal v source has some series impedance. Finally to get loop gain V_y/V_x via valid superposition rules, we must have ONLY V_z as an input to the system. All other independent inputs must be disabled. That is their ac variation must be zero about their DC values: all other ac V(sources) shorted and all other ac I(sources) opened. We see one such situation below.

\[
T_m(s) = \frac{V_y}{V_x} \Delta V_{\text{ref}} \approx 0
\]
\[
\Delta V_g \approx 0
\]

T_M implies measured values of loop gain and T_C a calculated value of the loop gain. Parasitic elements will make T_M and T_C differ substantially as will other effects to be discussed below.

For a full test of $T(s)$ drive source, v_Z, at a variety of frequencies. Because of the effect of loading of block 2 on block 1, the measured loop gain as compared to the actual loop gain is:

\[
T_m(s) = T(s) \left[1 + \frac{Z_1(s)}{Z_2(s)} \right]
\]

b. **Rough Required Conditions for $T_m \approx$ the actual $T(s)$**

Only if certain conditions are met will either T_M or T_C be a valid
measure of actual conditions.

1. AC Conditions

\[
T_{mv} = T_s \text{ if } Z_2 \gg Z_1 \quad \text{for all applied frequencies}
\]

\[\downarrow\]

This is why the art of choosing the injection point for voltage is so important.

Second big problem for V injection

2. Maintaining Proper DC Conditions during Measurement

If \(T \) is large especially at low f or dc, as we designed it, then a very small mV dc variation could SATURATE some components as we try to measure \(T(s) \). Op amps used in the \(G_c(s) \) block are especially susceptible to this undesired low frequency saturation. So we usually keep the dc loop closed by injection \(V_z \) via a transformer winding. The dc sees the winding as a short and the low frequency/dc loop remains closed and unperturbed.

Alternatively we insert ac signals via a big capacitor to allow ac passage and DC blockage. However the DC blockage harms the stabilizing effect of feedback unless we carefully reinsert the DC by a potentiometer. Opto-couplers offer another choice:
For HW #4 what’s the advantage of opto isolation for T(s) data??
3. The Proper Loop Gain Path: The Shining Path
Third big problem for injection point is the possibility of multiple paths from the injection point to the output. Choose an injection point with the one path to the output - the shining path or sendero luminoso. Finally, we often can make a useful approximation that for $T(s)$ large in the closed loop, $V_c \to 0$. This is often useful in control loops where you have a mix of control blocks, circuits, and summing points. Setting or assuming $V_c \to 0$ simplifies the solution of $T(s)$ as it does in op amp circuits with apparent complex feedback paths subsequently being reduced to a simpler circuit. Use if possible, simple V divider analysis between and within blocks as we will show below. In summary:

![Diagram of Measuring a Power Supply Loop Gain](image)

- Injection source does modify loading of block 2 on block 1
- AP 102B NETWORK ANALYZER SYSTEM
\[V_y \text{ and } V_x \text{ are put into the inputs of a network analyzer tuned to the } f \text{ of } V_z(f). \text{ We can either measure } T(s) \text{ all at once or do it in tandem sections. If we are artful on the choice of the injection point with (1) } Z_1 << Z_2 \text{ and (2) } T(s) > Z_1/Z_2 \text{ then the actual values of } V_z \text{ and } z_s(s) \text{ are not relevant either to the measurement nor the calculation of } T(s). \text{ Give this we would naturally choose } Z_s(s) \text{ big to even further reduce any loading effects.}

\[V_e(s) = -V_x(s)G_2(s)H(s) \]

see block 1

\[-V_y(s) = G_1(s)V_e(s) - i(s)Z_1(s) \]

\[-V_y(s) = -V_x(s)G_2(s)H(s)G_1(s) - i(s)Z_1(s) \]

\[\frac{V_y(s)}{V_x(s)} = G_1(s)G_2(s)H(s) + \frac{Z_1(s)}{Z_2(s)} \]

\[T_{mv}(s) = G_1G_2H + \frac{Z_1}{Z_2} \text{ as measured in a real system} \]

\[T(s) = G_1 \frac{Z_1}{Z_1Z_2} G_2H \text{ actual values of } T \text{ versus } f \]
\[T_{mV}(s) = T(s) \left[1 + \frac{Z_1}{Z_2} \right] + \frac{Z_1}{Z_2} \]

Here, the lowest smallest measurable loop gain is given by:

That is measured or calculated \(T(s) \) is believable only under certain very specific conditions.

\[T_{mV} \approx T(s) \]

iff (1) \(Z_1 < Z_2 \) for all frequencies of interest

(2) \(T \gg \frac{Z_1}{Z_2} \) at all frequencies of interest

Clearly \(\frac{Z_1}{Z_2} \) versus frequency limits the lower end values of \(T(s) \) that can be extracted from \(T_m(s) \) with V injection methods and still maintain any accuracy of measurement or calculation.

\[\text{Usualy we find for } f > f_c \text{ we enter a problem area for the V injection method as } T \text{ is small and the required condition } T > \frac{Z_1}{Z_2} \text{ may not be met.}\]

One “trick” is to seek a \(f \) range where \(Z_2 \) is very large, then get initial \(T_m(s) \) measurements there.

d. Measurement of \(T(s) \) versus Theory

We always compare measurement versus theory and compare to achieve a more holistic understanding of the loop gain.
Which is the plot to believe and under what conditions?? Are experimental Bode plots always correct? Above what is the slope of the expected roll-off and why is the measured different? Can you make some guesses to these questions?
e. Isolated Op Amp Examples of $T(s)$ Calculations

1. V injection at output of op amp insures low Z looking back from the injection point. Op amp is usually found in the $G_c(s)$ block. It’s easy to insert R-C networks around the op-amp to achieve the desired compensation network for an ailing or non-optimum converter open loop Bode plot.

\[
\frac{Z_1}{Z_2} = \frac{1}{10} \quad \text{a good rule of thumb for v injection validity}
\]

\[
T_m(s) = T(s) + 0.1
\]

\[
\downarrow 1.1 \text{ or } -20 \text{ db}
\]

\[
.83 \text{ db}
\]

For large $T_m(s)$

\[
T(s) = T_m + 1 \text{db}
\]

For $T_m(s)$

\[
T(s) = T_m + 20 \text{db}
\]

$T_m(s) \neq T(s)$

Assume a specific $T(s)$ situation with two well separated poles

\[
T(s) = \frac{80 \text{db}}{\left(1 + \frac{s}{10 \text{KHz}}\right)(1 + \frac{s}{100 \text{KHz}})}
\]

Now we can make the Bode plots of $T(s)$ and muse about what is good and bad about the uncompensated $T(s)$ and what type of $G_C(s)$ we would employ to improve the compensated $T(s)$ into from what we are starting with. But never use bad $T(s)$ data to start the process.
TM by voltage injection methods
ACCURATELY reflects the real T(s) only down to values above –20 db. Below this the measured T(s) is not valid.

The V injection method is of LIMITED accuracy and must be recognized as such. Lets not tailor GC to fix a non-existant problem.

2. Using Vc \rightarrow 0 in Op Amp with Feedback
The T(s) calculation for the GC block below is made easy by knowing verror between the positive and negative terminals is zero for very large op-amp gain. This is called a “virtual ground”.

Op amp input has Verror \rightarrow 0 due to high loop gain. This simplifies the ac circuit analysis as shown below, when verror= 0. That is we can use the “virtual ground” concept to reduce the level of complexity of the circuit analysis.
Best place to break the loop for \(v \) injection

\[
T_{m \nu}(s) = \frac{V_y}{V_x} \bigg|_{V_1=0}
\]

We must remove other independent sources for accurate loop gain measurement! \(V_{IN} = 0 \).

Start analysis assuming we know \(V_x \) to find

\[
\frac{V_y}{V_x} = \frac{V_0}{V_x} \frac{V^-}{V_o} \frac{V_y}{V^-} = T_m(s)
\]

Visualize the signal flow around the loop instead of doing loop equations. Lets do a series of voltage dividers as follows:

\[
\frac{V_0}{V_x} = \left[\frac{1}{SC_1} + R_1 \right] + \left(R_2 || \frac{1}{SC_2} \right) \quad \text{simple voltage divider}
\]
\[
\frac{V^-}{V_o} = \left(\frac{\frac{1}{SC_1} + R_1}{\left(\frac{1}{SC_1} + R_1 + (R_2 || \frac{1}{SC_2})\right)}\right) \text{ These poles will cancel in } T(s) \text{ calculations as we show below.}
\]

\[
\frac{V_y}{V^-} = A \begin{cases} \text{gain of the Op Amp} & \text{If } A \to \infty \\ \end{cases} V^- \to 0
\]

\[
T_{mV} = \frac{\left(\frac{1}{SC_1} + R_1\right)A}{R_o + \left(\frac{1}{SC_1} + R_1 + R_2 || \frac{1}{SC_2}\right)} = \left(\frac{V_o}{V_x}\right)\left(\frac{V^-}{V_o}\right)\left(\frac{V_Y}{V^-}\right) = V_x/
\]

This method of calculating \(T_m(s) \) has

- No complex loop node equations to make mistakes in
- Minimum of algebra in which to make further errors
- Uses simple \(V \) dividers that even I can accomplish

Hence, we have a higher confidence in the final outcome. From \(T_m(s) \) we still have to do the following to make Bode plots easy:

1. Put in std form \[
\frac{T_{m0} (1 + \frac{s}{w_z})}{1 + \frac{s}{w_oQ} + \left(\frac{s}{w_o}\right)^2}
\]

2. Draw Bode plots with asymptotes around \(f_0 \)
3. Calculate \(\phi_m \) at the \(T(s) \) unity gain cross-over frequency to predict closed-loop stability.

For HW #4 How would above \(G_C \) be useful to tailor \(T(s) \)?

C. How to (measure/calculate) \(T_{mi}(s) \) or \(T_{Ci}(s) \)

The open loop gain can be derived in current terms as well.
1. **Current Injection into the open loop**
 a. Artful choice of injection location. This means a point just after an ideal current source. The impedance looking back from the injection is nearly infinite, or impedance looking forward is zero. Hence the ratio or division of current is near unity from I_Z to I_X. I_X is the ac input current to the loop and I_Y is the ac output current from the loop.

 \[
 T_m(s) = \frac{\frac{I_Y(s)}{I_X(s)}}
 \]

 All other independent sources are removed in this calculation. One finds like in voltage injection:

 \[
 T_{mi}(s) = T(s) \left[1 + \frac{Z_2(s)}{Z_1(s)} \right] + \frac{Z_2(s)}{Z_1(s)}
 \]

 Loop System and Injection Point

 \[
 T_{mi}(s) = \text{the actual or real } T(s) \text{ provided we meet the conditions}
 \]

 1. $Z_2(s) < Z_1(s)$

 and
2. \(T(s) > \frac{Z_2}{Z_1} \)

If the two above conditions are met the exact choice of \(Z_s(s) \) doesn’t matter. To maintain dc balance we employ transformers or blocking capacitors at the injection point.

\[
\begin{align*}
C & \quad \text{Blocking for dc} \\
R_z & \quad i_z \\
V_z & \quad \{ \text{i_z injector for no disturbance} \}
\end{align*}
\]

In summary, for current injection conditions to be proper:

It can be shown that

\[
T(s) = T(s) \left(1 + \frac{Z_2(s)}{Z_1(s)} \right) + \frac{Z_2(s)}{Z_1(s)}
\]

Conditions for obtaining accurate measurement:

(i) \(|Z_2(s)| \ll |Z_1(s)| \), and

(ii) \(|T(s)| \gg \left| \frac{Z_2(s)}{Z_1(s)} \right| \)

Injection source impedance \(Z_s \) is irrelevant. We could inject using a Thevenin-equivalent voltage source:

\[
\begin{align*}
\tilde{i}_r & \quad \tilde{i}_z & \quad \tilde{i}_i \\
C_b & \quad R_y & \quad \tilde{i}_z
\end{align*}
\]

The question left unanswered is what about a given injection point that we choose to employ. What method should we employ to get the open loop gain?

3. Compare an injection point conditions and decide.

\[
\begin{align*}
\frac{Z_1}{Z_2} \quad \text{low} & \quad \frac{Z_2}{Z_1} \quad \text{low} & \quad \frac{Z_2}{Z_1} \approx 1
\end{align*}
\]
In later lectures we will cover the case of $Z_1 = Z_2$ separately via the “double null injection method”.

4. Measuring $T(s)$ in Existing but Unstable Systems

Usually we measure $T(s)$ to avoid instability. To measure $T_m(s)$ in an existing unstable system we first have to stabilize it in order to measure it. Perhaps the easiest way is to kill the loop gain and regain stability is by the insertion of an external impedance, Z_{ext} as shown below. **This instability could break out only under some extreme transient conditions and it may be only transient in nature as well.** But it prevents measurements being made.

Diagram:

- **Loop Gain w/o Z_{ext}:**

 $$T_0 \sim \frac{Z_2}{Z_1 + Z_2}$$

- **Loop Gain with Z_{ext}:**

 $$T_x \sim \frac{Z_2}{Z_1 + Z_2 + Z_{\text{ext}}}$$

We make Z_{ext} big to decimate T_0 (without Z_{ext}) and thus reduce f_C making the previously unstable $T(s)$ stable for the measurement.
\(f_{c2} \ll f_{c1} \Rightarrow \text{Better } \phi_m \text{ and should result in a closed loop response free of instability.} \)
C. Example: Erickson Pbm 9.10

1. We have a voltage injection point where \(\frac{Z_1}{Z_2} \sim \frac{1}{10} \) for all frequencies of interest. What to do with the \(T_{MV}(f) \) data we collect? Is it all-believable? Is there a limited frequency range over which we can trust the data?

The voltage insertion point is shown below.

From the insertion point shown we take the \(T_{mv}(s) \) data shown below.

From measured \(T_M(s) \) and associated phase plots, find valid \(T(s) \) and \(f_{\text{min}} \leq f \leq f_{\text{max}} \) region of validity for the measured data.

This reduces to a ? of over what \(f \) range do we meet the criterion:
\[Z_1(f) \ll Z_2(f). \text{ Only there does } T_M(s) = \text{actual } T(s) \]
\[T_{mv}(s) = T(s) \left[1 + \frac{Z_1(s)}{Z_2(s)} \right] + \frac{Z_1(s)}{Z_2(s)} \]

For the specific conditions we are considering:
\[\frac{Z_1(s)}{Z_2(s)} = \frac{1K}{10K||\frac{1}{s2nF}} = 0.1 + \frac{s}{5 \times 10^5} \]

\[Z_1/Z_2 \approx 1 \text{ for } f = 20 \text{ kHz and } Z_1/Z_2 \text{ will posses a single zero!} \]

The standard loop block will be as depicted below:

At low \(f \):
\[\frac{Z_1}{Z_2} \sim \frac{R_1 = 1K}{10K||\frac{1}{s(2nF)}} \]

\(Z_2 \) is decreasing with \(f \). The frequency where \(X_C = 10K \) will be an important one:
\[\frac{1}{s(2nF)} = 10K \Rightarrow f = \frac{1}{2\pi \times 10^4 \times 2 \times 10^{-9}} = 8 \text{kHz} \]

At 8kHz \(Z_1/Z_2 \) reduces to 1/5 as \(Z_2 = 10K \) in parallel with 10 K.

\(|Z_2| = 10K||10K = 5K. \) Let’s be generous and still consider this a valid condition for \(T_{mv}(s) \) to be really \(T(s) \).
A still valid condition for $T_{mv}(s)$ is far below 8 kHz \(\frac{Z_1}{Z_2} \approx 0.1 \) or -20 db. Now at 8 kHz \(\frac{Z_1}{Z_2} \sim 0.2 \) or -14 dB. Finally, \(\frac{Z_1}{Z_2} \equiv 1 \) or 0 dB at $f = 20$ kHz.

We can plot this ratio by algebra on the graph to yield.

Now the conditions for valid measurements are clearly noted. On the top of page 24 we look at T_M and pontificate as to why the zero seen in the T_M data is NOT BELIEVABLE.
There is a non-believable zero's in $T_M(s)$ because the basic assumption of voltage injection method is invalid for $f > 20$ kHz since
\[
\frac{Z_2}{Z_2} \approx 1
\]
Usually $T \downarrow$ as $f \to \infty$
And it does not flatten out

From the $T_{mv}(s)$ data below 20 kHz we can guesstimate
- double pole occurs @ 800 Hz with a “Q” of 10 db
- single zero occurs @ 3.2 kHz
- $T_{mv0} = 40$ db from the DC values

\[
T(s) \approx \frac{40 \text{db}(1+s/w_z)}{\left(1+\frac{s}{w_0Q} + \left(\frac{s}{w_0}\right)^2\right)}
\]

In the standard form of the transfer function: $f_0 = 800$ Hz
$Q \approx 10$ db or 2.5 and $f_Z = 3.2$ kHz