Embedded Systems and High Performance Computing (EPiC) Lab

Prof. Sudeep Pasricha (Director)

Monfort and Rockwell-Anderson Professor
Dept. of Electrical and Computer Engineering | Dept. of Computer Science
Colorado State University, Fort Collins, CO – 80523
email: sudeep@colostate.edu

Mission: Algorithms for energy-efficient, fault-tolerant, and secure design of embedded systems (cyber-physical systems), mobile computing (smartphones, wearables, internet-of-things), and high performance computing (datacenters, supercomputers)

CAD Tools for Multicore Chip Design

- Nearly all modern innovations depend on continued advances in multicore system-on-chip computing performance
 - Major impact on innovation across application domains: automotive, defense, medical, multimedia, telecommunications, aerospace, multidisciplinary computing

- But multicore system-on-chip design in advanced semiconductor fabrication technologies today faces several challenges
 - High power/energy dissipation that increases costs and limits achievable performance
 - Process, voltage, and temperature variations make it hard to model and verify high-performance designs
 - Increasing susceptibility to transient and permanent faults that degrade system reliability

Network-on-Chip (NoC) Architectures

- Design of on-chip communication fabric is a very critical factor influencing multicore chip performance, power, and reliability
 - NoCs have replaced on-chip buses, but face challenges
 - Higher packet transfer latency with increasing core counts
 - Higher power consumption and higher thermal impacts
 - Fault-tolerant NoC protocols and adaptation
 - tolerate NoC packet routing algorithms
 - Design for fault-tolerant communication for 2D NoCs
 - Design of self-healing NoC router fault-tolerant prototypes

Memory Architectures

- Improvement in dynamic memory bandwidth, but form factor is critical for next-generation multicore computing chips
 - To support increasing data demands from high-core-count chips, graphics processors, etc., the bus is becoming thread-speed limited
 - Challenges:
 - How to scale memory component density?
 - How to increase bandwidth and reduce latency?
 - How to best store programs and data?

- New 3D DRAM architectures
 - 3D-DRAM stack: highe bandwidth and reduced power
 - Novel vertical stacking to significantly improve performance and reduce power consumption

Automotive Embedded Systems

- Vehicles are controlled by distributed, real-time embedded systems
 - Many embedded systems use cloud computing
 - Major challenge in designing a safety-critical system that support cloud computing as well as supercomputers that solve large scientific problems: need for energy-efficient operation
 - Many embedded systems use cloud computing
 - Major challenge in designing datacenters that support cloud computing as well as supercomputers that solve large scientific problems: need for energy-efficient operation
 - Energy costs today = $1/year/TPF
 - Can we reduce energy costs?

High Performance Computing

- Energy Efficient and Robustly Robust Resource Allocation
 - Workload and system uncertainty modeling
 - Need to balance multiple goals while satisfying design constraints
 - Fault-tolerant NoC protocols and adaptation
 - Need to balance multiple goals while satisfying design constraints
 - Speed of light latency, low power, high throughput
 - Challenges:
 - Process variations
 - Thermal variations
 - Protocol design
 - Inter-router and intra-router communication
 - Dynamic voltage/frequency scaling (DVFS) for CPU energy saving during idle periods

Mobile Computing

- Energy demands and capabilities of ‘smart’ mobile devices are increasing rapidly with growing mobile app complexity
 - But battery technology is lagging behind and is expected to continue to be a limiting factor for future growth of mobile devices such as smartphones
 - How to intelligently manage energy and improve battery life for mobile devices?

- Need new CAD tools to perform multi-objective chip design exploration and optimization
 - Novel CAD tools for emerging 2D/3D multicore chip design
 - Design-time multi-core and multi-thread architectures
 - Advance driver assistance systems (ADAS) algorithms and prototyping
 - Mobile robotic embedded systems
 - Mobile computing
 - CAD Tools for Multicore Chip Design
 - Network-on-Chip (NoC) Architectures
 - Memory Architectures
 - Cybersecurity and high-performance computing

Energy Harvesting IoT Platforms

- Solar energy harvesting can power many IoT and embedded systems
 - How to scale software applications to mobile platforms under various conditions and energy harvesting conditions that often vary dramatically
 - How to cope with thermal environments?
 - How to scale software applications to mobile platforms under various conditions and energy harvesting conditions that often vary dramatically
 - How to cope with thermal environments?

- Another major challenge: ensuring fault-resilient operation
 - How to efficiently and effectively recover from transient faults?
 - Robustness exploration/management for extreme-scale HPC
 - Analysis of checkpointing, redundancy based techniques
 - Co-design of resilience strategies with scheduling schemes

Embedded System Applications and Prototypes

- Medical and rehabilitation centric embedded systems
 - Medical and rehabilitation centric embedded systems
 - Mobile robotic embedded systems
 - Mobile computing (smartphones, wearables, internet-of-things)

Graduate Students

- Existing design methods are insufficient for high-performance computing in modern embedded systems
 - Models for SoC design must be extended to include thermal and energy effects
 - How to best manage power dissipation?

- Need new CAD tools to perform multi-objective chip design exploration and optimization
 - Novel CAD tools for emerging 2D/3D multicore chip design
 - Design-time multi-core and multi-thread architectures
 - Advance driver assistance systems (ADAS) algorithms and prototyping
 - Mobile robotic embedded systems
 - Mobile computing
 - CAD Tools for Multicore Chip Design
 - Network-on-Chip (NoC) Architectures
 - Memory Architectures
 - Cybersecurity and high-performance computing

Energy Harvesting IoT Platforms

- Solar energy harvesting can power many IoT and embedded systems
 - How to scale software applications to mobile platforms under various conditions and energy harvesting conditions that often vary dramatically
 - How to cope with thermal environments?
 - How to scale software applications to mobile platforms under various conditions and energy harvesting conditions that often vary dramatically
 - How to cope with thermal environments?

- Another major challenge: ensuring fault-resilient operation
 - How to efficiently and effectively recover from transient faults?
 - Robustness exploration/management for extreme-scale HPC
 - Analysis of checkpointing, redundancy based techniques
 - Co-design of resilience strategies with scheduling schemes

Embedded System Applications and Prototypes

- Medical and rehabilitation centric embedded systems
 - Medical and rehabilitation centric embedded systems
 - Mobile robotic embedded systems
 - Mobile computing (smartphones, wearables, internet-of-things)
 - Mobile computing (smartphones, wearables, internet-of-things)