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Abstract –There has been rapid growth in the use of machine 
learning (ML) software in emerging edge and IoT systems. ML 
software deployments enable analytics and pattern recognition 
for multi-modal data (e.g., audio, images/video, wireless signals, 
air quality) obtained from embedded sensors and transceivers. 
However, resource constraints in edge and IoT platforms make 
it challenging to meet quality-of-service and real-time goals. The 
growing complexity of ML also exacerbates these issues. We 
discuss the challenges of ML software deployment in edge and 
IoT platforms, present strategies to ease deployment, and 
discuss case studies from the automotive, indoor navigation, and 
hardware/software co-design domains. 
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I. EMBEDDED ML SOFTWARE IN EDGE AND IOT PLATFORMS 
Machine learning (ML) software is being actively deployed in 

edge and IoT platforms in our everyday lives. Our homes have smart 
thermostats (e.g., Nest), smart speakers with voice assistants (e.g., 
Amazon’s Alexa), surveillance IP cameras (e.g., Wyze), and virtual 
reality gaming headsets (e.g., Meta Quest) that rely on ML software. 
Our cars are using ML for vehicle localization; detection of 
pedestrians, traffic/road signs, and lanes; and advanced driver 
assistance systems [1]. Even our smartphones today use ML in 
almost every aspect of how we interact with these devices [2].   

 While in many of these cases, ML software is deployed in the 
cloud and accessed via API calls from devices connected to the 
Internet, there is a growing push to implement ML models on the 
resource-constrained devices. The primary motivation here is to 
avoid the uncertainty and overheads associated with wireless 
communication. Not only does wireless communication lead to high 
power consumption in devices (e.g., up to 70% [3]) and reliability 
issues due to wireless signal interference or lack of available wireless 
network coverage at locations, but the latency associated with 
communication can exceed real-time requirements in many 
applications (e.g., in real-time automotive perception systems). 

For these reasons, there has been growing interest in supporting 
on-device ML software execution on edge and IoT platforms, ranging 
from base stations and mobile devices with GPUs and hardware 
accelerators to simpler CPU-based systems. At the extreme end of 
this device spectrum are tiny microcontrollers which are being 
considered as platforms for ML deployment to achieve low-power 
audio keyword spotting (i.e., recognizing a word or phrase), anomaly 
detection and forecasting from sensor data, and pattern recognition 
(e.g., detecting faces, images, objects, gesture, activities, text) [4]. 
However, there remain many open challenges with deploying ML on 
resource-limited edge and IoT platforms, as discussed next. 

II. ML DEPLOYMENT CHALLENGES 
ML deployments on edge and IoT devices face many important 

challenges: 1) Power dissipation: the low cost and compact nature of 
many edge/IoT platforms limits the use of fans or liquid cooling. As 
a result, power dissipation has to be carefully controlled to meet 
stringent TDP (thermal design power) goals that can be as small as a 

few milliWatts. Meeting reasonable performance goals (e.g., sub-
second runtimes) with a large class of ML software algorithms, such 
as deep learning techniques, can easily exceed these requirements; 2) 
Energy consumption: many edge/IoT platforms are battery-driven, 
and as such have a limited energy store at their disposal. Compute 
intensive ML models, such as the neural network family of models 
that require large numbers of matrix multiplication operations, can 
drain the battery quickly, and reduce uptime in devices; 3) Memory 
footprint: edge and IoT platforms are typically memory limited, to 
reduce device area, power, and cost. Even relatively simple deep 
learning ML models have peak memory requirements of several GBs, 
which cannot be supported in these devices; 4) Computation 
complexity: To support high accuracy, executing large and complex 
ML models are crucial. These models can have requirements that 
exceed hundreds of GFLOPs, whereas edge and IoT platforms may 
only be capable of delivering a few GFLOPs, and up to tens of 
GFLOPs in the best case; 5) Real-time constraints: many applications 
have real-time constraints, requiring ML models to not only generate 
the correct results, but also to do so within a time constraint. For 
instance, indoor navigation with smartphones, and automotive 
perception-to-actuation have strict timing constraints that require ML 
predictions within 50-200 milliseconds [5], [6]. Meeting such goals 
is difficult with the limited resources in edge and IoT devices.   

III. STRATEGIES FOR EFFICIENT ML DEPLOYMENT 
 Due to the resource limitations of edge and IoT platforms, 

training ML models on them is usually impractical. But even 
deploying and running pre-trained models for inference runs into the 
issues discussed in the previous section. To unlock the full potential 
of ML on edge and IoT devices, there is a need for strategies to 
optimize ML runtime behavior. ML models need to fit in limited 
memory and utilize limited processing capabilities, which requires 
creative approaches that can limit the size of the input and the number 
of layers in the ML model, optimize the parameters and computations 
within ML models, or make use of lightweight non-neural network-
based ML algorithms to accomplish application goals.  

The approaches that have shown the most promise to reduce ML 
overheads across edge and IoT platforms include: 1) Model selection: 
sometimes the extra few % of accuracy with predictions that comes 
with more complex ML models can be sacrificed in favor of simpler 
ML models with fewer parameters that provide “good enough” 
accuracy. For example, the family of single-stage object detectors, 
including SSD, YOLOx, and RetinaNet have much fewer parameters 
and faster inference speeds than the more accurate two stage object 
detectors, such as Faster R-CNN [7], 2) Quantization: the 32-bit 
floating point values of weights in parameterized ML models (such 
as neural networks) can lead to significant memory footprint and 
computation overheads. Therefore, converting these weight 
parameters (and also activations) to fixed point integer values with 
lower bitwidths (e.g., 8 bits) is desirable. In many cases quantization 
with retraining can lead to minimal reduction in accuracy while 
leading to orders of magnitude reduction in inference time and 
memory footprint [8], 3) Pruning: removing redundant, non-
informative weights in a pre-trained ML model (e.g., DNN or CNN), 
or training such models with sparsity constraints not only allows 
compressed storage of such models in memory, but can also speed up 
their inference [9]; 4) Knowledge distillation: by shifting knowledge 
from a large teacher model into a smaller one, and by learning the 
class distributions output via softmax, it is possible to compress deep This research is supported by grants from NSF (CNS-2132385, CCF-1813370) 

20
23

 6
0t

h 
A

C
M

/IE
EE

 D
es

ig
n 

A
ut

om
at

io
n 

C
on

fe
re

nc
e 

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

84
5

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:25:23 UTC from IEEE Xplore.  Restrictions apply. 



and wide networks into shallower ones, where the shallower model 
mimics the functions learned by the complex model [10]; 5) Loop 
optimizations: as ML models are often custom coded (e.g., using C 
or C++) for resource-constrained platforms, and involve time-
consuming operations on tensors in loops, optimizations such as loop 
tiling, loop unrolling, and loop reordering can change the data access 
patterns in a manner that improves spatial and temporal locality that 
can be better exploited by caches, to improve performance [11]. 

IV. CASE STUDY: AUTOMOTIVE PLATFORMS 
Efficient deployment of ML in automotive platforms is a topic of 

much research, given the rise of autonomous vehicles. Here we 
present recent examples of ML software optimization approaches for 
the automotive domain. In [12], a framework for optimizing ML-
based perception architectures for autonomous vehicles was 
proposed. The main contribution of the framework was an iterative, 
semi-structured pruning approach that was able to reduce inference 
time, energy use, and memory footprint for single stage object 
detectors such as YOLOv5s and RetinaNet. In [13], a framework for 
co-optimizing the selection of locations and orientations for sensors, 
object detectors, and sensor fusion algorithms was proposed for semi-
autonomous vehicles and demonstrated for the Audi-TT and BMW-
Minicooper vehicles. The framework involved selecting appropriate 
object detectors for a given vehicle and sensing goal using multi-
modal sensors, while also fine tuning the object detectors using 
neural architecture search (NAS) techniques to improve inference 
accuracy and performance. In [14], an efficient ML-based framework 
for anomaly detection in automotive networks was proposed. The 
framework made use of a simplified ML model with a powerful 
temporal convolutional neural attention mechanism to learn to detect 
patterns in sequence data. The model reduced memory footprint, 
inference time, and model parameters by several orders of magnitude 
compared to the state-of-the-art [15].  

V. CASE STUDY: INDOOR NAVIGATION 
Efficient deployment of ML for indoor localization with mobile 

devices is an emerging domain that is poised to usher in highly 
precise emergency response; seamless robot, human, and UAV 
navigation; and location-based services within indoor, dense urban, 
and subterranean environments, where GPS signals cannot penetrate. 
Here we present recent examples of ML software optimization 
approaches for the indoor navigation domain. In [16], a framework 
for simultaneous quantization and pruning of ML models used in 
indoor localization was proposed. Using these two ML model 
compression techniques, the framework was able to deploy a 
convolutional autoencoder and a CNN classifier on resource-scarce 
devices with an inference latency of just a few milliseconds to meet 
the needs of real-time navigation. Moreover, the bitwidth reduction 
in model parameters and model pruning allowed the ML model to fit 
in less than 100KB of memory, while maintaining acceptable indoor 
localization accuracy. In [17], an early exit strategy was leveraged to 
speed up ML inference on mobile devices. The strategy involved 
training an ML model in a manner that allowed making predictions 
with high confidence in a majority of scenarios after executing just a 
few layers of the ML model. Such an early exit during model 
inference was able to achieve up to 42% reduction in inference 
latency and 45% reduction in inference energy. In [18], a large vision 
transformer ML model architecture was simplified and adapted for 
deployment on mobile devices, with a small enough footprint (less 
than 250K parameters) to accomplish a localization prediction in 50 
milliseconds or less, while outperforming ML models (in terms of 
accuracy) that were several orders of magnitude larger.   

VI. CASE STUDY: HW/SW CO-DESIGN 
If co-designing the ML software and hardware platform is 

possible, it opens up new avenues for optimizing performance and 
energy-efficiency for ML software on edge and IoT platforms. As an 
example, [19] proposed a co-design approach that trained hyper-
quantized binary neural network ML models (with 1 bit weights and 
4 bit activations) and simultaneously customized an optical hardware 
accelerator platform to execute these models efficiently. Similarly, 

[20] proposed a co-design approach that trained sparse neural 
network ML models and simultaneously customized the optical 
hardware accelerator platform to execute these models efficiently. 
These approaches were able to improve ML energy-efficiency and 
power consumption by over 10× compared to an optical hardware 
accelerator [21] that was designed for high performance server 
platforms. In [22], inference with large transformer models such as 
BERT [23] was optimized, enabling it to be efficiently executed by 
co-designing the device, circuit, and architectures layers in the 
hardware together with the ML software model. The deployed ML 
models showed orders of magnitude reduction in energy-per-bit 
compared to CPU, GPU, FPGA, and other ML accelerator platforms. 

VII. CONCLUSIONS 
In this paper, we presented a brief overview of some of the key 

challenges with deploying ML software on edge and IoT platforms. 
Given the many resource limitations of edge and IoT platforms, 
novel approaches are needed to deploy powerful ML models on 
these platforms. We discussed some effective strategies to improve 
ML performance, energy-efficiency, and reduce its memory 
footprint on edge and IoT platforms. We presented case studies of 
efficient ML deployment from the automotive and indoor navigation 
application domains. Lastly, we motivated the use of hardware/ 
software co-design to further optimize efficiency metrics. 
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