1. Sketch the p-channel counterpart of the current-source circuit in the figure shown below. Note that the circuit should more appropriately be called a current sink, the corresponding PMOS circuit is a current source. Let $V_{DD} = 1.8\, V$, $|V_t| = 0.5\, V$, Q_1 and Q_2 be matched, and $\mu_p C_{ox} = 100\mu A/V^2$. Find the device W/L ratios and the value of the resistor that sets the value of I_{REF} so that a nominally 80μA output current is obtained. The current source is required to operate for V_o as high as 1.6V. Neglect channel-length modulation.

2. For the current-steering circuit shown in the figure below, find I_o in terms of I_{REF} and device W/L ratios of four transistors.
3. The current-steering circuit shown in the figure below is fabricated in a CMOS technology for which \(\mu_n C_{ox} = 200 \mu A/V^2 \), \(\mu_p C_{ox} = 80 \mu A/V^2 \), \(V_{tn} = 0.6 V \), \(V_{tp} = -0.6 V \), \(V'_{An} = 10 V/\mu m \), \(|V'_{Ap}| = 12 V/\mu m \). If all devices have \(L = 0.8 \mu m \), design the circuit so that \(I_{REF} = 20 \mu A \), \(I_2 = 100 \mu A \), \(I_3 = I_4 = 20 \mu A \), and \(I_5 = 50 \mu A \). Use the minimum possible device widths needed to achieve proper operation of the current source \(Q_2 \) for voltages at its drain as high as +1.3V and proper operation of the current sink \(Q_5 \) with voltages at its drain as low as -1.3V. Specify the widths of all devices and the value \(R \). Find the output resistance of the current source \(Q_2 \) and the output resistance of the current sink \(Q_5 \).