1. The amplifier shown below is biased to operate at $g_m = 1 \text{ mA/V}$. The voltage gain of the circuit is limited at the lower end by the source degeneration (DC gain) and at the high end by the transistor speed limitation. The gain roll-off at the lower frequency is determined by the RC constant at the source node of the transistor. i.e.

$$f_L = \frac{1}{2\pi \left(\frac{1}{g_m R_s} \right) C_s}$$

Neglecting r_o (i.e. r_o is infinite), 1). find the DC gain. 2). find C_s value that places f_L at 20 Hz.

![Amplifier Circuit Diagram](image)

2. The NMOS transistor in the common source amplifier circuit shown below is biased to have $g_m = 5 \text{ mA/V}$. Assume transistor output impedance is significantly higher than the load resistance.

![NMOS Amplifier Circuit Diagram](image)
1). Find overall midband voltage gain of the circuit, A_M, when the input coupling capacitor to V_{sig} is feeding V_{sig} to the amplifier input without any loss.
2). Find roll-off frequency caused by the input coupling capacitor and the total resistance at the transistor gate node, f_{p1}.
3). Find f_L caused by the capacitor at the source node of the transistor and the total resistance at the source node. (we also call this f_{p2}).
4). Find output roll-off frequency caused by the capacitor at the drain node of the transistor and the total resistance at the drain node, f_{p3}.

3. Consider the low-frequency response of the common source amplifier shown below. Let $R_{sig} = 0.5M\Omega$, $R_G = 2M\Omega$, $g_m = 3mA/V$, $R_D = 20k\Omega$, $R_L = 10k\Omega$. Ignore r_o, find A_M. Also, design the coupling and bypass capacitors to locate the three low-frequency poles at $f_{p1} = 3Hz$, $f_{p2} = 50Hz$, and $f_{p3} = 10Hz$, with capacitors specified only to a single significant digit.