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Abstract
In this study, we design, evaluate, and compare multiple heuristic techniques for 
mission scheduling of distributed systems comprising unmanned aerial vehicles 
(UAVs) in energy-constrained dynamic environments. These techniques find effec-
tive mission schedules in real-time to determine which UAVs and sensors are 
used to surveil which targets. We develop a surveillance value metric to quantify 
the effectiveness of mission schedules, incorporating the amount and usefulness of 
information obtained from surveilling targets. We use the surveillance value metric 
in simulation studies to evaluate the heuristic techniques with a reality-based rand-
omized model. We consider two comparison heuristics, three value-based heuristics, 
and a metaheuristic that intelligently switches between the best value-based heuris-
tics. Additionally, preemption and filtering techniques are applied to further improve 
the metaheuristic. We show that, for all scenarios that we consider, the novel modi-
fied metaheuristics find solutions that are the best on average compared to all other 
techniques that we evaluate.

Keywords  Heuristic methods · Scheduling · Unmanned aerial vehicles · Dynamic 
mission planning

1  Introduction

Unmanned aerial vehicles (UAVs) are used in many environments to gather infor-
mation, such as in active battlefields scenarios. An example of such a scenario 
is shown in Fig. 1. In this example, seven UAVs form a distributed system that 
is being used to gather information about nine targets. We assume that a UAV 
can only surveil a single target at a time, so this is an oversubscribed scenario 
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because there are more targets than UAVs and it will not be possible to surveil all 
targets simultaneously with the fleet of UAVs. To gather as much useful informa-
tion about the targets as possible, it is necessary to conduct mission planning and 
scheduling to determine how the UAV fleet should effectively surveil the targets.

As both the number of UAVs that are active simultaneously and the number of 
targets available in an environment increase, it becomes necessary to reduce the 
amount of human control and human scheduling required to operate them effec-
tively [1]. This can be accomplished by designing and deploying heuristic tech-
niques that can find effective mission scheduling solutions.

In this study, our focus is on the design of mission scheduling techniques capa-
ble of working in dynamic environments that are suitable for determining effec-
tive mission schedules in real-time. Because scheduling problems of this type are, 
in general, known to be NP-Hard, finding optimal solutions is not feasible [2]. 
Due to this, we consider fast heuristic techniques to find mission schedules and 
evaluate their performance compared to other heuristics. These techniques find 
mission schedules for our scenarios in less than a second on average.

To effectively compare and evaluate these techniques, we measure system-
wide performance using a new metric called surveillance value. Surveillance 
value measures the overall performance of all information gathered by the UAVs, 
based on parameters such as the number of surveils that occur, the quality of 
information gathered by each surveil (e.g., image resolution), the importance of 
each target, and the relevance of the information obtained for a specific target. 
The novel contributions in this work include:

•	 The design of new mission scheduling heuristics that are used to dynamically 
determine which UAVs and sensors should be used to surveil each target;

•	 The modification of the heuristics using preemption and filtering techniques 
that enable more efficient utilization of the UAVs in a fleet;

Fig. 1   An example scenario 
with seven UAVs and nine tar-
gets. Arrows drawn from a UAV 
to a target signify that the target 
is currently under surveillance 
by the UAV
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•	 The construction of a model for a distributed system of UAVs surveilling tar-
gets in energy-constrained, dynamic scenarios where the value of each surveil 
can be quantified;

•	 The development of a novel system-wide performance measure of the informa-
tion gathered by all UAVs considering multiple factors;

•	 The creation of a model for randomly generating scenarios defined by a set of 
UAVs and targets for the purpose of evaluating mission scheduling techniques, 
such as the heuristics considered in this work;

•	 The analysis and comparison of heuristics across many varied simulated scenar-
ios.

This paper is organized as follows. In Sect. 2 the system model and environment 
are described. The methods used by both the novel mission scheduling heuristics 
and the comparison heuristics evaluated in this study are presented in Sect. 3. Sec-
tion  4 contains the specific process used to generate the scenarios we use in our 
simulations. In Sect. 5, we show the results of the simulations and use the results 
to analyze and compare the behavior and performance of the heuristics. Related 
work is discussed in Sect. 6 and finally, in Sect. 7, we conclude and discuss possible 
future work.

2 � System model

2.1 � Overview

The distributed system considered in this study consists of a heterogeneous set of 
UAVs (with varying sensor and energy characteristics) and a heterogeneous set of 
targets (with varying surveillance requirements). These sets of UAVs and targets 
are dynamic, meaning that UAVs and targets can be added or removed from the 
sets at any time. Additionally, specific characteristics of the UAVs and targets can 
change dynamically at any time. We make a simplifying assumption that every UAV 
is always close enough to every target and has an unobstructed view of every target 
so that any sensors available to a UAV can surveil any target at any time.

Because UAVs cannot stay airborne indefinitely, this work considers mission 
scheduling strategies for a single day. At the end of the day, all UAVs would be able 
to return to their base of operations to refuel or recharge. In this study, a UAV can 
only surveil a single target at any given time. The problem space we explore primar-
ily consists of oversubscribed systems, which means that there are fewer UAVs than 
targets. This will prevent all available targets from being surveilled simultaneously. 
While the majority of the environments in this study are oversubscribed, the tech-
niques we design and evaluate are still applicable to undersubscribed systems.
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2.2 � Target and UAV characteristics

In our environment, each UAV has a single energy source with a fixed amount 
of total energy available to it. In our subsequent discussions, we normalize this 
value so that the maximum amount of energy available to any UAV is less than or 
equal to 1.0. Every UAV is equipped with one or more sensors that can be used 
to surveil targets. The sensor types considered in this work are visible light sen-
sors (VIS), infrared light sensors (IR), synthetic-aperture radars (SAR), and light 
detection and ranging systems (LIDAR). Each UAV cannot have more than one 
sensor of a given type, which is a simplifying assumption in this work. The heu-
ristics presented in this study will function in environments with multiple sensors 
with the same type. Each sensor available to a UAV also has an associated sensor 
quality value ranging from 1 (worst) to 10 (best) and a rate of energy consump-
tion, which is normalized to the total energy available to the UAV and ranges 
from 0.0 to 1.0 normalized units of energy per hour. All sensors available to a 
UAV use the same energy source. The energy needed for the UAV’s fixed flight 
plan is not included in the energy available to the sensors in our model. An exam-
ple of UAV characteristics is shown in Table 1 for a fleet of four UAVs.

Targets represent locations of interest to be potentially surveilled by UAVs. 
A priority value is assigned to each target, which represents the overall impor-
tance of surveilling the target. Priority values are positive integers between 1 and 
10, where higher numbers represent more important targets. Each target has a 
surveillance time, which specifies the number of hours that a UAV should spend 
surveilling the target in a single surveil. Because the kind of information that is 
useful for each target may vary, targets have a set of allowed sensor types, which 

Table 1   UAV characteristics Characteristics UAV 1 UAV 2 UAV 3 UAV 4

Total energy 1.0 0.5 0.8 0.8
Sensor type VIS SAR | IR VIS | IR SAR | LIDAR
Energy
Consumption/hour 0.05 0.15 | 0.08 0.1 | 0.05 0.15 | 0.05
Sensor quality 7 7 | 5 9 | 3 7 | 4

Table 2   Target Characteristics

Characteristics Target 1 Target 2 Target 3 Target 4 Target 5 Target 6

Priority 3 4 5 6 8 10
Surveillance time 0.97 h 3.02 h 1.77 h 2.73 h 1.27 h 2.52 h
Allowed sensors SAR VIS | IR SAR | IR | LIDAR VIS | IR | LIDAR VIS | SAR 

| IR | 
LIDAR

VIS | IR

Sensor affinity 6 7 | 4 2 | 8 | 5 3 | 1 | 8 9 | 2 | 5 | 4 8 | 6
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constrains which sensors can surveil the target. Each of these allowed sensor 
types has an associated sensor affinity value, which range from 1 (worst) to 10 
(best) and measures how useful or relevant the information gained from that sen-
sor type is for the target. Table 2 contains target characteristics for an example set 
of six targets. Additionally, each target has a set of surveillance intervals, repre-
senting the time intervals in which a single surveil of the target should occur.

2.3 � Dynamic events

Characteristics of the UAVs and targets in a scenario can change dynamically during 
the day. For example, changes in the weather may affect the quality of information 
collected by certain sensor types, which can be modeled in this study by a change 
in the sensor affinity value for targets affected by this change in weather. We model 
this as a change in sensor affinity because the weather would be local to one or more 
targets and would affect the sensors of all UAVs surveilling that target.

The dynamic changes that we model for UAVs are: (a) adding and removing 
UAVs from the scenario, (b) removing sensor types from UAVs, and (c) modifying 
the sensor quality for sensors of the UAVs. The set of targets can also dynamically 
change: (a) new targets can be added or removed from the scenario, (b) priority of 
targets can be adjusted, (c) time that a target should be surveilled in a single surveil 
can be modified, (d) allowed sensor types can be added or removed from the target, 
and (e) sensor affinities for each allowed sensor type can be altered.

In this study, we assume that any dynamic changes are unexpected and that the 
techniques that assign UAVs to surveil targets have no information about (a) when 
the changes will happen, (b) which UAVs and targets will have their characteristics 
changed, and (c) which specific characteristics will be changed. Additionally, the 
specific intervals of time during the day when each target can be surveilled are not 
known in advance.

2.4 � Surveillance value

To evaluate the performance of different techniques for assigning UAVs to targets, it 
is necessary to measure the worth of individual surveils by a UAV on a target. For a 
UAV (u), target (t), and used sensor type (s) the value of a surveil ( �(u, s, t) ) is given 
by the product of the priority (ρ), sensor affinity (α), and sensor quality (γ):

The total surveillance value earned over an interval of time is then defined by the 
sum of values earned by all surveils performed by UAVs in that interval of time:

(1)value(�(u, s, t)) = �(t) ∗ �(t, s) ∗ �(u, s).

(2)
surveillance value =

∑

� ∈ surveils

performed

value(�).
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If a surveil is not fully completed, then a partial value will be earned for that sur-
veil, which is directly proportional to the fraction of the surveil that was completed. 
A partial surveil can occur when the target’s surveillance interval ends, the UAV 
runs out of energy, there are dynamic changes in the environment that stop the sur-
veil, or a heuristic preempts the surveil.

In the case where a characteristic of the target or UAV that affects the value of the 
surveil changes during the surveil, then the value of the surveil before the change 
is calculated as a partial surveil that ends when the change occurs. The value of the 
surveil after the change is similarly calculated as a partial surveil using the remain-
ing time until the end of the surveil or until another characteristic that would affect 
the value changes. For example, if during a five-hour surveil the priority of a target 
is doubled after three hours, then the value earned for the first three hours would be 
calculated as 60% of a full surveil using the initial priority and the value earned for 
the last two hours would be calculated as 40% of a full surveil using the doubled 
priority.

2.5 � Problem statement

The goal of our proposed scheduling heuristics is to maximize surveillance value 
obtained over a day. This problem is constrained by the total energy available to 
each UAV. In this study, this constraint is only applied to the energy consumed by a 
UAV’s sensors. Additionally, each UAV can only surveil one target and only operate 
one of its sensors at any time; similarly, at any point in time, each target can only be 
surveilled by one UAV. These are simplifying assumptions used in this study.

3 � Mission scheduling techniques

3.1 � Mapping events

Mapping UAVs to targets refers to the process of determining which UAVs will sur-
veil which targets, which sensors will be used for surveils, and when the surveils 
will occur. When preemption is not considered, a UAV is an available UAV to be 
mapped if it is not currently surveilling targets and has energy remaining, and a tar-
get is an available target to be mapped if it is not currently being surveilled and it is 
eligible for being surveilled based on its surveillance intervals. A sensor of a UAV 
is said to be a valid sensor type for a given target if that sensor type is also in the 
target’s list of allowed sensor types. If a UAV has a valid sensor type for a target, it 
is called a valid UAV for that target. Only valid UAVs are considered for mapping to 
a given available target.

The instant when a mapping of available UAVs to available targets occurs is 
called a mapping event. At a mapping event, a mission scheduling technique is used 
to assign available UAVs to surveil available targets based on the current state of 
the system. In this study, all techniques presented are real-time heuristics to allow 
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mapping events to be completed in less than a second on average for the problem 
sizes we consider. There are different techniques for deciding when a mapping event 
should be initiated, e.g., at fixed time intervals or due to changes in the environment. 
In this study, we consider the case where mapping events occur with a fixed time 
interval. Most of our simulations use a fixed time interval of five minutes. We exam-
ined the impact of this interval as a part of our simulations and found that other time 
intervals do not significantly improve performance. In a real-world implementation, 
this interval of time can be derived based on empirical evaluations of the character-
istics of the actual system.

3.2 � Comparison techniques

3.2.1 � Random

At a mapping event, the Random technique considers available targets in a random 
order. For each target, a random available valid UAV and a random valid sensor type 
of that UAV are selected. The selected UAV and sensor type are assigned to surveil 
the target. This results in both the target and the UAV becoming unavailable for new 
assignments until this new surveil completes. If there is no available UAV that has 
a valid sensor type for the target, then no UAV is assigned to the target. This repeats 
with the next target in the random ordering until there are no more assignments of 
UAVs to targets possible in the current mapping event.

3.2.2 � Random best sensor

The Random Best Sensor heuristic is similar to the Random technique, except that it 
uses knowledge about the sensor quality of UAVs and the sensor affinity of targets 
to make decisions that are likely to result in higher surveillance value. Like the Ran-
dom heuristic, available targets are considered in a random order and a UAV with a 
valid sensor type for this target is selected at random. Instead of selecting a random 
valid sensor type from the UAV, this heuristic chooses the sensor type with the max-
imum product of the UAV’s sensor quality and the target’s sensor affinity. Because 
both values are directly used along with the target’s priority in the calculation for the 
value of a surveil, this strategy will often select higher value surveils compared to 
the Random heuristic. Next, the same process used by the Random heuristic occurs: 
the UAV is assigned to surveil the target with this sensor type and the heuristic con-
tinues with the next randomly ordered target until no more assignments are possible.

3.3 � Value‑based heuristics

3.3.1 � Overview

The value-based heuristics in this study are designed to search through valid com-
binations of UAVs, targets, and sensor types to greedily assign UAVs to surveil tar-
gets based on the surveillance value performance measure. A valid combination is 
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represented by an available target, a valid available UAV for that target, and a valid 
sensor type of the UAV for the target.

3.3.2 � Max value

At a mapping event, the Max Value heuristic starts by finding a valid combination 
of a UAV, target, and sensor type that results in the maximum possible value for a 
single surveil. If there are multiple valid combinations with the same maximum pos-
sible value, then one of these combinations is selected arbitrarily. The heuristic then 
assigns the UAV from the selected combination to surveil the selected target with 
the selected sensor type. This process of finding the maximum value combination 
and starting a surveil based on the combination repeats until no more assignments of 
available UAVs to available targets are possible in the current mapping event.

3.3.3 � Max value per time

The Max Value Per Time heuristic is identical to Max Value except for one differ-
ence. Instead of selecting the valid combination that results in the maximum pos-
sible value for a surveil, Max Value Per Time instead selects the valid combination 
that results in the maximum possible value divided by surveillance time of the target 
(based on a complete surveil of the target).

3.3.4 � Max value per energy

The Max Value Per Energy heuristic is identical to Max Value except that instead of 
selecting the valid combination that results in the maximum possible value for a sur-
veil, Max Value Per Energy instead selects the valid combination that results in the 
maximum possible value per energy (VPE), equal to value divided by the projected 
energy consumed by the UAV for that surveil. The projected energy consumption 
can be easily calculated from the energy consumption rate of the selected sensor 
type and the surveillance time of the selected target (based on a complete surveil of 
the target). This general concept of performance per unit time and performance per 
unit of energy has been applied to similar problems in high-performance computing 
environments, e.g., [3, 4].

3.4 � Metaheuristic

The value-based heuristics described in Sect.  3.3 are designed to perform well 
in specific situations and using the wrong heuristic for a scenario could result in 
poor performance. Because there may be insufficient information to predict which 
heuristic should be used, we design a metaheuristic to intelligently combine the 
best performing value-based heuristics. This does not include the Max Value Per 
Time heuristic because in the scenarios we consider, Max Value Per Time never 
performs better than either Max Value or Max Value Per Energy on average. The 
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Metaheuristic uses a two-phase process to find good surveillance options. The gen-
eral strategy employed by this metaheuristic is illustrated in Fig. 2. The metaheuris-
tic keeps track of the historical rate of energy consumption of each UAV and will 
use either Max Value or Max Value Per Energy depending on whether the historical 
rate of energy consumption is above or below a linear rate of energy consumption 
that would result in running out of energy at the end of the 24-h period we consider.

In the first phase, the Metaheuristic selects a candidate target and valid sensor 
type for each UAV. The fraction of the day that has passed (δ) and the fraction 
of the UAV’s energy that has been consumed (ε) are used to determine if the 
strategy used by the Max Value or Max Value per Energy heuristic would be 
most effective. If δ > ε, energy is being consumed slowly and Max Value is used. 
Otherwise, the UAV has been consuming energy at a relatively high rate and 
the strategy from Max Value Per Energy can be used to make energy-efficient 
decisions. Based on this choice, either the valid combination using the UAV that 
results in the maximum possible value or the maximum possible value divided 
by energy consumed is selected as the best candidate combination for the cur-
rent UAV. The first phase ends when every UAV has a candidate combination 
selected. Note that multiple UAVs can select the same target as their candidate.

The second phase is used to determine which UAV from the first phase should 
be assigned to its candidate target and sensor type. Unlike the first phase, it is 
unnecessary to use strategies from multiple value-based heuristics in the sec-
ond phase. This is because energy is a constraint for individual UAVs and not 
for the overall system. At the system level, all that is relevant to maximizing 
surveillance value is the value of each surveil. Thus, we choose the UAV with 
a candidate combination that results in the maximum possible value earned by 
its corresponding surveil. This chosen UAV is assigned to surveil its target. This 
process of selecting candidates in the first phase and making an assignment of 
the best candidate in the second phase is repeated until no more assignments are 
possible in the current mapping event. An example of a mapping produced by 
the Metaheuristic is shown in Fig. 3.

Fig. 2   A visualization of 
the decision-making process 
employed by the Metaheuristic. 
If the current energy consump-
tion during the day of a UAV 
is below the linear energy con-
sumption line, then Max Value 
is used for the UAV at the cur-
rent mapping event. Otherwise, 
Max Value Per Energy (Max 
VPE) is used
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3.5 � Heuristic modifications

3.5.1 � Overview

We consider two modifications that can be applied to any of the previously 
described heuristics. One of these modifications allows the heuristics to preempt 
surveils and the other limits the options available to a heuristic to improve the 
chance that the heuristic makes optimal decisions.

3.5.2 � Preemption

Preemption is a modification to a heuristic that increases the number of choices 
available. Specifically, in addition to assigning available UAVs to available targets, 
the heuristic can stop any surveil that is currently in progress, which will cause the 
affected UAV and target to become immediately available. Because we assume that 
all UAVs are always able to begin surveilling any target immediately (see Sect 2.1), 
we do not consider any overhead time due to preempting the surveils.

This modification adjusts the greedy heuristics described in this section so that 
the set of available targets and UAVs includes all targets and UAVs as long as the 
new combination that will preempt an existing surveil is better in terms of the metric 
used by the heuristic (e.g., a surveil is better for Max Value if it earns more value).

Fig. 3   The mapping produced by the Metaheuristic for our example scenario in Tables  1 and 2. This 
mapping earns a total value of 5,660 during the 24 h we consider. The red lines represent the percent-
age of remaining energy for each UAV. Light green regions represent the surveillance intervals for each 
target and when a UAV has energy remaining. White regions represent when a UAV or target is not avail-
able. Dark green (UAV 1), purple (UAV 2), yellow (UAV 3), and blue (UAV 4) regions represent when a 
surveil is active using each specific UAV
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3.5.3 � Filtering

Filtering is a modification to a heuristic that reduces the number of choices avail-
able. Specifically, this modification is designed to control the rate of energy con-
sumption of each UAV so that it will run out of energy close to the end of the day. 
An example of the benefits of filtering is shown in Fig. 4. In this example, using the 
Max Value heuristic on its own would use up all the energy of the UAV before the 
first 12 h have passed. After the first surveil using Max Value has ended, the filtering 
technique detects that the UAV has been consuming energy quickly and will run out 
of energy before the end of the day and begins aggressively removing options from 
the heuristic, resulting in the UAV doing nothing. Near the end of the day, a high 
priority target arrives and there is still energy remaining to surveil the new target.

The first step of filtering is to calculate the fraction of the day that has passed 
(δ) and the fraction of the UAV’s energy that has been consumed (ε). We define 
the threshold factor (Ϝ) to be the unitless value ε / δ. The base VPE threshold (τ) is 
equal to the average VPE of all surveils so far for the UAV. Finally, the VPE thresh-
old (Τ) is equal to τ × Ϝ. At a mapping event, only surveils with VPE > Τ are consid-
ered for each UAV.

Fig. 4   A visualization of 
the decision-making process 
employed by the filtering 
technique. This modification is 
designed to prevent UAVs from 
using all of their energy quickly, 
which is useful when high prior-
ity targets would be available 
late in the day

Fig. 5   The mapping produced 
by the Metaheuristic with 
preemption and filtering for our 
example scenario in Tables 1 
and 2. This mapping earns a 
total of 7,374 value during the 
24 h we consider. This map-
ping combines the benefits of 
preemption to quickly switch 
to high priority targets and the 
benefits of filtering by conserv-
ing energy until later in the day 
compared to Fig. 3. Colors in 
this figure have the same mean-
ing as in Fig. 3
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With filtering, there will be some mapping events where a UAV will have all of 
its options removed. This is intentional, as sometimes there is benefit to doing noth-
ing when none of the targets available for a UAV to surveil are efficient options. In 
those cases, it is usually better to wait for an efficient option to appear and to leave 
the available targets for other UAVs that may have sensors that are a better fit for the 
sensor affinities of the targets. The effects of combining preemption and filtering are 
demonstrated in Fig. 5. When compared to Fig. 3, preemption and filtering allow the 
UAVs to spend most of the day surveilling the most efficient targets. For example, 
UAV 1 is not significantly constrained by energy and spends almost all of its time 
surveilling the high priority target 6; and UAV 3 is significant constrained by energy 
and spends most of the day surveilling target 5, which is efficient in terms of value 
per unit of energy consumed.

4 � Simulation setup

4.1 � Generation of baseline set of randomized scenarios

4.1.1 � Effect of energy consumption rate 

Each scenario that we use to evaluate the heuristics is defined by a set of UAV char-
acteristics and a set of target characteristics. To compare and evaluate the heuristics, 
we consider a wide variety of scenarios to understand the kinds of scenarios for 
which each heuristic is most effective.

We generate 10,000 baseline scenarios by sampling from probability distributions 
for the number of UAVs and targets in a scenario in addition to the value for each 
characteristic of the UAVs and targets. In each case, distributions are selected to 
attempt to model distributions of parameters that may occur in real-world environ-
ments. The details of these distributions are as follows.

4.1.2 � Generating UAVs

The number of UAVs available during the 24-h period of a scenario is sampled from 
a Poisson distribution with the Poisson parameter λ = 9. The characteristics of each 
UAV are then generated. The total energy available to the UAV is sampled from a 
beta distribution with a mean of 0.8 and a standard deviation of 15% of the mean. 
We use beta distributions for many parameters in this work because many of our 
UAV and target characteristics are fixed between a minimum and a maximum value. 
The energy consumption rate for each sensor is sampled from a beta distribution 
with a mean of 0.05 and a standard deviation of 50% of the mean. The total energy 
and energy consumption rates are sampled in this way so that UAVs can be expected 
to operate for an average of 16 h.

The number of sensors available to each UAV is generated by using a Rayleigh 
distribution with a scale parameter of 2. Any values below 1 are increased to 1 and 
any values above 4 are decreased to 4. The sensor type for each sensor is selected 
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using probabilities of 0.5, 0.2, 0.2, and 0.1 for the VIS, SAR, IR, and LIDAR sensor 
types, respectively. Because each UAV can only have one sensor of each type, a sen-
sor type that has been selected for a UAV is no longer a candidate for that UAV and 
the next sensor is chosen among the remaining sensor types after normalizing their 
probabilities so that the sum is 1.0. The quality of each sensor is found using a beta 
distribution with a mean of 0.6 and a standard deviation of 40% of the mean. This 
value is then truncated to an integer and is clamped between 1 and 10, inclusive, 
such that all UAVs have a sensor quality between 1 (worst) and 10 (best).

4.1.3 � Generating targets

The number of targets available to surveil during the 24-h period is obtained using a 
Poisson distribution with λ = 14. Because the number of UAVs was generated with 
λ = 9, these scenarios in general will be oversubscribed. The priority of each target is 
first sampled from a gamma distribution with a mean of 4 and a standard deviation 
of 60% of the mean. The same method described above for sensor qualities is then 
used to get integers between 1 (worst) and 10 (best). A gamma distribution was used 
here because the positive skew results in a slightly larger number of high priority 
targets instead of the highest priority having the smallest number of occurrences. To 
obtain the required surveillance time for each target, we use a uniform distribution 
ranging from 1 to 3 h.

Differing from what was used for UAVs, we obtain the number of allowed sensor 
types for each target by adding 1 to the value obtained from a binomial distribution 
with p = 0.5 and n = 3. The allowed sensor types selected to match this number are 
uniformly selected from VIS, SAR, IR, and LIDAR. To get the sensor affinity for 
each sensor type, we use a beta distribution with a mean of 0.7 and a standard devia-
tion of 30% of the mean and use the same method described above for sensor quali-
ties to get integers between 1 (worst) and 10 (best).

Surveillance intervals are arranged such that the average duration of an interval 
is three hours and the average time between two intervals is one hour. Starting from 
time 0, the start time of the first interval is found by sampling an exponential dis-
tribution with a mean of one hour and the end of the interval is found by sampling 
from a gamma distribution with a mean of three hours and a standard deviation 
of 20% of the mean. This same process is then repeated from the end of the first 
interval and continues until the next interval would start after the end of the day 
(24 h). Note that although these intervals are generated statically in advance, they 
are dynamic in our system model as described in Sect 2.3 and the heuristics are not 
aware of where the future intervals will be.

4.1.4 � Generating dynamic events

We utilize Poisson processes to generate the dynamic events for our scenarios. Pois-
son processes are commonly used to model the occurrences of independent events 
with a known mean rate. In our baseline set of scenarios, the expected rate of each 
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type of dynamic event is shown in Table 3. For each of the dynamic event types, we 
model an independent Poisson process where the time between each occurrence of 
an event of that type is sampled from an exponential distribution with λ equal to the 
expected rate of events of that type from Table 3.

Each dynamic event that occurs uses methods similar to those described earlier 
in this section to determine the specific dynamic changes that will occur. If a UAV 
or target is to be added to the scenario, then a new UAV or target is generated as 
described in Sects.  4.1.2 or 4.1.3, respectively. The other event types will affect 
existing UAVs or targets. For these event types, the UAV or target that is affected is 
selected randomly (using a uniform distribution).

If a sensor type would be removed from a UAV, that sensor type is selected 
randomly from the set of sensor types available on the UAV (using a uniform dis-
tribution). If the UAV only has one sensor type available, then this is equivalent 
to removing the UAV from the scenario. When the sensor qualities of a UAV are 
dynamically changed, they are resampled as described in Sect.  4.1.2 as if a new 
UAV were being created.

The process for changing the characteristics of a target is similar. If the event 
would affect the sensor affinity or allowed sensor types of a target, these are han-
dled in the same way as sensor quality and sensor types for a UAV, except that new 
allowed sensor types may be added to a target if it does not already allow all four 
sensor types that we model. When a new type is added, it is randomly selected from 
the sensor types that are currently not allowed on the target (using a uniform distri-
bution). When this is done, a sensor affinity for that type is also sampled for the type 
as described in Sect. 4.1.3. Finally, events that dynamically change either the prior-
ity or surveillance time of a target simply resample the quantities as described in in 
Sect. 4.1.3.

Table 3   Dynamic event rates Event type Rate 
(events 
per day)

Add a UAV 1
Remove a UAV 1
Remove a sensor from a UAV 0.5
Modify sensor qualities of a UAV 0.5
Add a target 2
Remove a target 2
Change the priority of a target 4
Change the surveillance time of a target 6
Add allowed sensor types to a target 6
Remove allowed sensor types from a target 6
Modify sensor affinities of a target 2
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4.2 � Generation of additional scenarios for parameter sweeps

Because the baseline set of 10,000 scenarios in Sect  4.1 may have characteristics 
that are favorable to the performance of individual heuristics, we use parameter 
sweeps to evaluate the heuristics in a diverse set of environments. We generate 20 
sets of 10,000 scenarios each for the parameter sweeps of six characteristics of the 
environment. The characteristics we vary are the mean number of targets in a sce-
nario (two sets in addition to the baseline), the mean number of UAVs in a scenario 
(two sets in addition to the baseline), the mean rate of energy consumption for sen-
sors (three sets in addition to the baseline), the mean rate at which dynamic events 
occur (three sets in addition to the baseline), the standard deviation of the priority 
of targets (four sets in addition to the baseline), and the fixed interval at which map-
ping events occur (five sets in addition to the baseline). The number of sets for each 
characteristic was selected such that the impact of each characteristic on the perfor-
mance of the heuristics is clearly demonstrated.

We examine the effect of varying the number of targets and number of UAVs by 
generating scenarios for the cases with λ values of 10, 14, and 18 for the number of 
targets, and 5, 9, and 13 for the number of UAVs. We vary the mean energy con-
sumption of sensors with scenarios where the mean is 0.05, 0.1, 0.15, and 0.2. The 
rate of dynamic events is varied by multiplying the rates given in Table 3 by 0, 1, 4, 
and 16. The coefficient of variation of target priority is varied between 0.2, 0.4, 0.6, 
0.8, and 1.0. Finally, to analyze the effect of the mapping interval, we consider map-
ping intervals of 1, 5, 10, 30, 60, and 120 min.

4.3 � Generation of large‑scale scenarios

We also generate a baseline set of 500 scenarios in the same way as the 10,000 
described in Sect. 4.1, except that the scenario is ten times as large on average. Spe-
cifically, all characteristics of the scenario are generated as described in Sect. 4.1, 
except that there is an average of 90 UAVs and 140 targets. In addition, the dynamic 
events are generated as described in Sect. 4.1.3, but with expected rates of events 
that are ten times as high as listed in Table 3. This baseline set of scenarios is then 
expanded following the same process described in Sect. 4.2 with the number of tar-
gets and UAVs scaled up by ten times. This set of scenarios is used to explore how 
effectively the heuristics scale when large scenarios are considered.

4.4 � Simulation platform

We implement the system described in Sect.  2 in an event-based simula-
tor using Python. The simulations were run in parallel using an AMD Ryzen 9 
3900X processor.



13879

1 3

Surveillance mission scheduling with unmanned aerial vehicles…

5 � Simulation results

5.1 � Results for randomized set of small scenarios

5.1.1 � Overview

As described in Sect.  4.2, the results shown in this section consist of parameter 
sweeps where the means of the distributions described in Sect. 4.1 are varied. Fig-
ure 6 is a violin plot, which shows the overall performance of each heuristic in all 
200,000 of the scenarios we generated in Sects. 4.1 and  4.2. This overview of our 
results indicates that the Metaheuristic is among the best value-based heuristics 
without preemption or filtering modifications. Additionally, when modified with 
preemption or filtering, the average performance of the Metaheuristic improves 
significantly.

5.1.2 � Effect of energy consumption rate

In Fig. 7, the subset of results where we vary the rate of energy consumption is 
shown. When the rate of energy consumption is low, the preemption modifica-
tion results in heuristics that perform significantly better than the others. This 
is because in scenarios where UAVs can surveil targets for the entire day with-
out running out of energy, it is most important to ensure that surveils on high 
priority targets begin as soon as possible with the UAVs that have high quality 
sensors with the best affinity for those targets. With preemption, heuristics can 
immediately start surveilling those targets with the optimal UAVs with no delay. 
When the rate of energy consumption increases, preemption still brings signifi-
cant benefits, but the filtering modification becomes more effective than preemp-
tion because it is also important to ensure that the energy of the UAVs that are 
best for high priority targets later in the day is conserved.

Fig. 6   A violin plot showing 
the difference between the 
surveillance value earned by 
each heuristic and the Random 
heuristic for the set of 200,000 
small scenarios described in 
Sects. 4.1 and  4.2. The mean 
difference for each heuristic is 
indicated by the black marker in 
each distribution
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When the rate of energy consumption is low (e.g., in the case with a mean 
energy consumption rate of 0.05 units of energy per hour), the filtering technique 
is less effective than preemption. A reason for this is because filtering causes the 
UAVs to sometimes not surveil any target to conserve energy and when the rate 
of energy consumption is very low, this can be counterproductive.

These results appear very different from Fig. 6 because Fig. 6 displays the dis-
tribution of results from all 200,000 of the small scenarios, while the scenarios 
shown in Fig. 7 are only 40,000 of those scenarios. The remaining 160,000 sce-
narios use a mean rate of energy consumption of 0.05 units of energy per hour, 
which matches the first set of bars in Fig. 7. When comparing this first set of bars 
to the overall results in Fig. 6, the pairwise relative performance of all heuristics 
appears similar.

Fig. 7   A comparison of the percentage increase in surveillance value earned when compared to the Ran-
dom heuristic in 10,000 small randomized scenarios. The mean rate of energy consumption per hour is 
varied from the baseline set of scenarios with a rate of 0.05 normalized units of energy per hour. Except 
for the rate of energy consumption, the other characteristics of the scenario use the values from the base-
line case described in Sect. 4.1. The 95% mean confidence intervals are shown for each bar

Fig. 8   A comparison of the per-
centage increase in surveillance 
value earned when compared to 
the Random heuristic in 10,000 
small randomized scenarios. 
The mean number of UAVs is 
varied from the baseline set 
of scenarios with a mean of 9 
UAVs. Except for the number of 
UAVs, the other characteristics 
of the scenario use the values 
from the baseline case described 
in Sect. 4.1. The 95% mean 
confidence intervals are shown 
for each bar
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5.1.3 � Effect of number of UAVs and targets

When the number of UAVs is varied as shown in Fig. 8, our results show that the 
Metaheuristic with preemption performs among the best heuristics in all cases. 
When there are many UAVs, energy is not a significant constraint because there 
will be unused UAVs still available when some UAVs start running out of energy, 
which results in similar relative performance of heuristics to the cases with a low 
rate of energy consumption shown in Fig. 7.

When the number of targets in each scenario is varied, the results are very sim-
ilar to varying the number of UAVs, except that trends seen when increasing the 
number of UAVs are instead seen when decreasing the number of targets. This is 
logical, because varying the number of UAVs and the number of targets are two 
different ways to vary the number of UAVs per target in a scenario.

Fig. 9   A comparison of the per-
centage increase in surveillance 
value earned when compared to 
the Random heuristic in 10,000 
small randomized scenarios. 
The coefficient of variation is 
varied from the baseline set of 
scenarios with coefficient of 
variation of 0.6. Except for this 
coefficient of variation, the other 
characteristics of the scenario 
use the values from the baseline 
case described in Sect. 4.1. The 
95% mean confidence intervals 
are shown for each bar

Fig. 10   A violin plot show-
ing the difference between the 
surveillance value earned by 
each heuristic and the Random 
heuristic for the set of 10,000 
large scenarios described in 
Sect. 4.3. The mean difference 
for each heuristic is indicated 
by the black marker in each 
distribution
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5.1.4 � Effect of coefficient of variation of target priorities

As the coefficient of variation of target priorities increases for the results in Fig. 9, 
there are three notable characteristics of the surveillance value earned by the heu-
ristics. First, the Random and Random Best Sensor heuristics perform equally 
for all five values of the coefficient of variation that we considered (0.2, 0.4, 0.6, 
0.8, and 1.0). This is expected because these heuristics select targets without con-
sidering priority. All value-based heuristics perform better as the coefficient of 
variation increases with the preemptive heuristics performing the best overall in 
all cases. The preemption and filtering modifications improve the most in perfor-
mance when the variance in priority increases because they help to ensure that all 
high priority targets are surveilled. However, the Metaheuristic with preemption 
is still among the best overall heuristics because it is more likely that high prior-
ity targets will become available while low priority targets are being surveilled in 
the scenarios with a higher coefficient of variation.

5.2 � Results for randomized set of large scenarios

The results in this subsection were generated using the set of large scenarios detailed 
in Sect 4.3. As shown in Fig. 10, the most significant differences between the over-
all results when compared to the smaller scenarios shown in Fig. 6 are that: (a) the 
Metaheuristic with both preemption and filtering is the best overall heuristic, (b) the 
filtering modification performs equal to preemption on its own when applied to the 
Metaheuristic, and (c) the performance of all value-based heuristics relative to Random 
has increased. Preemption performs well for the same reasons given in Sect. 5.1. The 
filtering modification performs significantly better in the larger scenarios because there 
is a larger number of UAVs and targets. This increases the chance that there are targets 
that have characteristics that are highly efficient for each UAV, which means it is more 
important to save energy to surveil those targets.

5.3 � Discussion of results

The results in Sects.  5.1 and 5.2 indicate that depending on the scenario, either Max 
Value or Max Value Per Energy is an effective real-time heuristic for maximizing sur-
veillance value. The Metaheuristic combines the strengths of both heuristics and is 
effective in all scenarios. When considering scenarios where the energy of UAVs will 
not be fully consumed during the day, Max Value Per Energy is ineffective. Based on 
these results, our proposed Metaheuristic is the best option to use in all cases where the 
characteristics of the scenario may change unexpectedly.

Additionally, the results demonstrate that both of our proposed modifications for the 
heuristics, preemption and filtering, improve performance of the Metaheuristic on aver-
age. The preemption modification always results in significant improvement in aver-
age surveillance value earned because it allows immediate response when options that 
would result in higher value surveils become available. For example, UAVs can imme-
diately begin surveilling high priority targets without completing their currently active 
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surveil first. The filtering modification performs extremely well in scenarios where 
a significant portion of the UAVs have options in the scenario that are significantly 
more efficient than others in terms of value earned per unit of energy consumed. This 
is because filtering conserves some of the energy for each UAV until later in the day 
when these efficient options that result in high surveillance value may be available.

In our simulations, mapping events for the slowest heuristic, the Metaheuristic with 
both preemption and filtering, took an average of less than 10 ms for each mapping to 
complete for the small set of scenarios and an average of less than 1 s each for the large 
set of scenarios. This demonstrates that any of these heuristics can be used to find mis-
sion schedules in real-time.

6 � Related work

Developing a complete mission schedule for UAVs involves solving multiple 
problems, many of which have been studied in the past such as planning the spe-
cific routes used by UAVs, which we do not consider in this study, and assigning 
specific tasks to UAVs. Some studies solve these problems through time-consum-
ing optimization techniques such as mixed integer linear programming (MILP), 
while others use techniques ranging from time-intensive metaheuristics like 
genetic algorithms (GAs) to fast and efficient greedy heuristics to find effective 
solutions.

In [5], mission planning is divided into two subproblems: task scheduling and 
route planning. The task scheduling problem is the one we consider in our study. 
The task scheduling problem is solved using an MILP approach to minimize the 
completion time of all tasks as opposed to our work that aims to maximize sur-
veillance value. Similarly, in [6] a swarm of UAVs is also optimized to perform 
tasks while minimizing total completion time using an MILP approach. In [7], 
UAVs are assigned to attack and attempt to destroy clusters of targets through 
expressing three objective measures into one weighted measure (the success prob-
ability of the attack, the cost of the attack as a function of fuel consumption and 
risk to the UAV, and how well the timing of the attack will match a desired win-
dow), which is used to apply integer programming methods to find a solution. No-
fly zones are considered in [8], which compares MILP and heuristic techniques to 
solve a task assignment problem where UAVs must complete a sequence of tasks. 
A solution here is represented by a directed acyclic graph (DAG). In [9], possible 
solutions for mapping a UAV to any combination of targets is represented by a 
decision tree, where moving from the root to a node represents assigning the UAV 
to the target corresponding to that node. A best first search (BFS) method is used 
to find solutions to this problem. In [10], a fleet of UAVs must be used to provide 
continuous 5G network coverage to the region of interest. The goal of this work 
is to determine both the required number of UAVs to guarantee coverage and to 
create a mission schedule for these UAVs. This is accomplished through a brute-
force combinatorial technique to find the optimal solution, which is applicable in 
this case due to the size of problems considered. The most significant difference 
between these studies and our work is that we consider scenarios where decisions 
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must be made in real-time throughout the day in a dynamic environment based on 
a mathematical model of a performance metric.

Mission planning for UAVs is sometimes studied as an orienteering problem 
[11, 12]. For example, in [11] the authors utilize a model where UAVs originate 
from a depot and gain profit from traveling a path through nodes and back to the 
depot. Robust optimization techniques are used to maximize profit while taking 
uncertainty into account to avoid running out of fuel early. This work differs sig-
nificantly from ours because distance between targets and UAVs is considered 
and the focus is on optimization of UAV movement instead of sensing. In [12], 
UAVs again depart from a depot, but before departure they can select a specific 
set of sensors, which will impact their weight and the information they can gather. 
The authors solve this problem using both an MILP approach when ample time is 
available for finding solutions and several heuristic techniques for larger prob-
lem sizes that cannot be solved in a reasonable amount of time using the MILP 
approach. Our work differs significantly from these studies in part because a full 
mission plan is generated by the MILP approach and it is not modified during 
the day. In our work, the heuristics dynamically schedule UAVs to assign targets 
many times throughout the day and these decisions depend on the current state of 
the scenario. Additionally, our work considers the energy consumption of each 
sensor, which can greatly impact scheduling decisions.

Some studies have a greater focus on motion planning of the UAVs [13–22]. 
For example, the homogenous UAVs in [21] form a swarm that must search for 
and destroy heterogenous mobile targets. A hybrid artificial potential field and ant 
colony optimization (HAPF-ACO) technique is developed and implemented, which 
allows the swarm to efficiently search the grid for targets while dynamically avoid-
ing collisions and threats. The pheromone levels for the ant colony optimization pre-
vent UAVs from searching specific areas excessively and the forces of the artificial 
potential field attract UAVs towards targets to attack them and repel the UAVs from 
hazards. In the simulated results, the HAPF-ACO technique performs significantly 
better in all metrics compared to the comparison techniques. The UAVs in [22] form 
search teams that explore an area and must periodically return to their base to refuel. 
To ensure continuous exploration of the target area, other UAVs in backup teams 
will be scheduled to arrive and switch with an active search team when a search 
team is scheduled to return to base to refuel. The goal of [22] is to minimize total 
fuel consumption, which is achieved through a brute force examination of many dif-
ferent time intervals for switching searching UAVs with backup UAVs. The focus 
on motion planning in these studies is outside the scope of our contribution in this 
work. Our focus is on characterizing UAVs, sensors, and targets to develop a math-
ematical model that can be used as a system-wide performance measure that quanti-
fies the success of surveils. We use this model as a basis for designing, evaluating, 
and comparing various dynamic mission scheduling heuristics through extensive 
simulation studies. Furthermore, in our study, the set of UAVs have heterogenous 
properties rather than being homogeneous.

When the environment can change dynamically, it is important to make use of 
mission scheduling strategies that can efficiently react to these changes. In [23], a 
decentralized strategy called the consensus-based bundle algorithm (CBBA) is 
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used to assign tasks to UAVs in a conflict-free manor. To adapt this algorithm to 
a dynamic environment where new tasks become available, the authors propose 
CBBA with local replanning (CBBA-LR). The CBBA-LR technique is shown to 
achieve equal performance in score to fully recalculating the CBBA solution from 
scratch for the environment after dynamic changes despite performing significantly 
less work. Some key differences between our work and [23] include that targets in 
our model can be partially surveilled to get partial value, the amount of surveilling 
a UAV can do is determined by the energy consumption of its sensors, and our mis-
sion schedules are determined by a centralized scheduler. In [23], tasks assigned to 
a UAV are always fully completed, the UAVs are limited by a maximum number of 
tasks they are allowed to complete, and the scheduler is decentralized.

7 � Conclusions and future work

We created a novel metric to quantity system-wide performance of a distributed 
system of UAVs surveilling targets in dynamic scenarios. To effectively compare 
mission schedules using simulations, we also detailed a model for generating ran-
domized scenarios where a heterogeneous set of UAVs surveils a set of heterog-
enous targets.

We designed a set of value-based heuristics used to conduct mission plan-
ning for UAV surveillance of a set of targets (Max Value, Max Value Per Time, 
Max Value Per Energy, and the Metaheuristic). We conducted a simulation study 
to evaluate, analyze, and compare these heuristics in a variety of scenarios. We 
found that while Max Value and Max Value Per Energy are each good heuristics 
for a subset of the scenarios considered, the Metaheuristic found solutions with 
among the highest surveillance value for all scenarios.

In addition, we developed two modifications to these heuristics to improve 
their performance (preemption and filtering). Our simulations demonstrate that 
both preemption and filtering can significantly improve the performance of our 
heuristics and can be combined to take advantage of the benefits provided by both 
modifications. We found that preemption is effective in all environments we con-
sidered and performs better than filtering on average; however, in environments 
where there is little energy available to the UAVs, the filtering modification per-
forms much better than the preemption modification. These results make it clear 
that it is an effective choice to always employ the preemption modification and 
that filtering should also be included in energy-constrained environments.

A major topic for future consideration is to also model the position of UAVs 
and targets, including taking into account the potential for UAVs to fly to and 
refuel at a base station to replenish their energy. New heuristics could be designed 
to take this option into account, such as a heuristic that compares the expected 
total value that the UAV could earn based on the currently known targets with 
and without refueling to determine if spending time to refuel would be worth 
it. Additionally, when considering the position of UAVs and targets, the model 
for surveillance value could be extended to take the distance between the UAV 
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sensor and target into account, because this can have an impact on the quality of 
information obtained by the sensor.
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