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High-resolution two- and three-dimensional numerical simulations are performed of
first-mode internal gravity waves interacting with a shelf break in a linearly stratified
fluid. The interaction of nonlinear incident waves with the shelf break results in the
formation of upslope-surging vortex cores of dense fluid (referred to here as internal
boluses) that propagate onto the shelf. This paper primarily focuses on understanding
the dynamics of the interaction process with particular emphasis on the formation,
structure and propagation of internal boluses onshelf. A possible mechanism is
identified for the excitation of vortex cores that are lifted over the shelf break, from
where (from the simplest viewpoint) they essentially propagate as gravity currents
into a linearly stratified ambient fluid.

1. Introduction
The subject of internal waves interacting with bottom topographic features in the

ocean has received much attention in the past few decades. This is mainly attributed
to a proposition that instabilities and breaking of internal waves at boundaries can be
a significant source of turbulence, leading to mixing and transport in the ocean (Munk
& Wunsch 1998). There are a number of mechanisms through which turbulence can
be generated when flow interacts with topography, such as lee wave generation, tidal–
topographic generation of internal waves, internal wave reflection and internal wave
scattering (Kunze & Llewellyn Smith 2004). Of these mechanisms, critical reflection
and scattering of internal waves are the primary mechanisms that lead to the transfer
of energy toward smaller scales leading to turbulent dissipation and mixing. Although
it is far from clear which of these mechanisms is most important, it is postulated that
the critical reflection of internal waves could perhaps be the most efficient process
in generating turbulence (Kunze & Llewellyn Smith 2004). New field measurements
taken over a continental slope suggest that critical reflection is a key mechanism for
channelling low-mode internal wave energy to smaller scales and turbulence (Nash
et al. 2004).

In a linearly stratified fluid (i.e. of a constant buoyancy frequency N), a first-
mode internal wave (or in general any wave mode) propagating in a fluid of
finite depth over flat topography with horizontal boundaries can be described as
a superposition of pairs of phase-locked upward and downward propagating beams,
which are characterized by both horizontal and vertical wavenumbers k and m

and frequency ω (for a detailed discussion, see Thorpe 1999). For a first-mode
incident wave interacting with a sloping bottom (figure 1), the presence of the slope
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Figure 1. Schematic diagram showing the computational domain and set-up used in
simulations for this study. A mode-one internal wave is imposed at the left-hand boundary of
the domain with frequency ω = 0.33 rad s−1 and wavelength λ= 2π/k = 1.713m. The horizontal
length L2 of the slope and the onshelf water depth ds are varied to obtain a range of slope angles
θ such that the slope length Ls = D = 0.6 m is kept constant for all runs. The onshelf length L3
is varied such that the overall length L = 8 m. The schematic also shows the decomposition of
the wave mode into a pair of upward (U) and downward (D) propagating beams. For clarity,
only the reflection of the downward propagating beam is extended to the slope region. Non-
dimensional parameters: γ /s = tan θ/ tan α; Fr = U0/c; FrE = U0T/(πLs); ds/D.

effectively decouples the upward and downward propagating wave beams (Thorpe
1987), permitting the description of the interaction of modes with a sloping boundary
using internal wave beams. Internal wave beams exhibit simple but peculiar reflection
patterns at boundaries compared to waves in optics and acoustics. Unlike in optics
and acoustics, where the angles of incidence and reflection are preserved with respect
to the normal of the reflecting surface (classical Snell’s law), internal waves preserve
their angle with respect to the direction of gravity upon reflection (Phillips 1977).
This implies that the incident beams preserve their frequency on reflection. From
this property, it is easy to show that the slope, s, of the internal wave beam (or
characteristic) is given by

s = tan α =
k

m
=

(
ω2 − f 2

N2 − ω2

)1/2

, (1.1)

where α is the angle of the internal wave characteristic with respect to the horizontal
plane and f is the sine of latitude Coriolis parameter. Bottom slopes are then readily
classified by the ratio γ /s (Phillips 1977), where γ is the topographic slope. Subcritical
slopes (γ /s < 1) correspond to topographic slopes that are flat compared to the wave
characteristic slope, whereas supercritical slopes (γ /s > 1) correspond to topographic
slopes that are steeper than the wave characteristic slope. Critical slopes (γ /s = 1)
correspond to waves in which the angle of propagation of the group velocity (or
energy) matches the topographic slope, leading to focusing of wave energy and hence
enhanced dissipation and mixing in the bottom boundary layer. It should be noted
that the ratio of the incoming wave frequency, ω, to the critical wave frequency,
ωc, for a given topography can also be used to classify the slope. However, in what
follows we use the ratio γ /s, as it is more commonly used in oceanographic literature.

Several laboratory experiments have been performed to study incident internal
waves on a slope (Cacchione & Wunsch 1974; Ivey & Nokes 1989; Taylor
1993; Ivey, Winters & De Silva 2000; Dauxois, Didier & Falcon 2004). These
experiments demonstrate the principles of internal wave reflection and clearly show
the development of a turbulent boundary layer for a critical slope. Observations
were made of an upslope-surging bolus (a vortex of dense fluid or thermal front as



Nonlinear internal boluses 139

termed by Thorpe 1992) that resulted when the waves overturned and broke onslope.
Numerical studies of the interaction of incident internal wave rays with a slope were
carried out by Slinn & Riley (1998), and the results indicate the formation of the
upslope-surging bolus and highlight the complexity of the interaction process. In
all the previous laboratory experimental studies, the upslope-surging boluses were
trapped at the apex of the wedge-shaped region, leading to enhanced dissipation and
mixing. There are also numerous theoretical studies on linear and weakly nonlinear
internal wave interactions with slopes (e.g. Craig 1985; Thorpe 1987; Dauxois &
Young 1999).

In this paper, we describe results from highly-resolved laboratory-scale numerical
simulations of the interaction of highly nonlinear first-mode internal waves with a
shelf break. We present results showing the formation of upslope-surging boluses in
the slope region consistent with results from previous studies. The energetics of the
interaction process is of fundamental interest and has been addressed extensively by
Venayagamoorthy & Fringer (2005, 2006). However, the focus of this paper is the
formation, propagation and fate of internal boluses over a shelf break. Our motivation
for this study comes from observations of highly nonlinear bottom-trapped internal
waves of elevation in coastal regions (Klymak & Moum 2003; Carter, Gregg & Lien
2005). Such observed highly nonlinear bottom-trapped internal waves are probably
prime candidates for mass and sediment transport.

The layout of this paper is as follows. In § 2, we briefly discuss the computational
approach we employ for this study and provide an overview of the problem set-up.
We present results of the interaction process and conditions under which internal
boluses form in § 3. We follow with a discussion of the structure and propagation of
internal boluses onshelf in § 4, with conclusions given in § 5.

2. Governing equations and computational approach
We adapt the Navier–Stokes equations with the Boussinesq approximation given

by

∂u
∂t

+ u · ∇u = − 1

ρ0

∇p + ν∇2u − g

ρ0

ρk, (2.1)

∂ρ

∂t
+ ∇ · (ρu) = κ∇2ρ, (2.2)

∇ · u = 0, (2.3)

where ν is the (constant) kinematic viscosity and κ is the (constant) scalar diffusivity.
Equations (2.1)–(2.3) are computed with the large-eddy simulation (LES) code
developed by Fringer & Street (2003) in the two-dimensional domain shown in figure 1
(the three-dimensional simulations use a lateral width W = 0.5 m). This code employs
the fractional-step method of Zang, Street & Koseff (1994) to solve the Navier–Stokes
and scalar transport equations presented in equations (2.1)–(2.3) using a finite-volume
formulation on a generalized curvilinear coordinate non-staggered grid with a rigid
lid. This code has been extensively validated with a number of different laboratory-
scale studies on geophysical fluid dynamics using its single-processor version (Zang
& Street 1995; Zedler & Street 2001; Fringer & Street 2003) as well as its parallel
version (Cui & Street 2001, 2004).
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For all the simulations, the initial stratification is given by the background
distribution ρb(z), which is linear and is given by

ρ(z, t = 0)

ρ0

− 1 =
ρb(z)

ρ0

= −	ρ

ρ0

( z

D

)
, (2.4)

with 	ρ/ρ0 = 0.02, which results in a buoyancy frequency of N = 0.57 rad s−1 in a
depth of D = 60 cm. At the left-hand boundary of the domain shown in figure 1, we
impose a first-mode internal wave given by

u(0, z, t) = U0 cos(mz) sin(ωt), (2.5)

where U0 is the velocity amplitude of the forcing, m is the vertical wavenumber
corresponding to a mode-1 baroclinic wave with m = π/D, ω is the forcing frequency,
and u is the cross-shore velocity component. Boundary conditions for the cross-
shore (horizontal) velocity u are no-slip on the bottom boundary, free-slip at
the top boundary, and no-flux at the right boundary. The vertical velocity has
a no-flux boundary condition at both top and bottom boundaries, and free-slip
boundary conditions on all other walls, and the density field has a gradient-
free boundary condition on all walls. The grid size is 512 × 128 for the two-
dimensional runs and 512 × 32 × 128 for the three-dimensional runs, with a maximum
Courant number of 0.2. We use a kinematic viscosity of ν = 10−5 m2 s−1, and a
thermal diffusivity of κ = 10−6 m2 s−1, which gives a Prandtl number of Pr =10. A
rough estimate of the turbulent Reynolds number for these flows, based on an
advective length scale of Lc =U0/ω = 0.13 m and a characteristic overturning velocity
of U0 = 4 cm s−1, is ReT = 500. The corresponding Kolmogorov microscale is then
ηk =LcRe

−3/4
T = 1.17 mm. With a longitudinal grid spacing of 15.6 mm and vertical

grid spacings of 4.7mm in the deep region and 1.6mm in the shallow region, the
longitudinal grid spacing is about 15 times larger than the Kolmogorov microscale
and the largest vertical grid spacing is 3 times larger.

The important non-dimensional parameters (as also shown previously by, e.g.
Legg & Adcroft 2003; Kunze & Llewellyn Smith 2004) for this problem (in a
finite-depth domain) include the ratio of the topographic slope to the internal wave
characteristic slope, γ /s, and the non-dimensional steepness of the incoming wave
(a measure of the wave amplitude), which we define here as a Froude number,
Fr =U0/Cph. Here, U0 is the maximum velocity amplitude and Cph is the linear
first-mode internal wave speed in a linearly stratified fluid given by (Kundu 1990)

cph =
ω

k
=

D

π
(N2 − ω2)1/2. (2.6)

The third relevant non-dimensional parameter FrE = U0T/(πLs), where T = 2π/ω is
the wave period, gives a measure of the wave excursion to the topographic length scale,
Ls . Another important parameter is the ratio of the onshore to offshore water depths,
ds/D, which provides a measure of the amplitude of the topography, ht = D − ds ,
relative to the offshore water depth, D. In this study, the variation in the topographic
slope γ is achieved by changing the topographic amplitude ht . It is not trivial to
obtain different values of γ /s without altering either (D − ds)/D or changing the
frequency of the incoming wave field (which would imply changing the incoming
wave properties).

While holding N and ω, and hence s, fixed, we carried out a series of simulations
with different topographic slopes, γ , such that γ /s varied from 0 to 1.5 and covered
a broad range of sub- and supercritical slopes. We also varied the velocity amplitude,
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Runs γ /s Fr = U0/cph U0T/(πLs) ht/D Comments

1–10 0.25–1.5 0.06 0.05 0.17–0.72 Linear cases
11–20 0.25–1.5 0.11 0.10 0.17–0.72 Linear cases
21–30 0.25–1.5 0.45 0.41 0.17–0.72 Nonlinear cases
31–40 0.25–1.5 0.78 0.71 0.17–0.72 Highly nonlinear cases
41–60 0.5–1.5 0.22–0.67 0.20–0.61 0.57 Intermediate Fr runs
61 1 0.78 0.71 0.57 Three-dimensional run on a critical slope

Table 1. List of simulations performed showing the parameter space covered, with T = 2π/ω.

U0, between 0.5 cm s−1 to 7 cm s−1, in order to vary the Froude number, Fr =U0/cph,
which ranged from 0.056 to 0.783. This yielded a parameter space that allowed us to
assess the conditions under which wave breaking and the subsequent formation of
internal boluses occur. Table 1 gives the parameter space covered by the simulations.

3. Interaction and generation dynamics onslope
In this section, we provide a discussion of the flow fields in the slope region, as well

as the formation of boluses, using results mainly from two-dimensional simulations
shown in table 1. The three-dimensional results are presented to show the lateral
instabilities as well as to validate the two-dimensional simulation results on which the
bulk of the discussion in this paper is based.

3.1. Wave–slope interaction

The interaction of incoming highly nonlinear first-mode internal waves with a critical
slope is shown in figure 2 using a time sequence of the density field over two wave
periods from a two-dimensional simulation. Figure 3 shows the interaction obtained
from a three-dimensional simulation for the same case and time sequence as shown
in figure 2. The discussion below refers to both of these figures and we find that the
two-dimensional dynamics are qualitatively similar to the three-dimensional results.
However, a quantitative comparison will require three-dimensional simulations at
more realistic Reynolds numbers, where strong three-dimensional instabilities and
turbulence are more likely to occur. In figure 3(a), the density isopycnals dip close to
the slope as the long incident wave interacts with it. Soon afterward, the isopycnals
steepen further, leading to wave breaking as shown in figure 3(b), causing the density
contours to fold up even further resulting in the formation of a front around which
the wave overturns (figure 3b, c), consistent with observations made in laboratory
experiments by Dauxois et al. (2004) and Ivey & Nokes (1989). The overturned lump
of fluid surges upslope as the flow oscillates back upslope as shown in figure 3(d).
The strong distortion of the isopycnals leads to wave breaking and generation of
vortices, which we discuss later (see figure 20) along with the presence of vortex cores
in the slope region using a three-dimensional simulation. The surging bolus of fluid
travels over the shelf break and is propelled onto the shelf as shown in figure 3(e)
as a blob of dense fluid, which we refer to as an internal bolus. This bolus then
propagates shoreward (see figure 3(f ) onwards). Meanwhile, the process repeats itself
as a new wave arrives at the slope (at t/T = 5.6). However, as new waves arrive, the
wave field is complicated as a result of the interaction of the incoming waves with
those that are reflected from the slope. The fold-up of the isopycnals is intensified
even further owing to more intense wave breaking as shown in figure 3(f, g). Heavy
fluid is still transported upslope and internal boluses continue to form (although they
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Figure 2. Density field (shown in colour) of an internal wave interacting with a critical
slope for a highly nonlinear case with Fr = 0.783, showing how the internal bolus forms and
propagates onshore (to the right) as a result of the interaction process (see figure 16 for
detail of the bolus core shown in section A–A). For clarity, only the right-hand half of the
computational domain from x = 4.8 to 6.9 m is shown and time is normalized by the wave
period T = 19.2 s.

are not as dense as the earlier one) and propagate onshelf as seen in figure 3(i, j ).
Based on these observations, we anticipate that the dissipation in the slope region
will increase owing to the modified reflection processes that seem to occur as a result
of the interaction between incident and reflected waves with the slope. We will be
addressing the dissipation and irreversible mixing that occurs in the slope and shelf
regions in detail via further three-dimensional simulations in a subsequent paper.

We gain a better perspective of the breaking process and the upslope movement
of the dense bolus by superimposing the velocity vectors over the density field in the
slope region as shown in figure 4, where the flow field is shown over one wave period
from t/T = 4.6 to t/T = 5.6. In figure 4(a), the flow is essentially offslope. As this
flow relaxes and then reverses towards the slope (figure 4b, c), the isopycnals steepen
at the leading edge of the wave, with a strong reverse flow in the bottom boundary
layer owing to heavy fluid still descending from upslope. As the flow toward the slope
accelerates, the local fluid velocity exceeds the phase velocity (i.e. U >cph), setting up
local kinematic instabilities that cause wave breaking, thus leading to entrainment of
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Figure 3. Three-dimensional density isosurfaces of an internal wave with Fr = 0.783
interacting with a critical slope. These results are from a three-dimensional simulation of
the two-dimensional case shown in figure 2. For clarity, only the right-hand half of the domain
from x =4.6 to 6.9m is shown and time is normalized by the wave period T = 19.2 s. The
isosurface values are 	ρ/ρ0 = 0.0115, 0.0125, 0.0135 and 0.0145, respectively, and the sideline
plane shows the density field as indicated by the colour bar.

light fluid beneath the heavy fluid (figure 4c, d). The incoming wave accelerates the
flow in the bottom boundary layer which results in the upslope surge of heavy fluid
(figure 4e).

The presence of the slope compresses the horizontal flow field associated with the
wave leading to strong vertical accelerations resulting in a highly non-hydrostatic flow
field. A modal analysis of velocity fields in the slope region is performed to determine
the nature of the wave field in the vicinity of slope region, and this is discussed in
§ 3.2. As the flow relaxes (figure 4f ), the head of the front continues to move upslope
and the emergence of the internal bolus is seen in figure 4(g) at the shelf break.
Notice the strong rotation around the bolus. The bolus separates as the return flow
increases in strength in the bottom boundary layer. The process essentially repeats
itself (the time sequence is not shown here), however as alluded to in our discussion
of figure 2, the breaking process intensifies and increases the stirring and dissipation
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(a) t/T = 4.6 (c)   4.8

(e)   5.1

(g)   5.3 (i)   5.6

(b)   4.7

(d)   4.9 ( f )   5.2

(h)   5.5

2 4 6 8 10 12 14 16 18
∆ρ/ρ0 × 103

Figure 4. Velocity vectors superimposed over the density contours to show the interaction
dynamics of the flow induced by the wave field with the slope. This figure shows enlarged
details of the slope region shown in figure 2, over one wave period (from t/T = 4.6 to 5.6).
The magnitude of the single horizontal velocity vector in the left-hand centre on each panel
is 7 cm s−1, corresponding to the maximum forcing velocity amplitude of the incident wave
imposed at the left-hand boundary. Waves propagate from left to right, and every fourth
velocity vector is depicted for clarity.

(I) (II) (III)

Shelf

Onshelf waves
Offshelf waves
(incident + reflected)

Wave interaction
with slope 

Figure 5. Schematic diagram showing the locations where the EOF analysis is performed.
Section (I) is 4.6 m from the left-hand boundary, section (II) is at midslope and section (III)
is at the shelf break.

close to the slope. Hence, the resulting internal bolus seen onshelf in figure 2(j ) is
not as dense as the earlier bolus depicted in figure 2(e).

3.2. Modal analysis

To understand better how the incoming wave field is modified as a result of the
interaction with the slope, and to determine the nature of the reflected as well as the
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Figure 6. Horizontal velocity profiles and amplitudes for the three lowest modes
at section (I) from the EOF analysis.
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Figure 7. Vertical velocity profiles and amplitudes for the three lowest modes
at section (I) from the EOF analysis.

transmitted waves, we employ a modal analysis of the velocity fields using empirical
orthogonal functions (EOF). This technique is conventionally used in oceanography
for analysing datasets of space–time distributed observations (Borzelli & Ligi 1999).
For the present study, this approach is attractive since the standard normal modes
analysis is not suitable because of the highly nonlinear nature of the flow field. In
the EOF procedure used for this study, a matrix containing the simulation data
at each vertical section is formed and the time mean removed from each time
series. The eigenvalues and corresponding eigenvectors (or ‘EOFs’) of the covariance
matrix are then calculated. The ‘EOFs’ corresponding to the largest eigenvalues
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Figure 8. Horizontal velocity profiles and amplitudes for the three lowest modes
at section (II) from the EOF analysis.
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Figure 9. Vertical velocity profiles and amplitudes for the three lowest modes
at section (II) from the EOF analysis.

represent the shapes of the lowest ‘modes’. We analysed the velocity data at the three
locations shown in figure 5, for the highly nonlinear first-mode internal wave case
with Fr = 0.783 interacting with a critical slope as shown in figures 2–4, so as to
determine the nature of the wave modes at these locations.

The empirical orthogonal functions (EOFs) or ‘modes’ corresponding to the three
largest eigenvalues as well as the time series of the amplitudes are shown in figures 6–
11, for both the horizontal and vertical velocity fields at sections (I), (II) and (III),
respectively. At section (I) (figures 6–7), the flow is almost entirely mode-one, even
later in time when incoming waves and reflected waves interact with one another.
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Figure 10. Horizontal velocity profiles and amplitudes for the three lowest modes
at section (III) from the EOF analysis.
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Figure 11. Vertical velocity profiles and amplitudes for the three lowest modes
at section (III) from the EOF analysis.

The contributions from the other two modes are negligible, as can be seen from both
the vertical velocity amplitudes and the percentage contributions of the higher modes
to the total variance of the vertical velocity shown in figure 12(b). At section (II)
(midslope region), the generation of higher modes and their contributions are no
longer small as shown in figures 8–9. The contributions from the second-mode are
significant, as can be seen from the amplitudes of both velocity components as well as
the contributions to the total variances shown in figure 12. The high velocities observed
at the lower boundary in the slope region in figure 4 have a strong contribution from
the second-mode. On the shelf (section (III)), the presence of the higher modes is



148 S. K. Venayagamoorthy and O. B. Fringer

1 2 3 4 5
0

20

40

60

80

100

C
on

tr
ib

ut
io

n 
to

 to
ta

l v
ar

ia
nc

e 
(%

)

(a)

section (I)
section (II)
section (III)

1 2 3 4 5
0

20

40

60

80

100

Mode number

C
on

tr
ib

ut
io

n 
to

 to
ta

l v
ar

ia
nc

e 
(%

)

(b)

section (I)
section (II)
section (III)

Figure 12. Percentage contributions of the lowest five modes to the total variance in the
EOF analysis. (a) horizontal velocity; (b) vertical velocity.

clearly seen by the amplitude signal of the velocity modes (see figures 10–11) and
their contributions to the total variances shown in figure 12. The mode profiles
also show that the internal boluses on shelf have a large second-mode contribution.
These results indicate that some energy in the incident mode-one wave has gone
into the second-mode and is transmitted onshelf, while the reflected energy is almost
exclusively in the first-mode.

3.3. Bolus formation

From a qualitative perspective, the diagnostics using the velocity and density fields
have revealed the formation of upslope-surging blobs of fluid that form as internal
boluses onshelf. However, in order to quantitatively investigate the conditions under
which the surging fronts occur, we explore a wide parameter space that covers a range
of values of γ /s spanning subcritical to supercritical slopes as well as Fr ranging from
low to high values to quantify the effects of nonlinearity. As outlined in table 1, we
have performed simulations for ten different values of γ /s and four different Fr. We
also carried out additional runs to cover the gaps in the data for intermediate Fr for
a subset of slope ratios, namely γ /s =0.5, 0.75, 1.0, 1.2 and 1.5, as shown in table 1.

We assess the formation of an internal bolus by determining the vertical
displacement 	z of the densest fluid onshelf from its equilibrium position offshelf
as

	z

D
=

(zmax (ρ)onshelf
− zeq)

D
, (3.1)

where zmax (ρ)onshelf
is the elevation of the densest fluid onshelf over the entire duration

of the simulation, and zeq is the offshelf equilibrium elevation of max(ρ)onshelf given
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Figure 13. Contour plot interpolated from data points (filled circles) showing the region
where formation of the internal bolus in the γ /s – Fr space can occur. The normalized vertical
displacement 	z/D, of the densest fluid onshelf (calculated using equation (3.1)) is used
as a measure of the formation of a bolus (shown in colour here). The curved line indicates
the lower bound predicted by linear theory for the formation of bores/boluses as given by
equations (3.7).

(a) (b) (c)

Figure 14. Density contours at the shelf break for critical slope (γ /s =1) at time t/T = 5.6
for (a) Fr = 0.11, (b) Fr = 0.45 and (c) Fr = 0.78, respectively.

by

zeq = − (max(ρ)onshelf − ρ0)

	ρ
D, (3.2)

where D is the offshore water depth and 	ρ/ρ0 = 0.02. The results obtained from
such an analysis are shown as a contour plot in figure 13 in the γ /s−Fr space, and
the 	z/D values are shown as coloured circles. When Fr is small (linear incoming
waves), the waves transmit/reflect as shallow internal modes without any significant
distortion of isopycnals and formation of boluses (i.e. the vertical diplacement 	z

is small and comparable to the amplitude of the incoming wave). As Fr increases,
heavy fluid is lifted up over greater vertical displacements for all slopes as would be
expected. For example, the density contours shown in figure 14 indicate the trend
at the critical slope of γ /s = 1, for Fr = 0.11, 0.45 and 0.78, corresponding to linear,
nonlinear and highly nonlinear cases, respectively. For the linear case (Fr = 0.11),
there is no evidence of a bolus at the shelf break, whereas the presence of a bolus
is seen more prominently as Fr increases (see figure 14b, c). This indicates that the
formation of boluses across the shelf break is strongly dependent on Fr and their
formation leads to a relatively high value of 	z/D. For a given Fr, it is seen that
the vertical displacements are higher for slopes close to critical for the cases we have
explored, with 	z decreasing faster for subcritical slopes than for supercritical slopes.

We can calculate the lower bound for the formation of bores and/or boluses using
a prediction from linear theory on the reflection of finite-amplitude internal waves
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using the approach of Legg & Adcroft (2003). They use the criteria that the advective
velocity should exceed the phase velocity of the reflected wave for a bore or a thermal
front to develop. Hence, we could suppose that Fr > 1 for the reflected wave is a
necessary condition for a front to develop. From linear theory, it is known that the
frequencies of the incident and reflected waves are conserved upon reflection, which
implies that the angles of inclination of the two wavenumbers ki and kr of the incident
and reflected waves, respectively, to the vertical must be equal (see Phillips 1977).
This gives the horizontal wavenumber of the reflected wave as

kr = ki

sin(α + θ)

sin(|α − θ |) , (3.3)

where α is the angle of the wave characteristic with respect to the horizontal as
defined in equation (1.1) and θ is the angle of the topographic slope with respect to
the horizontal (see figure 1). This implies that the horizontal phase velocity of the
reflected wave is less than that of the incoming wave (for 0 < |α − θ | < π/2), and is
given by

(cph)r =
ω

ki

sin(α − θ)

sin(|α + θ |) . (3.4)

Note that the reflection is regular with ki = kr for θ = 0 or π/2 (i.e. when the
topographic slope is either horizontal or vertical). Since the energy density of the
reflected wave increases upon reflection, it can be shown that the velocity amplitude
of the reflected wave increases and is given by

(U0)r = (U0)i
sin(α + θ)

sin(|α − θ |) . (3.5)

From equations (3.3)–(3.5), it is easy to show that the Froude number of the reflected
wave enhances to

Frr =
(U0)r
(cp)r

=
(U0)i
(cp)i

(
sin(α + θ)

sin(|α − θ |)

)2

. (3.6)

Legg & Adcroft (2003) derive the range of values of topographic slopes γ = tan θ ,
that define the region for which Frr > 1 by rewriting equation (3.6) as a function
of the incoming wave parameters. We rewrite these relationships in terms of γ /s as
follows:

(γ /s)1 =
Fr−1/2

i − 1

Fr−1/2
i + 1

, (γ /s)2 =
Fr−1/2

i + 1

Fr−1/2
i − 1

, (3.7)

where (γ /s)1 < 1 defines the subcritical region while (γ /s)2 > 1 defines the supercritical
region. The boundary between these two regions is plotted in figure 13 as a curved
solid line. The formation of boluses does not occur immediately above this line as
can be seen (for example) in figure 14. However, it is important to recall that this
theory predicts only the formation of the bores onslope and here we are extending it
to examine the actual occurrence of boluses further up onshelf. Therefore, it suffices
to say that the theory provides an estimate of the lower boundary for the formation
of boluses. Furthermore, this theory applies to linear inviscid waves, and we expect
viscosity to increase the critical Froude number at which boluses form for a given
γ /s.

While figure 13 provides an assessment of the formation of internal boluses, the
strength of an internal bolus can be obtained by quantifying the mass of a rectangular
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Figure 15. The non-dimensional mass of the bolus core (calculated using equation (3.8)) on
the shelf as a function of γ /s for Fr = 0.11 (�), Fr = 0.45 (+) and Fr = 0.78 (◦), respectively.

control volume of fixed width (1/2)D and depth dS , containing the bolus, as follows

m = max

(∫
V

(ρ − ρb) dV

/∫
V

ρb dV

)
, (3.8)

where ρ is the density of the fluid within the control volume during the passage of the
bolus, and ρb is the density of the ambient fluid in the control volume. The left-hand
boundary of the control volume is located at the beginning of the shelf break while
the right-hand boundary is at a distance of D/2 shoreward from the shelf break.
Equation (3.8) provides a normalized measure of the nonlinear mass transported
onshelf by the bolus. Figure 15 shows the results obtained using equation (3.8) for
Fr = 0.11, 0.45 and 0.78, as a function of γ /s. For Fr = 0.11, the mass transported is
relatively small and a weak function of γ /s. As Fr increases, the mass transported
increases significantly, especially for subcritical and near-critical slopes. It is seen that
the boluses are stronger for slopes close to critical for these highly nonlinear cases,
with the strength of the boluses decreasing faster for supercritical slopes than for
subcritical slopes. To ascertain whether this is always the case is not trivial since
(as discussed earlier) there is an additional parameter that also controls this process,
namely the ‘tallness’ (or amplitude) of the topography given by the ratio (D − ds)/D.
However, isolating the effects of (D − ds)/D from γ /s is difficult since both of these
parameters are implicitly linked in finite-depth domains, such as the present problem.
We believe there is no unique way of obtaining different values of γ /s without altering
the tallness parameter or changing the properties of the incoming wave field.

4. Onshelf dynamics of internal boluses
The nonlinear internal boluses transport dense fluid as they propagate onshelf.

Therefore, an understanding of their propagation properties as well as their internal
structure is desirable. In what follows, we consider the propagation of a typical
well-developed nonlinear internal bolus (which would occur at high Fr) such as the
one depicted in figure 2(f ) and analyse its propagation speed as well as its internal
structure.

4.1. Bolus propagation speed

Figure 16 (a) shows a detail of the internal bolus shown in figure 2(f ), where we
have superposed the velocity field over the density field. A bolus speed Ub can be
defined as the speed at which the foremost point (the nose) of the bolus travels (this
is a common way of defining front speeds of gravity currents, see e.g. Simpson 1972;



152 S. K. Venayagamoorthy and O. B. Fringer

0.6

0.5

0.4

0.3

0.2

0.1

0

0.6

0.5

0.4

(a)

(b)

0.3

0.2

0.1

0

z—
ds

z—
ds

1.0 1.2 1.4 1.6 1.8 2.0 2.2

c hb

db

(x – xb)/ds

2 4 6 8 10 12 14 16 18
∆ρ/ρ0 × 103

Figure 16. Velocity vectors superimposed on the density contours in (a) a stationary reference
frame to show the amplification of onshore velocities at bolus locations, and (b) a frame that
moves with the wave to the right at speed c, showing the circulation within the core of the
bolus. This figure is an enlarged detail of the bolus shown in figure 2 at time t/T = 5.8. The
scale of the phase speed/bolus front speed is shown by the vector in the bottom right of
(b), where at this time c = Ub = 5.4 cm s−1. The cross-shore distances are measured from the
shelf break. All distances have been normalized by the shelf water depth ds . S denotes the
stagnation point; hb and db denote the heights of the stagnation point and the top of the bolus
above the lower boundary, respectively. Every other velocity vector is depicted for clarity.

Härtel, Meiburg & Necker 2000), i.e.

Ub =
dxb

dt
, (4.1)

where xb denotes the actual position of the nose of the bolus in the cross-shore
direction. The position of the nose as a function of time can be determined easily by
inspection of the density fields. We use a backward Euler approximation to calculate
Ub as a function of time (figure 17). An efficient method for computing Ub given only
the instantaneous velocity and density fields (as would be the case for data obtained
from field measurements) is to compute a phase speed c that minimizes the time
rate of change of the density field in a reference frame that moves with the wave
(Fringer & Street 2003). In this moving frame, the streamlines will be parallel to the
lines of constant density and c should therefore provide a good estimate of the bolus
propagation speed Ub. Fringer & Street (2003) indicate that a global measure of this
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Figure 17. The speed of propagation of an internal bolus, Ub , as a function of time for a
critical slope with Fr = 0.783 normalized by the first-mode phase speed c1. +, phase speed
Ub/c1 computed from the propagation distance of the nose of the bolus in time given by
equation (4.1); ◦, phase speed c/c1 computed by minimizing the time-rate of change of the
density field given by equation (4.3); *, the front speed from the empirical relationship of
Maxworthy et al. (2002), given by equation (4.5). The top x-axis shows the distance of the
nose of the bolus from the shelf break normalized by the shelf water depth ds .

time rate of change in a frame moving at speed c is given by the 2-norm

E2
2(c) =

∫
V

(
∂ρ

∂t

)2

dV =

∫
V

[
(u − c)

∂ρ

∂x
+ w

∂ρ

∂z

]2

dV, (4.2)

where V represents the volume of the computational domain containing the bolus.
The phase speed c can then be obtained by differentiating equation (4.2) with respect
to c, resulting in a phase speed that minimizes E2(c),

c =

∫
V

(uρx + wρz)ρx dV

/∫
V

ρ2
x dV . (4.3)

The velocity field in a translating system moving at this speed c indicates that the flow
aligns well with the isopycnals (figure 16b). As shown in figure 18, the streamlines in
this moving frame clearly demonstrate the bifurcation of the flow around the nose of
the bolus. The phase speed calculated using (4.3) is plotted in figure 17 as a function
of time, and the results show how the minimization technique is consistently 5–10 %
higher than Ub given by (4.1). This is because (4.3) assumes an inviscid flow field,
which is slightly inaccurate owing to the presence of the boundary layer that results
in the formation of a non-propagating tail at the rear end of the bolus.

Figure 17 shows that the bolus slows down significantly within one wave period.
During this period the bolus shrinks, as it loses its initial mass continuously owing to
drainage of dense fluid from the rear of the bolus as depicted by the time sequence in
figure 19. In the simplest and intuitive view, it appears that the bolus propagates as
a gravity current driven by a buoyancy force due to the presence of a density contrast,
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Figure 18. Streamlines in a frame that moves with the wave to the right at speed c, showing
the circulation within the core of the bolus at time t/T = 5.8.

1.0
(a) t/T = 5.7 (b)

0.5

0
0.4 0.9 1.4 1.8 0.9 1.4 1.9 2.4 1.4 1.9 2.4 2.9

z—
ds

1.0

0.5

0
1.9 2.3 2.8 3.3 2.3 2.7 3.2 3.7 2.7 3.1 3.5 4.1

z—
ds

1.0

0.5

0
3.1 3.5 4.1 4.5 3.5 4 4.5 4.9 3.9 4.4 4.9 5.3

z—
ds

2 4 6 8 10 12 14 16 18
∆ρ/ρ0 × 103

(x – xb)/ds (x – xb)/ds (x – xb)/ds

5.8 (c) 6.0

(d) (e) 6.26.1 ( f ) 6.3

(g) (h) 6.66.5 (i) 6.7

Figure 19. Time sequence showing the propagation of an internal bolus in a frame that
moves with the wave to the right at speeds Ub , given in figure 17. The cross-shore distances are
measured from the shelf break. All distances have been normalized by the shelf water depth
ds , and every other velocity vector is depicted for clarity.
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which diminishes as the bolus loses its mass and amplitude. The propagation
speed of the bolus can be compared to the onshelf speed of propagation of a
linear hydrostatic first-mode internal wave c1 = Nds/π (shown as a dashed line in
figure 17), and here we define the ratio Ub/c1 as the bolus Froude number Frb.
Initially and for up to a distance of nearly 3ds from the shelf break (where ds is
the onshelf water depth), the speed of the bolus is greater than c1 (i.e. Frb > 1),
a situation that is often described as supercritical in the propagation of gravity
currents (Long 1955; Maxworthy et al. 2002). During this phase of its propagation,
the bolus maintains its shape. However, later in time, as the bolus passes through
the critical point (Frb = 1, see figure 19e and beyond, the shape of the bolus changes
significantly as it begins to dissipate rather rapidly and propagates subcritically
(when Frb < 1). The three-dimensional density isosurfaces shown in figure 3 give us
insight into what happens during this period. In figures 3(d)–3(g), it can be seen
that there are no noticeable lateral variations in the structure of the bolus. On the
other hand, the presence of lateral instabilities can be seen in figure 3(h), and these
instabilities intensify in figure 3(i, j ). Soon after they cause the bolus to break down
into longitudinal vortices which dissipate rapidly (not shown). We speculate that the
mechanism behind this instability is similar to that which causes the classical lobe
and cleft instability in gravity currents flowing over a no-slip boundary, where heavy
fluid overruns light fluid and results in a Rayleigh–Taylor instability (for a detailed
discussion, see Simpson 1972, 1997).

The scaling of the propagation of gravity currents in a linearly stratified ambient
fluid has been investigated experimentally and numerically by Maxworthy et al. (2002)
and analytically for the inviscid case by Ungarish (2006). Maxworthy et al. (2002)
define a parameter R given by

R =
(ρc − ρ0)

(ρb − ρ0)
, (4.4)

where ρc is the initial density of the current, and ρb is the density at the bottom of
the linearly stratified water column. The ratio R hence provides a measure of the
strength of the current (ρc − ρ0) relative to the strength of stratification (ρb − ρ0).
They provide functional relationships for the Froude number as a function of R (see
figure 7 of their paper) for different ratios of the gravity current depth h to the water
depth H . For the bolus shown in figure 19, the ratio is initially close to 1/3 for which
they provide the relationship for the Froude number Frm = Vb/NH , as a function of
R as

Frm = 0.147 + 0.774 log(R), (4.5)

where Vb is the front propagation speed, N is the buoyancy frequency of the stratified
water column and H is the total water depth. The values of the bolus front speed
obtained using equation (4.5) are shown in figure 17. The agreement is remarkable,
especially when the flow is still supercritical. However, when the bolus is in the
subcritical regime, the speeds predicted by their relationship begin to deviate from the
general trend of the computed speeds outlined earlier. This is not so surprising since
the ratio h/H becomes much less than a third, below which equation (4.5) is not valid.
We also carried out a comparison of our results with the inviscid analytic results
given by Ungarish (2006) (not shown here). We find that the inviscid theory predicts
speeds that are at least 50 % higher than our speeds, possibly because of effects of low
Reynolds number in our simulations as well as the presence of the no-slip boundary
which is not accounted for in an inviscid analysis. This is consistent with the findings
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of Härtel et al. (2000), where they note that the Fr is higher for currents flowing over
slip boundaries, although the differences decrease with increasing Grashof numbers
Gr , which plays the role of a Reynolds number in their case.

4.2. Structure of an internal bolus

A typical snapshot of an internal bolus as depicted in figure 16(a) shows a striking
resemblance to the head of a gravity current flowing over a no-slip lower boundary
(see Simpson 1972; Simpson & Britter 1979). The nose of the bolus is raised slightly
above the bottom wall and in a frame moving with the bolus as shown in figure 16(b),
a stagnation point occurs at the nose around which the flow divides.

Figures 16(b) and 18 provide a better perspective of the circulation dynamics within
the interior of the bolus core as well as its immediate surroundings. The streamlines
in this moving reference frame as depicted in figure 18 show two circulation regions
within the bolus: the first is the more pronounced circulation in the upper part of
the bolus head where the circulation speeds are of order Ub as seen from figure 16(b).
In addition to this main circulation, a reverse smaller circulation occurs close to
the lower boundary that causes dense fluid to drain through the rear of the bolus.
This small layer of dense fluid draining at the lower end of the bolus (as shown
in figure 16b) can be thought of as another gravity current flowing in the reverse
direction (offshore) to the main current flowing onshore. The flow features observed
here are very similar to the flow characteristics of a typical gravity current head
as described by Simpson (1972, 1997) from his classical laboratory experiments of
gravity currents. Simpson (1972) provides an empirical scaling for the nose height as

hb/db = 0.61 Re−0.23
b , (4.6)

where hb is the height of the nose above the bottom, db is the maximum height of the
bolus (see figure 16b) and Reb = Ubdb/ν is the bolus Reynolds number. For the bolus
shown in figure 16, using a bolus front speed of Ub = 0.054 m s−1 and db = 80 mm,
with ν = 10−5 m2 s−1, gives hb/db � 0.15, compared to the actual ratio which is nearly
0.2. This is within the range of scatter of the data showing the variation of the nose
height as a function of Reynolds number in the work of Simpson & Britter (1979).

It is clear that there is a strong circulation region within the bolus. Furthermore, the
interaction of the incident wave with the slope generates a great deal of vorticity. In
order to determine whether the flow field contains vortex cores in both the slope region
as well as within the bolus, we use the λ2 method of Jeong & Hussain (1995), which
is an attractive and robust method for visualizing vortices. The method essentially
seeks a measure of the low pressure that exists inside a vortex. This is achieved by
calculating the median eigenvalue λ2 of the tensor, (SikSkj + ΩikΩkj ), where Sij is
the strain-rate (symmetric) tensor and Ωij is the rotation (antisymmmetric) tensor.
Since the tensor (SikSkj + ΩikΩkj ) is symmetric, it has only real eigenvalues (with
λ1 � λ2 � λ3). Hence, a vortex core can be defined as a zone where λ2 < 0 (for a
detailed discussion, see Jeong & Hussain 1995). Figure 20 shows the instantaneous
isosurfaces of λ2 at time t/T =5.8 for the bolus shown in figure 16. This figure shows
that the interaction process generates an intense vortex of dense fluid in the slope
region that moves upslope. Within the bolus itself, a larger vortex core exists in the
region where the strong upper circulation occurs and a smaller vortex core exists close
to the nose where the lower reverse weaker circulation occurs. This is more clearly
seen in the side view showing contours of λ2 superimposed over the density field as
depicted in figure 21.
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Figure 20. Instantaneous snapshot of vortex cores plotted as isosurfaces of λ2 < 0. The
isosurfaces shown are λ2 = −0.1, −0.2, −0.3 and −0.5, respectively. t/T = 5.8.
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Figure 21. Side view of figure 20 showing contours of λ2 < 0 (in black) superimposed over
the density field indicating the vortex cores onslope and within the bolus. t/T =5.8.

5. Concluding remarks
There have been many recent observations of nonlinear internal waves of elevation

in coastal waters, but it is not clear exactly what these features are with regard to their
generation mechanism, propagation and dissipation. This paper describes for the first
time a detailed study showing results on how internal waves interacting with sloping
boundaries lead to the formation of internal boluses. We have presented results from
highly resolved numerical simulations of the interaction of first-mode internal gravity
waves with a shelf break in two- and three-dimensional flows. The emphasis of this
study was to obtain an understanding of the interaction dynamics at the slope leading
to the formation of upslope-surging fronts of dense fluid that are ejected onshelf as
internal boluses.

Flow fields in the slope region reveal the complex flow patterns that occur when
highly nonlinear incident first-mode internal waves interact and reflect off the slope
and lead to the generation of internal boluses. Modal analysis results indicate the
generation of higher-mode waves when the mode-one incident wave field interacts
with the slope. There is a significant amount of wave energy in the second-mode at
the midslope region, which is transmitted onshelf by the internal boluses, while the
reflected energy offshore is exclusively in the first-mode. The strength of these boluses
enhances monotonically with the Froude number Fr, and the bolus formation data
shows that linear theory provides a lower bound for the region in which boluses
form (see figure 13). Furthermore, for an incoming highly nonlinear wave, the mass
transported by the bolus is optimal for slopes close to critical.

A detailed analysis of the propagation speeds of a typical internal bolus shows that
they essentially follow the scaling dynamics of gravity currents. The results in this
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paper demonstrate that there is reasonable agreement with predictions of speeds given
by Maxworthy et al. (2002) from their study of gravity currents in linearly stratified
fluids. The results also show that a bolus loses its mass faster once it transitions from
supercritical propagation to subcritical propagation, at which time three-dimensional
lateral instabilities become apparent. The circulation pattern within the core of the
bolus contains a strong upper circulation region with a lower reverse circulation
region that is very similar to the circulation observed in the head of a gravity current
flowing over a no-slip boundary. A three-dimensional simulation of the flow shows
the presence of closed cores (vortex cores) in the upper part of the internal bolus
where the main circulation is observed. The development of the classical lobe and
cleft instability at the nose of the bolus also occurs.

One view based on the present study is that the interaction of low-mode internal
waves with bathymetry can lead to the formation of boluses containing energy from
higher modes that have propagation properties similar to gravity currents. Discussion
of the mixing and dissipation resulting from the interaction process at the slope as
well as onshelf is left to a subsequent paper based on results from three-dimensional
simulations.
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