
979-8-3503-1175-4/23/$31.00 ©2023 IEEE

Energy-Efficient Machine Learning Acceleration:
From Technologies to Circuits and Systems

Chukwufumnanya Ogbogu1, Madeleine Abernot2, Corentin Delacour2, Aida Todri-Sanial2,3, Sudeep Pasricha4, Partha Pratim Pande1.
1School of EECS Washington State University, Pullman WA, USA. 2LIRMM, University of Montpellier, CNRS, France. 3Eindhoven

University of Technology, Netherlands. 4Dept. of Electrical and Computer Engg., Colorado State University, Fort Collins, Colorado, USA
1{c.ogbogu, pande}@wsu.edu, 2{madeleine.abernot, corentin.delacour}@lirmm.fr, 3a.todri.sanial@tue.nl, 4sudeep@colostate.edu.

Abstract—Advanced computing systems have long been

enablers for breakthroughs in Machine Learning (ML)

algorithms either through sheer computational power or form-

factor miniaturization. However, as ML algorithms become

more complex and the size of datasets increase, existing

computing platforms are no longer sufficient to bridge the gap

between algorithmic innovation and hardware design. With the

rising needs of advanced algorithms for large-scale data analysis

and data-driven discovery, and significant growth in emerging

applications from the edge to the cloud, we need energy-

efficient, low-cost, high- performance, and reliable computing

systems targeted for these applications. This paper presents the

latest developments in oscillatory neural networks, optical

computing, and memristive processing-in-memory (PIM) to

address the various challenges in designing efficient computing

systems specifically targeting ML applications.

Keywords—optical neural networks, silicon photonics,

oscillatory neural networks, ReRAM, GNNs

I. INTRODUCTION

Deep machine learning (ML) algorithms are employed in
a wide variety of real-world applications, e.g., self-driving
cars, medical diagnosis, network security, and industrial
automation. Both training and inferencing of these deep ML
models are computationally demanding tasks and are
typically accomplished on the cloud. However, there is a
growing necessity to implement deep learning on edge
platforms due to privacy and security concerns, the need for
user-specific customization, low latency, and real-time
requirements (such as in augmented/virtual reality
applications). However, implementing these applications on
edge devices is challenging due to area and energy constraints.
Addressing this necessitates suitable high-performance and
energy efficient hardware support. In this paper, we present
the salient features and design challenges with three emerging
hardware paradigms, viz., oscillatory analog computation,
optical computing, and memristive processing-in-memory
(PIM).

Computing with phase dynamics of coupled oscillators
enables not only signal voltage amplitude reduction but
brings massive parallelism allowing for fast computation
with energy efficiency. We believe that analog computing
based on coupled oscillatory neural networks might be what
is needed for certain ML tasks running on edge devices that
have latency and power constraints. Using phase dynamics
allows for solving associative memory and combinatorial
optimization types of problems with simple circuits that can
enable more versatile edge AI functions.

Optical computing has become an attractive substrate for
accelerating emerging ML workloads due to the continued
miniaturization of silicon photonics devices that also possess
compatibility with CMOS fabrication. This paradigm
combines light speed latencies for communication with light-

speed computational operations, such as matrix vector
multiplications and summations, which can significantly
improve performance and energy-efficiency when executing
various types of ML algorithms.

Resistive random-access memory (ReRAM) based
processing-in-memory (PIM) architectures have been used to
accelerate deep ML applications such as CNNs, RNNs,
GNNs, transformers, etc. ReRAM-based systems are more
area-efficient compared to their GPU counterparts and do not
require expensive off-chip memory access due to the “in-
memory” nature of the ReRAM-based computation. The
crossbar structure of ReRAM-based architectures enables
efficient Matrix-Vector Multiplication (MVM) operations,
which are ubiquitous in modern ML tasks.

II. COMPUTATION WITH OSCILLATORY NEURAL NETWORKS

In response to the challenges introduced by cloud
computing, current research focuses on enabling ML at the
edge, bringing ML capabilities closer to the data source, to
reduce latency and minimize energy requirements.

A solution takes inspiration from biology to design
neuromorphic computing techniques, like Spiking Neural
Networks [1]. In this work, we focus on another promising
neuromorphic paradigm with Oscillatory Neural Networks
(ONN) [2] inspired by brain oscillations. ONNs are networks
of coupled oscillators computing with inherent parallel phase
synchronisation of coupled oscillators. Phase computing
encodes information in the phase relationship among
oscillators. It allows to reduce power consumption by
limiting the voltage amplitude. Low power and fast parallel
ONN computing makes it attractive for edge AI [3].

Using phase-computing ONNs, information is encoded in
the phase relationship among oscillators. For example, for
binary information, a logic ‘0’ is encoded with a 0° phase,
while a logic ‘1’ is encoded with a 180° phase. ONN
computation starts by initializing phases of each oscillator in
the network from input data. Then, phases evolve depending
on the coupling between oscillators, and stabilizes to a final
phase state. The evolution of phases corresponds to the
minimization of an intrinsic energy parameter, like in
attractor networks [4]. The final phase state gives the network
output information. Thus, the coupling among oscillators,

Figure 1. Phase computing with coupled oscillatory neural networks.

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Lo

w
 P

ow
er

 E
le

ct
ro

ni
cs

 a
nd

 D
es

ig
n

(IS
LP

ED
) |

 9
79

-8
-3

50
3-

11
75

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

LP
ED

58
42

3.
20

23
.1

02
44

36
0

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

defined by learning, is the main parameter to solve specific
tasks efficiently.

In the current state-of-the-art, ONNs are typically
implemented using a fully connected (FC) architecture,
utilizing unsupervised learning for auto-associative memory
tasks similar to Hopfield networks, as illustrated in Fig. 1.
This configuration allows the network to memorize patterns
based on its connections and converge to a learned pattern
when initialized with a corrupted input. FC-ONNs configured
for pattern recognition have found applications in various
domains. However, the FC-ONN architecture necessitates a
large number of coupling elements, which increases
quadratically with the number of neurons. For a network of
N neurons, the number of synaptic elements required is given
by N(N-1)/2, making large-scale implementation challenging.
Additionally, while associative memory tasks are intriguing,
the capacity of the network is often limited by unsupervised
learning, restricting the number of patterns that can be
efficiently learned and retrieved. Therefore, there is a
pressing need to explore alternative architectures and
applications that can be applied to ONNs.

Recently, researchers have introduced two-layer ONN
architectures that incorporate bidirectional and feedforward
connections between layers while excluding connections
among oscillators within the same layer [5]. These two-layer
ONNs have been successfully utilized for image edge
detection in the respective studies. Notably, the
implementations in these works were digitally executed on
FPGA platforms. However, it is important to highlight that
achieving a feedforward ONN architecture using analog
implementation is challenging, as the default nature of
coupling among oscillators is bidirectional.

A. Analog ONNs and combinatorial optimization

As ONNs are dynamical systems, continuous-time analog
architectures that follow the “let physics compute” principle,
they are well suited for efficient ONN implementation.
Analog ONNs naturally perform gradient descent of their
energy function through time, without any algorithm and
clock. This intrinsic minimization mechanism is appealing
for many optimization tasks, especially for combinatorial
optimization problems that are often Nondeterministic
Polynomial time hard (NP-hard) and require the exploration
of a solution space that scales exponentially. Thus,
accelerating the search is crucial for large instances. ONN
high parallelism is particularly promising for this task and can
provide up to four orders of magnitude runtime improvement
compared to CPUs [6]. As a matter of fact, all NP-complete
problems can be reduced to finding the ground states of a
corresponding Ising Hamiltonian, which in principle can be
mapped to the ONN energy by relaxing the initial discrete
variables to continuous phases [7].

In practice, various CMOS ONN solvers have been
demonstrated [8] [9], the largest being a 1968-node ONN
based on ring oscillators oscillating at 1 GHz [10]. Other
approaches focus on reducing the oscillator and synapse
footprint using novel devices such as magnetic tunnel
junctions (MTJ), memristors, or transition metal oxide
devices (TMO). Vanadium dioxide (VO2) is an example of
TMO device that has a hysteresis switching behaviour and
produces oscillations at room temperature [11]. When scaled
down to submicron dimensions, VO2-based oscillators are

expected to reach very low energy consumptions down to 10
fJ at 100 MHz [3], but yet remains to be demonstrated.

Just like any other neural network, implementing densely
connected ONNs is challenging. Most of current hardware
limit the synaptic connections to nearest neighbours which
overall necessitate more physical neurons than the initial
network after mapping [10]. Moreover, finding the optimal
network mapping to the hardware can cause an important
computational overhead compared to the initial problem to
solve [12]. Another interesting ONN capability is to emulate
all-to-all connectivity using the injection of a modulated
external signal [13]. This approach replaces the connectivity
complexity by a modulation scheme which is also
challenging to design, but could advantageously be
performed off-chip.

B. Digital ONN implementation for edge applications

With all challenges related to analog ONN
implementations, researchers also developed digital-based
ONN implementations. [8] introduced a mixed signal
implementation using digital oscillators with additional
analog components, and more recently, a fully-digital ONN
was implemented on FPGA to demonstrate ONN computing
paradigm for AI edge applications [14].

The ONN on FPGA first demonstrated interesting
properties to solve pattern recognition tasks based on the
fully-connected recurrent architecture from Hopfield. In
particular, a 10x6 fully-connected ONN was trained with
images of digits and implemented inside the FPGA
performing real-time pattern recognition from a camera
stream [14]. An additional system architecture has also been
proposed to allow on-chip unsupervised learning with the
digital ONN design, being able to solve pattern recognition
with on-chip Hebbian or Storkey learning implementation.
Then, two cascaded fully-connected ONNs were used to
perform obstacle avoidance on mobile robots. A first ONN
detects obstacles from proximity sensor data, and a second
ONN uses the detected obstacles to define a novel direction
allowing real-time obstacle avoidance from proximity
sensors dataflow [15].

Later, the digital ONN implementation has been adapted
to fit with layered architectures, considering bidirectional or
feedforward synaptic connections, and was applied to the
image edge detection application. Finally, recently, the ONN
for image edge detection was proposed as an accelerator of
the SIFT feature detection algorithm [16].

Comparable to analog ONN, dense digital ONN
implementation is challenging. The recently introduced
layered architectures permits the implementation of larger
scale ONNs, the investigation of novel general learning
methods, and the exploration of novel edge applications.

III. OPTICAL COMPUTING FOR ML ACCELERATION

The gradual plateauing of improvement in performance-
per-watt with electronic ML accelerators in recent years has
led to a widespread and urgent search for alternative
computing technologies. One very promising technology that
has emerged from this search is silicon photonics (SiPh),
which involves the use of light to transmit data [17] [18].
Increasingly, SiPh components are being used to perform
computations with data. Optical computing systems built
with SiPh components are not constrained by the limits of

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

electron movement that hamper today’s electronic platforms.
Instead, they rely on speedy photons for information transfer
and manipulation. Such systems have the potential to
revolutionize data-hungry ML application acceleration by
providing ultra-fast data transfers and processing (e.g.,
multiply and accumulate, or Fast Fourier Transform
operations) in the analog optical domain while consuming
much less energy than traditional electronic computing [19].

A. Photonic Devices and Circuits

Non-coherent optical computing involves the use of
multiple wavelengths that can perform parallel data transfers
as well as operations such as matrix-vector operations
concurrently [20]. Both data transfers and computation
require the use of various optoelectronic components that can
be fabricated in CMOS-compatible foundries.

Lasers (off-chip or on-chip) are used to generate optical
signals necessary for computation and communication in
optical circuits. SiPh waveguides made of a core (Si) and a
cladding (SiO2) material provide high-refractive-index
contrast and allow for total internal reflection and hence
optical signal confinement and transmission. Microring
Resonators (MRs) involve a ring-shaped waveguide that is
designed to be sensitive to a particular wavelength, referred
to as the MR’s resonant wavelength. MRs are used for
modulation and filtering data carrying wavelengths from
optical interconnects. These same devices can also be used to
perform computation via amplitude modulation on different
wavelengths using a tuning circuit (which can be electro-
optic (EO) or thermo-optic (TO) [20]) that modifies the
operational characteristics of the MRs. As an example, two
parameters in an ML model that need to be multiplied can be
deployed on MRs with the same resonant wavelength, along
the same input waveguide. The first MR modulates the signal
to represent the first parameter. The parameter specific
amplitude modulation with the second MR results in a
multiplication operation [21]. Lastly, photodetectors are used
to detect optical signals and convert them to electrical signals.

B. Low Power Optical Computing Design Challenges

To achieve energy-efficient and low-power non-coherent
optical computing, several challenges must be addressed.
Fabrication-process variations (FPVs) and thermal variations
create unintended changes in fabricated optoelectronic
components, requiring power-hungry tuning circuits to
mitigate their effects [22]. Tuning circuits also have high
energy overheads due to their high latencies of operation.
Thermal crosstalk arising due to such tuning circuits further
reduces MR stability and increases energy consumption.
Crosstalk between multiple wavelengths requires increasing
laser power to overcome degradation in signal-to-noise ratio
(SNR) [23]. Lastly, electro-optic conversions require power

hungry analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs). All of these factors must be
addressed during the design of an optical computing
accelerator for ML.

C. Cross-Layer Design for Optical Computing

In [24], we proposed CrossLight, the first cross-layer
optimized optical computing accelerator for ML workloads
that included CNNs and DNNs.

At the device level, we fabricated a 1.5×0.6 mm2 chip with
high-resolution Electron Beam (EBeam) lithography and
performed a comprehensive design-space exploration of MRs
to compensate for FPVs while improving MR device
insertion loss and Q-factor. We found that in an MR design
of any radii and gap, when the input waveguide is 400 nm
wide and the ring waveguide is 800 nm wide at room
temperature (300 K), the undesired resonant wavelength shift
due to FPVs can be reduced from 7.1 to 2.1 nm (70%
reduction). This is a significant result, as these engineered
MRs require less compensation for FPV-induced resonant
wavelength shifts, which reduces the power consumption of
architectures using such MRs.

At the circuit level, we attempted to reduce the reliance on
thermo-optic (TO) tuning circuits that create thermal
crosstalk. We developed a hybrid tuning circuit where both
thermo-optic (TO) and electro-optic (EO) tuning are used to
compensate for resonant wavelength shifts due to FPVs and
thermal variations. The hybrid tuning approach supports
faster operation of MRs with fast EO tuning to compensate
for small wavelength shifts and, using TO tuning when large
wavelength shifts need to be compensated. This significantly
reduces the energy overheads associated with MR operation.
We further used a commercial 3D heat transport simulation
EDA tool for SiPh devices (Lumerical HEAT) to determine
phase crosstalk ratio to determine optimal inter-MR distance
to minimize power consumption in TO microheaters.

At the architecture level, we designed vector dot product
(VDP) with banks of MRs for optical matrix multiplication.
The VDP units were clustered into two groups: one to support
convolution (CONV) layer acceleration and the other to
support fully connected (FC) layer acceleration. We focused
on these two types of layers as they are the most widely used
and consume the most latency and power in computational
platforms that execute CNNs and DNNs. We also optimized
laser reuse across VDP units, optimized the dimensions and
cluster sizes of VDPs, and proposed dataflow mechanisms to
map computations to VDP units.

Table 1 shows the energy-per-bit (EPB) and performance-
per-watt (in terms of thousands of image frames per second
processed, per watt) for CrossLight compared to other SiPh-
based accelerators (HolyLight, DEAP_CNN) and electronic
platforms. The cross-layer optimizations allow CrossLight to
outperform the state-of-the-art ML accelerators, highlighting
the promise of optical computing.

D. Sparse and Quantized Optical Computing

To limit the DAC and ADC power consumption, while
sustaining model accuracy, in [25] we proposed the ROBIN
optical ML accelerator for binarized neural networks (BNNs).
BNNs use 1-bit weights, but activations use more bits (e.g., 4
or 8) to preserve accuracy. As BNNs only require simple
switching circuits for weight parameter representation and

Figure 2: EPB for CNN models, across optical-domain accelerators

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

simpler DAC circuitry for activations, they lead to better
energy efficiency. In [26], we proposed the HQNNA optical
accelerator that supported heterogeneous quantization, where
each layer in CNN/DNN models could be quantized uniquely
between 2 to 8 bits. By allocating more bits to layers that are
critical for preserving model accuracy, heterogeneous layer-
wise quantization can better balance model accuracy with
energy costs. We improved computation orchestration via time
division multiplexing and bit-slicing, and optimized laser
power to aggressively reduce energy overheads in HQNNA.
Fig. 2 shows how these optimizations allow HQNNA to
achieve lower EPB than ROBIN as well as CrossLight.

Another approach to reduce power involves leveraging
sparsification. Sparsity in a DNN model refers to removal of
weights (i.e., replacing them with 0s) which do not contribute
to the overall accuracy of the model. This technique is often
used to reduce memory footprint for ML models. But sparse
models incur unwanted operations which lead to a 0 output
because of the 0 valued weights involved. This leads to wasted
energy consumption. Our work in [27] tackled this challenge
by combining a dataflow mechanism for compressing sparse
matrices to dense matrices along with better VDU design to
handle any residual sparsity. These hardware/software

codesign optimization helped achieve 27.6� lower EPB than
state-of-the-art electronic and optical-domain accelerators.

E. Emerging Use Cases for Optical Computing

There are many opportunities to utilize optical computing
to accelerate ML models beyond CNNs and DNNs.

In [28], we proposed RecLight, the first optical
accelerator for sequence learning tasks (e.g., network
anomaly detection [29]) that involve Recurrent Neural
Networks (RNNs). RNNs, which can include Gated
Recurrent Units (GRUs) and Long Short-Term Memory
(LSTM) cells, are challenging to accelerate due to the
recursive nature of these models and the compute-intensive
operations required for large-dimensional sequence data. We
developed custom optical computing units that supported
accelerating GRU and LSTM cell operations, as well as
efficient optical-domain implementations of non-linear
activation functions such as sigmoid and tanh.

Large Language Models (LLMs), such as those used in
OpenAI’s ChatGPT and Google’s Bard rely on transformer
neural networks. These unique neural networks combine
attention layers, feed-forward layers, and normalization
layers to learn context and meaning by tracking relationships
in data sequences. However, the complex structure of these
models creates challenges for accelerating their execution. In
[30] we proposed the first optical computing platform to
accelerate a broad family of language-based and vision-based
transformer models such as BERT and Vision Transformers.

We adapted many of the cross-layer optimizations described
earlier to the unique requirements of transformer models.

IV. GNN TRAINING ON RERAM-BASED PIM ARCHITECTURE

Training machine learning (ML) models at the edge
(training on-chip or on embedded systems) can address many
pressing challenges, including data privacy/security, increase
the accessibility of ML applications to different parts of the
world by reducing the dependence on the communication
fabric and the cloud infrastructure, and meet the real-time
requirements of emerging applications like
augmented/virtual reality (AR/VR) applications. However,
existing edge platforms do not have sufficient capabilities to
support on-device training of ML models such as
Convolutional Neural Networks (CNNs), Graph Neural
Networks (GNNs) etc. Moreover, it is estimated that training
a single unpruned neural network on conventional compute
platforms, such as GPUs, can cost over $10,000 and emit as
much carbon as five cars over their lifetimes [31]. Resistive
random-access memory (ReRAM) based processing-in-
memory (PIM) architectures are a promising solution to
address this problem. ReRAM-based PIM systems have been
proposed to accelerate both CNN and GNN computation [32].
The crossbar structure of ReRAM enables efficient Matrix-
Vector Multiplication (MVM), which is ubiquitous in
modern ML tasks including CNN/GNN training and
inferencing. In this section, we principally focus on
discussing the advantages and challenges of designing
ReRAM-based accelerators for GNN training. However, by
considering area, power and storage, the overall architecture
needs to be divided into multiple ReRAM tiles with bounded
crossbar size. Hence, despite the PIM capability, when we
design a ReRAM-based manycore architecture for large-
scale CNN/GNN computation, it gives rise to a substantial
amount of on-chip traffic that creates performance
bottlenecks if not addressed appropriately. Moreover,
ReRAM crossbar arrays suffer from low write endurance [33]
[34]. By incorporating model and graph pruning, we can
reduce the on-chip traffic and storage requirements and
improve the endurance of the ReRAM-based architectures
significantly. ReRAM-based PIM architecture for GNN
training.

Recently, we have proposed a ReRAM-based 3D PIM
architecture called ReMaGN, tailored for on-chip training of
GNNs [32]. We adopt a 3D architecture to enable high degree
of integration [35]. This architecture consists of multiple PEs
stacked vertically across four layers as shown in Fig. 3. Each
PE contains multiple ReRAM crossbar arrays for executing
MVM operations. The salient features of the ReMaGN
architecture are:

Table 1: Average EPB and kiloFPS/Watt values across accelerators

Accelerator Avg. EPB (pJ/bit) Avg. kiloFPS/watt

P100 971.31 24.9

IXP 9282 5099.68 2.39

AMD-TR 5831.18 2.09

DaDianNao 58.33 0.65

Edge TPU 697.37 17.53

Null Hop 2727.43 4.48

DEAP_CNN 44453.88 0.07

Holylight 274.13 3.3

CrossLight 28.78 52.59

Figure 3: Illustration of ReRAM-based 3D PIM Architecture [41].

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

1. To effectively utilize the high-throughput computation
provided by ReRAM-based PEs, the overall architecture
needs to be supported with a high-performance and
efficient communication backbone. In this architecture,
we utilize a 3D mesh network-on-chip (NoC) as the
interconnection backbone for communication between
PEs during GNN training. We have reduced the NoC
traffic by incorporating DropEdge and Dropout.

2. ReMaGN employs a pipelined training methodology.
Training GNNs on one big monolithic graph is often
impractical due to memory concerns. In addition,
training on large graphs does not exploit the benefits of
ReRAM-based architectures, which rely on a pipelined
implementation [32]. Pipelining reduces the number of
ReRAM writes (which are slow), leading to higher
overall throughput. However, this strategy is not
amenable to GNNs if the entire graph needs to be
processed altogether. Graph clustering/partitioning is
used in ReMaGN to address this problem.

3. Typically, ReRAMs compute using 16-bit fixed-point,
which has significantly less representation capability
than 32-bit floating point used by traditional GPUs. We
have incorporated stochastic rounding to successfully
address the accuracy loss due to reduced precision.

4. ReMaGN outperforms conventional GPUs by up to 9.5X
(on average 7.1X) in terms of execution time, while
being up to 42X (on average 33.5X) more energy
efficient without sacrificing accuracy.

A. Model and Data Pruning for GNN Training

 To improve the performance and energy efficiency of

ReRAM-based architectures without loss of accuracy, we

proposed crossbar-aware pruning techniques to

simultaneously prune the GNN model weights and the input

data graphs. Model pruning for neural networks helps reduce

redundant computations [36]. Several crossbar-aware model

pruning techniques have been proposed to exploit the

ReRAM crossbar structure to reduce area and improve energy

efficiency without compromising accuracy [37]. However,

all these methods prune pre-trained DNN models for

inferencing purposes, hence they are not suited for training.

Moreover, existing crossbar-aware methods prune weights

along rows/columns only, which leads to marginal energy

and area savings. Here, we generally refer to these crossbar

row/column-based pruning methods as ‘RCP’. Fig. 4(a)

illustrates how the weights when pruned using RCP are

mapped to ReRAM crossbars. However, despite the

structured row-/column-wise pruning in RCP, this only yields

marginal energy savings as an entire crossbar is still activated

for computation [38].

 Recently, an iterative model pruning method known as

the Lottery Ticket Hypothesis (LTH) was proposed to obtain

highly sparse DNN models for training [39]. An LTH-

inspired unified graph sparsification (UGS) has also been

used to prune GNN models and graph adjacency matrices

[40]. UGS jointly prunes GNN weights and graph adjacency

matrices using trainable masks to reduce the number of

matrix-vector-multiplication (MVM) operations associated

with GNN training. However, the graph pruning in UGS only

removes the edges from the graph adjacency matrix and thus

the overall size of the input (i.e., the number of input

subgraphs) still remains unchanged. Additionally, UGS

introduces huge storage overhead for mask parameters,

which are proportional to the GNN weights and number of

adjacency matrix entries. Moreover, existing LTH-based

methods don’t take the ReRAM crossbar structure into

consideration. As a result, there is no significant area or

power savings. As an illustration, Fig. 4(b) shows how the

GNN weights pruned using the standard LTH-based methods

are mapped to ReRAM crossbars. The unstructured pruning

nature of the LTH method only prunes individual weights and

yields no significant advantage from a hardware standpoint.
We have proposed an LTH-inspired crossbar-aware

pruning method for GNN training on ReRAM-based
architectures. Our method enhances existing RCP methods
by taking the overall crossbar structure into consideration and
implements the pruning in an iterative manner to ensure that
the pruned GNN models can be trained from scratch without
loss in accuracy. Fig 4(c) illustrates how weights are mapped
to the ReRAM crossbars after they are pruned using our
proposed crossbar-aware method. Unlike RCP, we can see

that entire (c�c) crossbars are pruned out, which leads to
significant area and energy savings. We complement the
crossbar-aware weight pruning with an optimized non-zero-
storage mechanism for the graph adjacency matrix to further
reduce the on-chip crossbar storage overhead as shown in Fig.
4(d) [41]. The optimized graph storage is achieved by
dividing the adjacency matrix into non-overlapping segments
based on the crossbar size. The size of the sliding window is
determined by the crossbar size (c × c) to decompose the

N�N graph adjacency matrix into “valid” and “invalid”
segments (as shown in green and red boxes in Fig. 4(d)
respectively) for storing on ReRAM crossbar arrays. A valid
segment contains at least a non-zero element and is stored on
the crossbar. However, an invalid segment consists of all-
zeros and is discarded, as an MVM operation with zeros

(a) (b) (c) (d)

Figure 4. Mapping weights to ReRAM crossbars after using (a) Traditional row/column-based crossbar-aware pruning (RCP) (b) Crossbar-unaware

pruning (LTH and UGS) (c) DietGNN pruning. (d) optimized graph adjacency matrix storage technique in DietGNN [41].

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

mapped to ReRAM crossbars is redundant and only leads to
zeros. As a result, this non-zero-storage optimization
mechanism reduces the number of crossbars required for the
adjacency matrix while maintaining the graph connectivity.
We refer to our crossbar aware model pruning method and
the optimized graph storage mechanism together as
‘DietGNN’ henceforth (as proposed in [41]). Overall
DietGNN enables energy-efficient GNN training and
inferencing on ReRAM-based PIM architectures.

In addition to DietGNN, we can further prune the input
data graphs for GNN training on ReRAM-based architectures.
Large training datasets pose a challenge for resource-
constrained platforms (such as edge devices) as they require
high memory and processing power [42]. Recent work has
proposed methods to reduce the amount of data required for
training, generally referred to as data pruning (DP). An
importance score-based data pruning methodology for CNNs
was proposed to greatly reduce the amount of input data [43].
Graph Early Bird (GEB) prunes the edges of the input graphs
to reduce MVM operations for GNN training very early
during the training process [44]. Thus, the size of the input
feature vector remains unchanged as only graph edges are
pruned. In contrast to existing data pruning techniques for
GNNs, our proposed method intelligently prunes large
portions of an input graph (both nodes and edges) to reduce
the end-to-end pipeline depth of GNN training on ReRAM-
based architectures.

It is well known that ReRAM crossbar arrays suffer from
low write endurance [33] [34]. ReRAM cells become highly
prone to permanent faults after a limited number of writes
(typically 106 - 109 writes), thus limiting their lifetime. As
graph pruning reduces the number of input subgraphs, it also
helps to reduce the number of weight updates occurring
during training. Hence, incorporating data pruning helps to
preserve the lifetime of the ReRAM-based architecture and is
complementary to existing reliability enhancement
techniques such as gradient sparsification [34].

For a comprehensive evaluation of DietGNN+DP, we have
considered three diverse GNN models, namely: Graph
Convolution Networks (GCN), Graph Attention Networks
(GAT), and Graph Sample and Aggregate (GSA); and six
benchmark real-world graph datasets: PPI, Reddit (RDT),
Amazon2M (A2M), Flickr (FKR), Yelp (YLP), and Open
Graph Benchmarks-Proteins (OGP) [45]. In Fig. 5(a) and (b),
we show the accuracy and achievable sparsity respectively of
DietGNN+DP method relative to other pruning techniques
(LTH, UGS and RCP). As an example, in Fig 5(a) and (b),
we consider the GCN model pruned using each method, and
mapped to the ReRAM-based PIM architecture for training.
We note that we observe similar accuracy and sparsity trends
with the other GNN models (GAT and GSA) across multiple

datasets. As shown in Fig. 5(a), UGS is unable to prune a lot
of weights without experiencing accuracy loss due to its
deletion of graph edges hence it achieves lower sparsity.
Overall, Fig. 5 shows that except for UGS, all the pruned
models are very sparse (~90%), and they can be trained from
scratch with very minimal accuracy (as shown in Fig. 5(b))
loss compared to their unpruned counterparts.

Finally, we carry out a performance evaluation of the
DietGNN+DP-enabled GNN training on the ReRAM-based
PIM architecture. Fig 6(a) and (b) compare the DietGNN+DP
method with; the unpruned counterpart, and other pruning
approaches (UGS, RCP, and DietGNN alone) in terms of
execution time and energy consumption. Here, we assume an
iso-area scenario for this analysis, i.e., the number of ReRAM
crossbars available is the same for all the cases. As shown in
Fig. 6(a) and 6(b), the DietGNN+DP training improves
execution time and energy consumption by ~57% and ~73%
respectively on average compared to the unpruned model
running on an iso-area ReRAM-based PIM architecture.
Overall, the DietGNN+DP-enabled training achieves low
energy- and storage-efficient GNN computation. The key
highlights of the DietGNN+DP framework are summarized
as follows:

1.) DietGNN demonstrates that it is possible to prune
more than 90% of GNN weights for diverse GNNs
and real-world graph datasets.

2.) The pruned GNNs enable significant energy savings
(that is, crossbar diet) and performance
improvements without sacrificing accuracy.

3.) The experimental results demonstrate that
DietGNN+DP accelerates GNN training by up to

4.5 � while using 6.6 � less energy on average
when compared to its unpruned counterpart on
ReRAM-based 3D PIM architectures.

B. Limitations of Existing ReRAM-based PIM Architectures

Reliability of ReRAMs: The ReRAM fabrication process
is not as mature as conventional CMOS fabrication [33]. As
a result, ReRAMs are prone to many types of hardware faults
and noise. For instance, hard faults prevent the resistance of
a ReRAM cell from being updated, resulting in write failures.
Moreover, the limited endurance of ReRAM cells makes
them suffer from short programming cycles before they suffer
permanent write failures. The write endurance of ReRAM
chips typically ranges from 106 to 1012 writes before they
fail [33]. However, training of state-of-the-art large-scale
deep neural networks (DNN) usually demands numerous
weight updates which result in multiple ReRAM cell
programming cycles [46]. As a result, this limits the lifetime
of ReRAM devices. Hence, enhancing the lifetime of
ReRAM crossbars is important to facilitate their widespread

(a) (b)

Figure 5: (a) Sparsity and (b) Accuracy of pruned GNN models (winning tickets) obtained using different methods. All models are trained on ReRAM

crossbars.

20

40

60

80

100

PPI RDT A2M FKR YLP

S
p

a
rs

it
y
 (

%
)

LTH UGS RCP DietGNN+DP

0

20

40

60

80

100

PPI RDT A2M FKR YLP

A
cc

u
ra

cy
 (

%
)

Unpruned LTH UGS RCP DietGNN+DP

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

adoption as hardware accelerators for DNN training. Recent
efforts have tried to address the write endurance issue of
ReRAM devices some of which include device-level
optimizations and software-level approaches. However, most
device-level methods aim at reducing only the per-write
energy and do not reduce the actual number of writes.
Meanwhile, software techniques focus solely on reducing the
number of write operations due to weight updates; and do not
consider ReRAM cell writes due to activations or
intermediate products. Overall, these methods often
introduce area, power, and performance overheads.

Write Latency and Energy of ReRAMs: In addition to
the write endurance challenge of ReRAM cells, they also
suffer from high write energy (~2 nJ) and latency (~100 ns)
compared to other Non-volatile Memory (NVM)
technologies for PIM architectures. As a result, most
ReRAM-based PIM platforms require traditional memory
hierarchies and a pipelined implementation to efficiently hide
the memory latency due to slow ReRAM writes. Researchers
have explored parallel writes via bit-slicing as a technique to
mitigate the expensive write operations during ML training,
thus enabling ReRAM-based training architectures.

Accelerating Large Language Models (LLMs): LLMs
have achieved significant success in a wide variety of natural
language processing (NLP) tasks. However, language tasks
are increasingly becoming complex, and are fast outpacing
the computing capabilities of traditional platforms such as
GPUs and CPUs. This is due to their numerous parameters,
high storage requirements, and significant off-chip data
movement costs [47]. Hence, ReRAM-based PIMs have been
proposed as an alternative for accelerating LLMs due to their
high-density storage, in-memory processing capability, and
energy-efficient computing capability. However, simple
LLM tasks such as inferencing requires a significant number
of write operations, and ReRAM-based PIMs are still plagued
by the write endurance problem. Moreover, LLM inference
tasks are usually time-critical applications. Thus, the high
write latency of ReRAM cells can potentially limit its
adaptability for LLM inferencing.

V. CONCLUSION

Advancement in novel ML algorithms and computing
systems design is tightly coupled and advancement in one
cannot be achieved without the other. However, the slowing
down of Moore’s law has impacted the development of new
computing platforms, which is detrimental to future
developments and applications of ML. In this paper, we have
discussed the benefits and challenges associated with three
emerging hardware paradigms as enablers for designing
energy-efficient and high-performance hardware

architectures for accelerating various types of ML
applications.

ACKNOWLEDGMENTS

This work was funded in part by grants from the National
Science Foundation CCF-1813370 and CCF-2006788 and
funding from EU Commission Horizon EU research and
innovation program in the framework of PHASTRAC
(https://phastrac.eu) with grant no. 101092096.

REFERENCES

[1] C. Schuman, S. Kulkarni and M. Parsa et al., "Opportunities for
neuromorphic computing algorithms and applications," Nat Comput
Sci , vol. 2, 2022.

[2] G. Csaba and W. Porod, "Coupled oscillators for computing: A review
and perspective," Applied Physics Reviews, vol. 7, 2020.

[3] C. Delacour et al., "Energy-Performance Assessment of Oscillatory
Neural Networks Based on VO2 Devices for Future Edge AI
Computing.," IEEE Transactions on Neural Networks and Learning
Systems, 2023.

[4] J. Buhmann, R. Divko and K. Schulten, "Associative memory with
high information content.," Physical Review , 1989.

[5] M. Abernot et al., "Two-Layered Oscillatory Neural Networks with
Analog Feedforward Majority Gate for Image Edge Detection
Application.," in IEEE International Symposium on Circuits and
Systems., 2023.

[6] C. Delacour, et. al., "A Mixed-Signal Oscillatory Neural Network for
Scalable Analog Computations in Phase Domain," preprint at ⟨hal-
03961010⟩, 2023.

[7] T. Wang, et. al., "Solving combinatorial optimisation problems using
oscillator based Ising machines," Nat Comput, vol. 20, 2021.

[8] T. Jackson, S. Pagliarini and L. Pileggi, "An Oscillatory Neural
Network with Programmable Resistive Synapses in 28 Nm CMOS,"
2018 IEEE International Conference on Rebooting Computing
(ICRC), pp. 1-7, 2018.

[9] M. Graber, et. al., "A Versatile & Adjustable 400 Node CMOS
Oscillator Based Ising Machine to Investigate and Optimize the
Internal Computing Principle," 2022 IEEE 35th International System-
on-Chip Conference (SOCC), 2022.

[10] W. Moy, et. al., "A 1,968-node coupled ring oscillator circuit for
combinatorial optimization problem solving," Nat. Electron., vol. 5,
2022.

[11] S. Carapezzi, et. al., "Role of ambient temperature in modulation of
behavior of vanadium dioxide volatile memristors and oscillators for
neuromorphic applications," Sci. Rep., vol. 12, 2022.

[12] M. Graber, et. al., "A Fast Graph Minor Embedding Heuristic for
Oscillator Based Ising Machines," 2022 Austrochip Workshop on
Microelectronics (Austrochip), 2022.

[13] D. Albertsson, et. al., "Highly reconfigurable oscillator-based Ising
Machine through quasiperiodic modulation of coupling strength," Sci.
Rep., vol. 13, 2023.

[14] M. Abernot, T. Gil, M. Jimenez, J. Nunez, M. J. Avedillo, B. Linares-
Barranco, T. Gonos, T. Hardelon and A. Todri-Sanial, "Digital
Implementation of Oscillatory Neural Network for Image Recognition
Applications," Frontiers in Neuroscience, vol. 15, 2021.

(a) (b)

Figure 6: Normalized (a) execution time and (b) energy consumption for the unpruned, UGS, RCP, DietGNN, and DietGNN+DP-enabled GNN
(normalized with respect to the execution of the unpruned model on the ReRAM-based PIM architecture).

0

0.2

0.4

0.6

0.8

1

PPI+GCN PPI+GAT RDT+GCN RDT+GSA A2M+GCN OGP+GSA

N
o

rm
.

 E
xe

cu
ti

o
n

 T
im

e

Unpruned UGS RCP DietGNN DietGNN+DP

0

0.2

0.4

0.6

0.8

1

PPI+GCN PPI+GAT RDT+GCN RDT+GSA A2M+GCN OGP+GSA

N
o

rm
.

E
n

e
rg

y
 C

o
n

s.

Unpruned UGS RCP DietGNN DietGNN+DP

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

[15] M. Abernot, et al., "Oscillatory Neural Networks for Obstacle
Avoidance on Mobile Surveillance Robot E4," 2022 International
Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2022.

[16] M. Abernot et al., "SIFT-ONN: SIFT Feature Detection Algorithm
Employing ONNs for Edge Detection.," in Proceedings of the 2023
Annual Neuro-Inspired Computational Elements Conference, 2023.

[17] S. Bahirat and S. Pasricha, "UC-PHOTON: A Novel Hybrid Photonic
Network-on-Chip for Multiple Use-Case Applications," in IEEE
ISQED, 2010.

[18] Y. Xu and S. Pasricha, "Silicon Nanophotonics for Future Multicore
Architectures: Opportunities and Challenges," IEEE Design & Test,
2014.

[19] F. Sunny, E. Taheri, M. Nikdast and S. Pasricha, "A survey on silicon
photonics for deep learning," ACM JETC, vol. 17, no. 4, 2022.

[20] S. Pasricha and M. Nikdast, "A Survey of Silicon Photonics for
Energy Efficient Manycore Computing," IEEE Design and Test, 2020.

[21] A. N. Tait and et al, "Broadcast and Weight: An Integrated Network
For Scalable Photonic Spike Processing," IEEE JLT, 2014.

[22] S. V. R. Chittamuru, I. Thakkar and S. Pasricha, "LIBRA: Thermal
and Process Variation Aware Reliability Management in Photonic
Networks-on-Chip," IEEE TMSCS, no. Oct-Dec 2018.

[23] S. V. R. Chittamuru, I. Thakkar and S. Pasricha, "PICO: Mitigating
Heterodyne Crosstalk Due to Process Variations and Intermodulation
Effects in Photonic NoCs," in IEEE/ACM Design Automation
Conference (DAC), 2016.

[24] F. Sunny, A. Mirza, M. Nikdast and S. Pasricha, "CrossLight: A
Cross-Layer Optimized Silicon Photonic Neural Network
Accelerator," in IEEE/ACM Design Automation Conference (DAC),
2021.

[25] F. Sunny, A. Mirza, M. Nikdast and S. Pasricha, "ROBIN: A Robust
Optical Binary Neural Network Accelerator," ACM TECS, Oct 2021.

[26] F. Sunny, M. Nikdast and S. Pasricha, "A Silicon Photonic
Accelerator for Convolutional Neural Networks with Heterogeneous
Quantization," in ACM GLSVLSI, 2022.

[27] F. Sunny, M. Nikdast and S. Pasricha, "SONIC: A Sparse Neural
Network Inference Accelerator with Silicon Photonics for Energy-
Efficient Deep Learning," in IEEE/ACM ASPDAC, 2022.

[28] F. Sunny, M. Nikdast and S. Pasricha, "RecLight: A Recurrent Neural
Network Accelerator With Integrated Silicon Photonics," in IEEE
ISVLSI, 2022.

[29] V. K. Kukkala, S. V. Thiruloga and S. Pasricha, "LATTE: LSTM Self-
Attention based Anomaly Detection in Embedded Automotive
Platforms," ACM TECS, 2021.

[30] S. Afifi, F. Sunny, M. Nikdast and S. Pasricha, "TRON: Transformer
Neural Network Acceleration with Non-Coherent Silicon Photonics,"
in ACM GLSVLSI, 2023.

[31] E. Strubell, A. Ganesh and A. McCallum, "Energy and policy
considerations for modern deep learning research," in AAAI 2020 –
34th AAAI Conference on Artificial Intelligence, 2020.

[32] A. I. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande and K. Chakrabarty,
"Performance and Accuracy Tradeoffs for Training Graph Neural
Networks on ReRAM-Based Architectures," IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 29, no. 10, pp.
1743-1756, 2021.

[33] W. Wen, Y. Zhang and J. Yang, "ReNEW: Enhancing Lifetime for
ReRAM Crossbar based Neural Network Accelerators," in IEEE
International Conference on Computer Design (ICCD), 2019.

[34] Y. Cai et al., "Long live TIME: Improving lifetime for training-in-
memory engines by structured gradient sparsification," in Proceedings
- Design Automation Conference (DAC), 2018.

[35] S. Das, J. R. Doppa, P. P. Pande and K. Chakrabarty, "Design-Space
Exploration and Optimization of an Energy-Efficient and Reliable 3D
Small-world Network-on-Chip," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, (TCAD), vol. 36,
2017.

[36] S. Han, J. Pool, J. Tran and W. Dally, "Learning both weights and
connections for efficient neural networks," Advances in Neural
Information Processing Systems (NeurIPS), pp. 1135-1143, 2015.

[37] L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li and Y. Xia,
"Crossbar-Aware Neural Network Pruning," IEEE Access, 2018.

[38] G. Yuan et. al, "TinyADC: Peripheral Circuit-aware Weight Pruning
Framework for Mixed-signal DNN Accelerators," in DATE, 2021.

[39] J. Frankle and M. Carbin, "The lottery ticket hypothesis: Finding
sparse, trainable neural networks," in International Conference on
Learning Representations (ICLR), 2019.

[40] T. Chen et al., "A Unified Lottery Ticket Hypothesis for Graph Neural
Networks," in International Conference on Machine Learning
(ICML), 2021.

[41] C. Ogbogu, A. I. Arka, B. K. Joardar, J. R. Doppa, H. Li, K.
Chakrabarty and P. P. Pande, "Accelerating Large-Scale Graph Neural
Network Training on Crossbar Diet," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2022.

[42] W. Chiang et al., "Cluster-GCN: An efficient algorithm for training
deep and large graph convolutional networks," in Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2019.

[43] M. Paul, S. Ganguli and G. K. Dziugaite, "Deep Learning on a Data
Diet: Finding Important Examples Early in Training," in Advances in
Neural Information Processing Systems 34 (NeurIPS 2021), 2021.

[44] H. You, Z. Lu, Z. Zhou, Y. Fu and Y. Lin, "Early-Bird GCNs: Graph-
Network Co-Optimization Towards More Efficient GCN Training and
Inference via Drawing Early-Bird Lottery Tickets," in AAAI
Conference on Artificial Intelligence, 2022.

[45] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta and
J. Leskovec, "Open Graph Benchmark: Datasets for Machine
Learning on Graphs," in 34th Conference on Neural Information
Processing Systems (NeurIPS), Vancouver, Canada., 2020.

[46] K. Roy, I. Chakraborty, M. Ali, A. Ankit and A. Agrawal, "In-
Memory Computing in Emerging Memory Technologies for Machine
Learning: An Overview," in IEEE Design Automation Conference
(DAC), 2020.

[47] M. Kang, H. Shin and L.-S. Kim, "A Framework for Accelerating
Transformer-Based Language Model on ReRAM-Based
Architecture," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 42, no. 9, 2022.

[48] G. Plastiras, M. Terzi, C. Kyrkou and T. Theocharidcs, "Edge
Intelligence: Challenges and Opportunities of Near-Sensor Machine
Learning Applications," in IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
2018.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:58:50 UTC from IEEE Xplore. Restrictions apply.

