
979-8-3503-1175-4/23/$31.00 ©2023 IEEE 

Energy-Efficient Machine Learning Acceleration: 
From Technologies to Circuits and Systems 

Chukwufumnanya Ogbogu1, Madeleine Abernot2, Corentin Delacour2, Aida Todri-Sanial2,3, Sudeep Pasricha4, Partha Pratim Pande1. 
1School of EECS Washington State University, Pullman WA, USA. 2LIRMM, University of Montpellier, CNRS, France. 3Eindhoven 

University of Technology, Netherlands. 4Dept. of Electrical and Computer Engg., Colorado State University, Fort Collins, Colorado, USA 
1{c.ogbogu, pande}@wsu.edu, 2{madeleine.abernot,  corentin.delacour}@lirmm.fr, 3a.todri.sanial@tue.nl, 4sudeep@colostate.edu.

Abstract—Advanced computing systems have long been 

enablers for breakthroughs in Machine Learning (ML) 

algorithms either through sheer computational power or form-

factor miniaturization. However, as ML algorithms become 

more complex and the size of datasets increase, existing 

computing platforms are no longer sufficient to bridge the gap 

between algorithmic innovation and hardware design. With the 

rising needs of advanced algorithms for large-scale data analysis 

and data-driven discovery, and significant growth in emerging 

applications from the edge to the cloud, we need energy-

efficient, low-cost, high- performance, and reliable computing 

systems targeted for these applications. This paper presents the 

latest developments in oscillatory neural networks, optical 

computing, and memristive processing-in-memory (PIM) to 

address the various challenges in designing efficient computing 

systems specifically targeting ML applications. 

Keywords—optical neural networks, silicon photonics, 

oscillatory neural networks, ReRAM, GNNs 

I. INTRODUCTION 

Deep machine learning (ML) algorithms are employed in 
a wide variety of real-world applications, e.g., self-driving 
cars, medical diagnosis, network security, and industrial 
automation. Both training and inferencing of these deep ML 
models are computationally demanding tasks and are 
typically accomplished on the cloud. However, there is a 
growing necessity to implement deep learning on edge 
platforms due to privacy and security concerns, the need for 
user-specific customization, low latency, and real-time 
requirements (such as in augmented/virtual reality 
applications). However, implementing these applications on 
edge devices is challenging due to area and energy constraints. 
Addressing this necessitates suitable high-performance and 
energy efficient hardware support. In this paper, we present 
the salient features and design challenges with three emerging 
hardware paradigms, viz., oscillatory analog computation, 
optical computing, and memristive processing-in-memory 
(PIM). 

Computing with phase dynamics of coupled oscillators 
enables not only signal voltage amplitude reduction but 
brings massive parallelism allowing for fast computation 
with energy efficiency. We believe that analog computing 
based on coupled oscillatory neural networks might be what 
is needed for certain ML tasks running on edge devices that 
have latency and power constraints. Using phase dynamics 
allows for solving associative memory and combinatorial 
optimization types of problems with simple circuits that can 
enable more versatile edge AI functions. 

Optical computing has become an attractive substrate for 
accelerating emerging ML workloads due to the continued 
miniaturization of silicon photonics devices that also possess 
compatibility with CMOS fabrication. This paradigm 
combines light speed latencies for communication with light-

speed computational operations, such as matrix vector 
multiplications and summations, which can significantly 
improve performance and energy-efficiency when executing 
various types of ML algorithms.  

Resistive random-access memory (ReRAM) based 
processing-in-memory (PIM) architectures have been used to 
accelerate deep ML applications such as CNNs, RNNs, 
GNNs, transformers, etc. ReRAM-based systems are more 
area-efficient compared to their GPU counterparts and do not 
require expensive off-chip memory access due to the “in-
memory” nature of the ReRAM-based computation. The 
crossbar structure of ReRAM-based architectures enables 
efficient Matrix-Vector Multiplication (MVM) operations, 
which are ubiquitous in modern ML tasks.  

II. COMPUTATION WITH OSCILLATORY NEURAL NETWORKS 

In response to the challenges introduced by cloud 
computing, current research focuses on enabling ML at the 
edge, bringing ML capabilities closer to the data source, to 
reduce latency and minimize energy requirements.  

A solution takes inspiration from biology to design 
neuromorphic computing techniques, like Spiking Neural 
Networks [1]. In this work, we focus on another promising 
neuromorphic paradigm with Oscillatory Neural Networks 
(ONN) [2] inspired by brain oscillations. ONNs are networks 
of coupled oscillators computing with inherent parallel phase 
synchronisation of coupled oscillators. Phase computing 
encodes information in the phase relationship among 
oscillators. It allows to reduce power consumption by 
limiting the voltage amplitude. Low power and fast parallel 
ONN computing makes it attractive for edge AI [3].  

Using phase-computing ONNs, information is encoded in 
the phase relationship among oscillators. For example, for 
binary information, a logic ‘0’ is encoded with a 0° phase, 
while a logic ‘1’ is encoded with a 180° phase. ONN 
computation starts by initializing phases of each oscillator in 
the network from input data. Then, phases evolve depending 
on the coupling between oscillators, and stabilizes to a final 
phase state. The evolution of phases corresponds to the 
minimization of an intrinsic energy parameter, like in 
attractor networks [4]. The final phase state gives the network 
output information. Thus, the coupling among oscillators, 

 
Figure 1. Phase computing with coupled oscillatory neural networks. 
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defined by learning, is the main parameter to solve specific 
tasks efficiently. 

In the current state-of-the-art, ONNs are typically 
implemented using a fully connected (FC) architecture, 
utilizing unsupervised learning for auto-associative memory 
tasks similar to Hopfield networks, as illustrated in Fig. 1. 
This configuration allows the network to memorize patterns 
based on its connections and converge to a learned pattern 
when initialized with a corrupted input. FC-ONNs configured 
for pattern recognition have found applications in various 
domains. However, the FC-ONN architecture necessitates a 
large number of coupling elements, which increases 
quadratically with the number of neurons. For a network of 
N neurons, the number of synaptic elements required is given 
by N(N-1)/2, making large-scale implementation challenging. 
Additionally, while associative memory tasks are intriguing, 
the capacity of the network is often limited by unsupervised 
learning, restricting the number of patterns that can be 
efficiently learned and retrieved. Therefore, there is a 
pressing need to explore alternative architectures and 
applications that can be applied to ONNs. 

Recently, researchers have introduced two-layer ONN 
architectures that incorporate bidirectional and feedforward 
connections between layers while excluding connections 
among oscillators within the same layer [5]. These two-layer 
ONNs have been successfully utilized for image edge 
detection in the respective studies. Notably, the 
implementations in these works were digitally executed on 
FPGA platforms. However, it is important to highlight that 
achieving a feedforward ONN architecture using analog 
implementation is challenging, as the default nature of 
coupling among oscillators is bidirectional. 

A. Analog ONNs and combinatorial optimization 

As ONNs are dynamical systems, continuous-time analog 
architectures that follow the “let physics compute” principle, 
they are well suited for efficient ONN implementation. 
Analog ONNs naturally perform gradient descent of their 
energy function through time, without any algorithm and 
clock. This intrinsic minimization mechanism is appealing 
for many optimization tasks, especially for combinatorial 
optimization problems that are often Nondeterministic 
Polynomial time hard (NP-hard) and require the exploration 
of a solution space that scales exponentially. Thus, 
accelerating the search is crucial for large instances. ONN 
high parallelism is particularly promising for this task and can 
provide up to four orders of magnitude runtime improvement 
compared to CPUs [6]. As a matter of fact, all NP-complete 
problems can be reduced to finding the ground states of a 
corresponding Ising Hamiltonian, which in principle can be 
mapped to the ONN energy by relaxing the initial discrete 
variables to continuous phases [7]. 

In practice, various CMOS ONN solvers have been 
demonstrated [8] [9], the largest being a 1968-node ONN 
based on ring oscillators oscillating at 1 GHz [10]. Other 
approaches focus on reducing the oscillator and synapse 
footprint using novel devices such as magnetic tunnel 
junctions (MTJ), memristors, or transition metal oxide 
devices (TMO).  Vanadium dioxide (VO2) is an example of 
TMO device that has a hysteresis switching behaviour and 
produces oscillations at room temperature [11]. When scaled 
down to submicron dimensions, VO2-based oscillators are 

expected to reach very low energy consumptions down to 10 
fJ at 100 MHz [3], but yet remains to be demonstrated. 

Just like any other neural network, implementing densely 
connected ONNs is challenging. Most of current hardware 
limit the synaptic connections to nearest neighbours which 
overall necessitate more physical neurons than the initial 
network after mapping [10]. Moreover, finding the optimal 
network mapping to the hardware can cause an important 
computational overhead compared to the initial problem to 
solve [12]. Another interesting ONN capability is to emulate 
all-to-all connectivity using the injection of a modulated 
external signal [13]. This approach replaces the connectivity 
complexity by a modulation scheme which is also 
challenging to design, but could advantageously be 
performed off-chip. 

B. Digital ONN implementation for edge applications 

With all challenges related to analog ONN 
implementations, researchers also developed digital-based 
ONN implementations. [8] introduced a mixed signal 
implementation using digital oscillators with additional 
analog components, and more recently, a fully-digital ONN 
was implemented on FPGA to demonstrate ONN computing 
paradigm for AI edge applications [14]. 

The ONN on FPGA first demonstrated interesting 
properties to solve pattern recognition tasks based on the 
fully-connected recurrent architecture from Hopfield. In 
particular, a 10x6 fully-connected ONN was trained with 
images of digits and implemented inside the FPGA 
performing real-time pattern recognition from a camera 
stream [14]. An additional system architecture has also been 
proposed to allow on-chip unsupervised learning with the 
digital ONN design, being able to solve pattern recognition 
with on-chip Hebbian or Storkey learning implementation. 
Then, two cascaded fully-connected ONNs were used to 
perform obstacle avoidance on mobile robots. A first ONN 
detects obstacles from proximity sensor data, and a second 
ONN uses the detected obstacles to define a novel direction 
allowing real-time obstacle avoidance from proximity 
sensors dataflow [15].  

Later, the digital ONN implementation has been adapted 
to fit with layered architectures, considering bidirectional or 
feedforward synaptic connections, and was applied to the 
image edge detection application. Finally, recently, the ONN 
for image edge detection was proposed as an accelerator of 
the SIFT feature detection algorithm [16].  

Comparable to analog ONN, dense digital ONN 
implementation is challenging. The recently introduced 
layered architectures permits the implementation of larger 
scale ONNs, the investigation of novel general learning 
methods, and the exploration of novel edge applications.  

III. OPTICAL COMPUTING FOR ML ACCELERATION 

The gradual plateauing of improvement in performance-
per-watt with electronic ML accelerators in recent years has 
led to a widespread and urgent search for alternative 
computing technologies. One very promising technology that 
has emerged from this search is silicon photonics (SiPh), 
which involves the use of light to transmit data [17] [18]. 
Increasingly, SiPh components are being used to perform 
computations with data. Optical computing systems built 
with SiPh components are not constrained by the limits of 
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electron movement that hamper today’s electronic platforms. 
Instead, they rely on speedy photons for information transfer 
and manipulation. Such systems have the potential to 
revolutionize data-hungry ML application acceleration by 
providing ultra-fast data transfers and processing (e.g., 
multiply and accumulate, or Fast Fourier Transform 
operations) in the analog optical domain while consuming 
much less energy than traditional electronic computing [19].  

A. Photonic Devices and Circuits 

Non-coherent optical computing involves the use of 
multiple wavelengths that can perform parallel data transfers 
as well as operations such as matrix-vector operations 
concurrently [20]. Both data transfers and computation 
require the use of various optoelectronic components that can 
be fabricated in CMOS-compatible foundries.  

Lasers (off-chip or on-chip) are used to generate optical 
signals necessary for computation and communication in 
optical circuits. SiPh waveguides made of a core (Si) and a 
cladding (SiO2) material provide high-refractive-index 
contrast and allow for total internal reflection and hence 
optical signal confinement and transmission. Microring 
Resonators (MRs) involve a ring-shaped waveguide that is 
designed to be sensitive to a particular wavelength, referred 
to as the MR’s resonant wavelength. MRs are used for 
modulation and filtering data carrying wavelengths from 
optical interconnects. These same devices can also be used to 
perform computation via amplitude modulation on different 
wavelengths using a tuning circuit (which can be electro-
optic (EO) or thermo-optic (TO) [20]) that modifies the 
operational characteristics of the MRs. As an example, two 
parameters in an ML model that need to be multiplied can be 
deployed on MRs with the same resonant wavelength, along 
the same input waveguide. The first MR modulates the signal 
to represent the first parameter. The parameter specific 
amplitude modulation with the second MR results in a 
multiplication operation [21]. Lastly, photodetectors are used 
to detect optical signals and convert them to electrical signals. 

B. Low Power Optical Computing Design Challenges 

To achieve energy-efficient and low-power non-coherent 
optical computing, several challenges must be addressed. 
Fabrication-process variations (FPVs) and thermal variations 
create unintended changes in fabricated optoelectronic 
components, requiring power-hungry tuning circuits to 
mitigate their effects [22]. Tuning circuits also have high 
energy overheads due to their high latencies of operation. 
Thermal crosstalk arising due to such tuning circuits further 
reduces MR stability and increases energy consumption. 
Crosstalk between multiple wavelengths requires increasing 
laser power to overcome degradation in signal-to-noise ratio 
(SNR) [23]. Lastly, electro-optic conversions require power 

hungry analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs). All of these factors must be 
addressed during the design of an optical computing 
accelerator for ML.  

C. Cross-Layer Design for Optical Computing 

In [24], we proposed CrossLight, the first cross-layer 
optimized optical computing accelerator for ML workloads 
that included CNNs and DNNs.  

At the device level, we fabricated a 1.5×0.6 mm2 chip with 
high-resolution Electron Beam (EBeam) lithography and 
performed a comprehensive design-space exploration of MRs 
to compensate for FPVs while improving MR device 
insertion loss and Q-factor. We found that in an MR design 
of any radii and gap, when the input waveguide is 400 nm 
wide and the ring waveguide is 800 nm wide at room 
temperature (300 K), the undesired resonant wavelength shift 
due to FPVs can be reduced from 7.1 to 2.1 nm (70% 
reduction). This is a significant result, as these engineered 
MRs require less compensation for FPV-induced resonant 
wavelength shifts, which reduces the power consumption of 
architectures using such MRs.  

At the circuit level, we attempted to reduce the reliance on 
thermo-optic (TO) tuning circuits that create thermal 
crosstalk. We developed a hybrid tuning circuit where both 
thermo-optic (TO) and electro-optic (EO) tuning are used to 
compensate for resonant wavelength shifts due to FPVs and 
thermal variations. The hybrid tuning approach supports 
faster operation of MRs with fast EO tuning to compensate 
for small wavelength shifts and, using TO tuning when large 
wavelength shifts need to be compensated. This significantly 
reduces the energy overheads associated with MR operation. 
We further used a commercial 3D heat transport simulation 
EDA tool for SiPh devices (Lumerical HEAT) to determine 
phase crosstalk ratio to determine optimal inter-MR distance 
to minimize power consumption in TO microheaters. 

At the architecture level, we designed vector dot product 
(VDP) with banks of MRs for optical matrix multiplication. 
The VDP units were clustered into two groups: one to support 
convolution (CONV) layer acceleration and the other to 
support fully connected (FC) layer acceleration. We focused 
on these two types of layers as they are the most widely used 
and consume the most latency and power in computational 
platforms that execute CNNs and DNNs. We also optimized 
laser reuse across VDP units, optimized the dimensions and 
cluster sizes of VDPs, and proposed dataflow mechanisms to 
map computations to VDP units.  

Table 1 shows the energy-per-bit (EPB) and performance-
per-watt (in terms of thousands of image frames per second 
processed, per watt) for CrossLight compared to other SiPh-
based accelerators (HolyLight, DEAP_CNN) and electronic 
platforms. The cross-layer optimizations allow CrossLight to 
outperform the state-of-the-art ML accelerators, highlighting 
the promise of optical computing. 

D. Sparse and Quantized Optical Computing 

To limit the DAC and ADC power consumption, while 
sustaining model accuracy, in [25] we proposed the ROBIN 
optical ML accelerator for binarized neural networks (BNNs). 
BNNs use 1-bit weights, but activations use more bits (e.g., 4 
or 8) to preserve accuracy. As BNNs only require simple 
switching circuits for weight parameter representation and 

 
Figure 2: EPB for CNN models, across optical-domain accelerators 
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simpler DAC circuitry for activations, they lead to better 
energy efficiency. In [26], we proposed the HQNNA optical 
accelerator that supported heterogeneous quantization, where 
each layer in CNN/DNN models could be quantized uniquely 
between 2 to 8 bits. By allocating more bits to layers that are 
critical for preserving model accuracy, heterogeneous layer-
wise quantization can better balance model accuracy with 
energy costs. We improved computation orchestration via time 
division multiplexing and bit-slicing, and optimized laser 
power to aggressively reduce energy overheads in HQNNA. 
Fig. 2 shows how these optimizations allow HQNNA to 
achieve lower EPB than ROBIN as well as CrossLight.  

Another approach to reduce power involves leveraging 
sparsification. Sparsity in a DNN model refers to removal of 
weights (i.e., replacing them with 0s) which do not contribute 
to the overall accuracy of the model. This technique is often 
used to reduce memory footprint for ML models. But sparse 
models incur unwanted operations which lead to a 0 output 
because of the 0 valued weights involved. This leads to wasted 
energy consumption. Our work in [27] tackled this challenge 
by combining a dataflow mechanism for compressing sparse 
matrices to dense matrices along with better VDU design to 
handle any residual sparsity. These hardware/software 

codesign optimization helped achieve 27.6� lower EPB than 
state-of-the-art electronic and optical-domain accelerators. 

E. Emerging Use Cases for Optical Computing 

There are many opportunities to utilize optical computing 
to accelerate ML models beyond CNNs and DNNs.  

In [28], we proposed RecLight, the first optical 
accelerator for sequence learning tasks (e.g., network 
anomaly detection [29]) that involve Recurrent Neural 
Networks (RNNs). RNNs, which can include Gated 
Recurrent Units (GRUs) and Long Short-Term Memory 
(LSTM) cells, are challenging to accelerate due to the 
recursive nature of these models and the compute-intensive 
operations required for large-dimensional sequence data. We 
developed custom optical computing units that supported 
accelerating GRU and LSTM cell operations, as well as 
efficient optical-domain implementations of non-linear 
activation functions such as sigmoid and tanh. 

Large Language Models (LLMs), such as those used in 
OpenAI’s ChatGPT and Google’s Bard rely on transformer 
neural networks. These unique neural networks combine 
attention layers, feed-forward layers, and normalization 
layers to learn context and meaning by tracking relationships 
in data sequences. However, the complex structure of these 
models creates challenges for accelerating their execution. In 
[30] we proposed the first optical computing platform to 
accelerate a broad family of language-based and vision-based 
transformer models such as BERT and Vision Transformers. 

We adapted many of the cross-layer optimizations described 
earlier to the unique requirements of transformer models.  

IV. GNN TRAINING ON RERAM-BASED PIM ARCHITECTURE 

Training machine learning (ML) models at the edge 
(training on-chip or on embedded systems) can address many 
pressing challenges, including data privacy/security, increase 
the accessibility of ML applications to different parts of the 
world by reducing the dependence on the communication 
fabric and the cloud infrastructure, and meet the real-time 
requirements of emerging applications like 
augmented/virtual reality (AR/VR) applications. However, 
existing edge platforms do not have sufficient capabilities to 
support on-device training of  ML models such as 
Convolutional Neural Networks (CNNs), Graph Neural 
Networks (GNNs) etc. Moreover, it is estimated that training 
a single unpruned neural network on conventional compute 
platforms, such as GPUs, can cost over $10,000 and emit as 
much carbon as five cars over their lifetimes [31]. Resistive 
random-access memory (ReRAM) based processing-in-
memory (PIM) architectures are a promising solution to 
address this problem. ReRAM-based PIM systems have been 
proposed to accelerate both CNN and GNN computation [32]. 
The crossbar structure of ReRAM enables efficient Matrix-
Vector Multiplication (MVM), which is ubiquitous in 
modern ML tasks including CNN/GNN training and 
inferencing. In this section, we principally focus on 
discussing the advantages and challenges of designing 
ReRAM-based accelerators for GNN training. However, by 
considering area, power and storage, the overall architecture 
needs to be divided into multiple ReRAM tiles with bounded 
crossbar size. Hence, despite the PIM capability, when we 
design a ReRAM-based manycore architecture for large-
scale CNN/GNN computation, it gives rise to a substantial 
amount of on-chip traffic that creates performance 
bottlenecks if not addressed appropriately. Moreover, 
ReRAM crossbar arrays suffer from low write endurance [33] 
[34]. By incorporating model and graph pruning, we can 
reduce the on-chip traffic and storage requirements and 
improve the endurance of the ReRAM-based architectures 
significantly. ReRAM-based PIM architecture for GNN 
training.  

Recently, we have proposed a ReRAM-based 3D PIM 
architecture called ReMaGN, tailored for on-chip training of 
GNNs [32]. We adopt a 3D architecture to enable high degree 
of integration [35]. This architecture consists of multiple PEs 
stacked vertically across four layers as shown in Fig. 3. Each 
PE contains multiple ReRAM crossbar arrays for executing 
MVM operations. The salient features of the ReMaGN 
architecture are: 

Table 1: Average EPB and kiloFPS/Watt values across accelerators 

Accelerator Avg. EPB (pJ/bit) Avg. kiloFPS/watt 

P100 971.31 24.9 

IXP 9282 5099.68 2.39 

AMD-TR 5831.18 2.09 

DaDianNao 58.33 0.65 

Edge TPU 697.37 17.53 

Null Hop 2727.43 4.48 

DEAP_CNN 44453.88 0.07 

Holylight 274.13 3.3 

CrossLight 28.78 52.59 

 

 
Figure 3: Illustration of ReRAM-based 3D PIM Architecture [41]. 
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1. To effectively utilize the high-throughput computation 
provided by ReRAM-based PEs, the overall architecture 
needs to be supported with a high-performance and 
efficient communication backbone. In this architecture, 
we utilize a 3D mesh network-on-chip (NoC) as the 
interconnection backbone for communication between 
PEs during GNN training. We have reduced the NoC 
traffic by incorporating DropEdge and Dropout. 

2. ReMaGN employs a pipelined training methodology. 
Training GNNs on one big monolithic graph is often 
impractical due to memory concerns. In addition, 
training on large graphs does not exploit the benefits of 
ReRAM-based architectures, which rely on a pipelined 
implementation [32]. Pipelining reduces the number of 
ReRAM writes (which are slow), leading to higher 
overall throughput. However, this strategy is not 
amenable to GNNs if the entire graph needs to be 
processed altogether. Graph clustering/partitioning is 
used in ReMaGN to address this problem.  

3. Typically, ReRAMs compute using 16-bit fixed-point, 
which has significantly less representation capability 
than 32-bit floating point used by traditional GPUs. We 
have incorporated stochastic rounding to successfully 
address the accuracy loss due to reduced precision.  

4. ReMaGN outperforms conventional GPUs by up to 9.5X 
(on average 7.1X) in terms of execution time, while 
being up to 42X (on average 33.5X) more energy 
efficient without sacrificing accuracy. 

A.  Model and Data Pruning for GNN Training 

 To improve the performance and energy efficiency of 

ReRAM-based architectures without loss of accuracy, we 

proposed crossbar-aware pruning techniques to 

simultaneously prune the GNN model weights and the input 

data graphs. Model pruning for neural networks helps reduce 

redundant computations [36]. Several crossbar-aware model 

pruning techniques have been proposed to exploit the 

ReRAM crossbar structure to reduce area and improve energy 

efficiency without compromising accuracy [37]. However, 

all these methods prune pre-trained DNN models for 

inferencing purposes, hence they are not suited for training. 

Moreover, existing crossbar-aware methods prune weights 

along rows/columns only, which leads to marginal energy 

and area savings. Here, we generally refer to these crossbar 

row/column-based pruning methods as ‘RCP’. Fig. 4(a) 

illustrates how the weights when pruned using RCP are 

mapped to ReRAM crossbars. However, despite the 

structured row-/column-wise pruning in RCP, this only yields 

marginal energy savings as an entire crossbar is still activated 

for computation [38].  

 Recently, an iterative model pruning method known as 

the Lottery Ticket Hypothesis (LTH) was proposed to obtain 

highly sparse DNN models for training [39]. An LTH-

inspired unified graph sparsification (UGS) has also been 

used to prune GNN models and graph adjacency matrices 

[40]. UGS jointly prunes GNN weights and graph adjacency 

matrices using trainable masks to reduce the number of 

matrix-vector-multiplication (MVM) operations associated 

with GNN training. However, the graph pruning in UGS only 

removes the edges from the graph adjacency matrix and thus 

the overall size of the input (i.e., the number of input 

subgraphs) still remains unchanged. Additionally, UGS 

introduces huge storage overhead for mask parameters, 

which are proportional to the GNN weights and number of 

adjacency matrix entries. Moreover, existing LTH-based 

methods don’t take the ReRAM crossbar structure into 

consideration. As a result, there is no significant area or 

power savings. As an illustration, Fig. 4(b) shows how the 

GNN weights pruned using the standard LTH-based methods 

are mapped to ReRAM crossbars. The unstructured pruning 

nature of the LTH method only prunes individual weights and 

yields no significant advantage from a hardware standpoint.  
We have proposed an LTH-inspired crossbar-aware 

pruning method for GNN training on ReRAM-based 
architectures. Our method enhances existing RCP methods 
by taking the overall crossbar structure into consideration and 
implements the pruning in an iterative manner to ensure that 
the pruned GNN models can be trained from scratch without 
loss in accuracy. Fig 4(c) illustrates how weights are mapped 
to the ReRAM crossbars after they are pruned using our 
proposed crossbar-aware method. Unlike RCP, we can see 

that entire (c�c) crossbars are pruned out, which leads to 
significant area and energy savings. We complement the 
crossbar-aware weight pruning with an optimized non-zero-
storage mechanism for the graph adjacency matrix to further 
reduce the on-chip crossbar storage overhead as shown in Fig. 
4(d) [41]. The optimized graph storage is achieved by 
dividing the adjacency matrix into non-overlapping segments 
based on the crossbar size. The size of the sliding window is 
determined by the crossbar size (c × c) to decompose the 

N�N graph adjacency matrix into “valid” and “invalid” 
segments (as shown in green and red boxes in Fig. 4(d) 
respectively) for storing on ReRAM crossbar arrays. A valid 
segment contains at least a non-zero element and is stored on 
the crossbar. However, an invalid segment consists of all-
zeros and is discarded, as an MVM operation with zeros 

                           
(a)     (b)         (c)                     (d) 

Figure 4. Mapping weights to ReRAM crossbars after using (a) Traditional row/column-based crossbar-aware pruning (RCP) (b) Crossbar-unaware 

pruning (LTH and UGS) (c) DietGNN pruning. (d) optimized graph adjacency matrix storage technique in DietGNN [41].  
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mapped to ReRAM crossbars is redundant and only leads to 
zeros. As a result, this non-zero-storage optimization 
mechanism reduces the number of crossbars required for the 
adjacency matrix while maintaining the graph connectivity. 
We refer to our crossbar aware model pruning method and 
the optimized graph storage mechanism together as 
‘DietGNN’ henceforth (as proposed in [41]). Overall 
DietGNN enables energy-efficient GNN training and 
inferencing on ReRAM-based PIM architectures.  

In addition to DietGNN, we can further prune the input 
data graphs for GNN training on ReRAM-based architectures. 
Large training datasets pose a challenge for resource-
constrained platforms (such as edge devices) as they require 
high memory and processing power [42]. Recent work has 
proposed methods to reduce the amount of data required for 
training, generally referred to as data pruning (DP). An 
importance score-based data pruning methodology for CNNs 
was proposed to greatly reduce the amount of input data [43]. 
Graph Early Bird (GEB) prunes the edges of the input graphs 
to reduce MVM operations for GNN training very early 
during the training process [44]. Thus, the size of the input 
feature vector remains unchanged as only graph edges are 
pruned. In contrast to existing data pruning techniques for 
GNNs, our proposed method intelligently prunes large 
portions of an input graph (both nodes and edges) to reduce 
the end-to-end pipeline depth of GNN training on ReRAM-
based architectures.  

It is well known that ReRAM crossbar arrays suffer from 
low write endurance  [33] [34]. ReRAM cells become highly 
prone to permanent faults after a limited number of writes 
(typically 106 - 109 writes), thus limiting their lifetime. As 
graph pruning reduces the number of input subgraphs, it also 
helps to reduce the number of weight updates occurring 
during training. Hence, incorporating data pruning helps to 
preserve the lifetime of the ReRAM-based architecture and is 
complementary to existing reliability enhancement 
techniques such as gradient sparsification [34].     

For a comprehensive evaluation of DietGNN+DP, we have 
considered three diverse GNN models, namely: Graph 
Convolution Networks (GCN), Graph Attention Networks 
(GAT), and Graph Sample and Aggregate (GSA); and six 
benchmark real-world graph datasets: PPI, Reddit (RDT), 
Amazon2M (A2M), Flickr (FKR), Yelp (YLP), and Open 
Graph Benchmarks-Proteins (OGP)  [45]. In Fig. 5(a) and (b), 
we show the accuracy and achievable sparsity respectively of 
DietGNN+DP method relative to other pruning techniques 
(LTH, UGS and RCP). As an example, in Fig 5(a) and (b), 
we consider the GCN model pruned using each method, and 
mapped to the ReRAM-based PIM architecture for training. 
We note that we observe similar accuracy and sparsity trends 
with the other GNN models (GAT and GSA) across multiple 

datasets. As shown in Fig. 5(a), UGS is unable to prune a lot 
of weights without experiencing accuracy loss due to its 
deletion of graph edges hence it achieves lower sparsity. 
Overall, Fig. 5 shows that except for UGS, all the pruned 
models are very sparse (~90%), and they can be trained from 
scratch with very minimal accuracy (as shown in Fig. 5(b)) 
loss compared to their unpruned counterparts.  

Finally, we carry out a performance evaluation of the 
DietGNN+DP-enabled GNN training on the ReRAM-based 
PIM architecture. Fig 6(a) and (b) compare the DietGNN+DP 
method with; the unpruned counterpart, and other pruning 
approaches (UGS, RCP, and DietGNN alone) in terms of 
execution time and energy consumption. Here, we assume an 
iso-area scenario for this analysis, i.e., the number of ReRAM 
crossbars available is the same for all the cases. As shown in 
Fig. 6(a) and 6(b), the DietGNN+DP training improves 
execution time and energy consumption by ~57% and ~73% 
respectively on average compared to the unpruned model 
running on an iso-area ReRAM-based PIM architecture. 
Overall, the DietGNN+DP-enabled training achieves low 
energy- and storage-efficient GNN computation. The key 
highlights of the DietGNN+DP framework are summarized 
as follows: 

1.) DietGNN demonstrates that it is possible to prune 
more than 90% of GNN weights for diverse GNNs 
and real-world graph datasets.  

2.) The pruned GNNs enable significant energy savings 
(that is, crossbar diet) and performance 
improvements without sacrificing accuracy.  

3.) The experimental results demonstrate that 
DietGNN+DP accelerates GNN training by up to 

4.5 �   while using 6.6 �  less energy on average 
when compared to its unpruned counterpart on 
ReRAM-based 3D PIM architectures.  

B. Limitations of Existing ReRAM-based PIM Architectures  

Reliability of ReRAMs: The ReRAM fabrication process 
is not as mature as conventional CMOS fabrication [33]. As 
a result, ReRAMs are prone to many types of hardware faults 
and noise. For instance, hard faults prevent the resistance of 
a ReRAM cell from being updated, resulting in write failures. 
Moreover, the limited endurance of ReRAM cells makes 
them suffer from short programming cycles before they suffer 
permanent write failures. The write endurance of ReRAM 
chips typically ranges from 106 to 1012 writes before they 
fail [33]. However, training of state-of-the-art large-scale 
deep neural networks (DNN) usually demands numerous 
weight updates which result in multiple ReRAM cell 
programming cycles [46]. As a result, this limits the lifetime 
of ReRAM devices. Hence, enhancing the lifetime of 
ReRAM crossbars is important to facilitate their widespread 
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Figure 5: (a) Sparsity and (b) Accuracy of pruned GNN models (winning tickets) obtained using different methods. All models are trained on ReRAM 

crossbars. 
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adoption as hardware accelerators for DNN training. Recent 
efforts have tried to address the write endurance issue of 
ReRAM devices some of which include device-level 
optimizations and software-level approaches. However, most 
device-level methods aim at reducing only the per-write 
energy and do not reduce the actual number of writes. 
Meanwhile, software techniques focus solely on reducing the 
number of write operations due to weight updates; and do not 
consider ReRAM cell writes due to activations or 
intermediate products. Overall, these methods often 
introduce area, power, and performance overheads.  

Write Latency and Energy of ReRAMs: In addition to 
the write endurance challenge of ReRAM cells, they also 
suffer from high write energy (~2 nJ) and latency (~100 ns) 
compared to other Non-volatile Memory (NVM) 
technologies for PIM architectures. As a result, most 
ReRAM-based PIM platforms require traditional memory 
hierarchies and a pipelined implementation to efficiently hide 
the memory latency due to slow ReRAM writes. Researchers 
have explored parallel writes via bit-slicing as a technique to 
mitigate the expensive write operations during ML training, 
thus enabling ReRAM-based training architectures.   

Accelerating Large Language Models (LLMs): LLMs 
have achieved significant success in a wide variety of natural 
language processing (NLP) tasks. However, language tasks 
are increasingly becoming complex, and are fast outpacing 
the computing capabilities of traditional platforms such as 
GPUs and CPUs. This is due to their numerous parameters, 
high storage requirements, and significant off-chip data 
movement costs [47]. Hence, ReRAM-based PIMs have been 
proposed as an alternative for accelerating LLMs due to their 
high-density storage, in-memory processing capability, and 
energy-efficient computing capability. However, simple 
LLM tasks such as inferencing requires a significant number 
of write operations, and ReRAM-based PIMs are still plagued 
by the write endurance problem. Moreover, LLM inference 
tasks are usually time-critical applications. Thus, the high 
write latency of ReRAM cells can potentially limit its 
adaptability for LLM inferencing.  

V. CONCLUSION 

Advancement in novel ML algorithms and computing 
systems design is tightly coupled and advancement in one 
cannot be achieved without the other. However, the slowing 
down of Moore’s law has impacted the development of new 
computing platforms, which is detrimental to future 
developments and applications of ML. In this paper, we have 
discussed the benefits and challenges associated with three 
emerging hardware paradigms as enablers for designing 
energy-efficient and high-performance hardware 

architectures for accelerating various types of ML 
applications.  
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