

New Features of HEC-RAS 4.0

Gary W. Brunner, P.E. Senior Hydraulic Engineer Hydrologic Engineering Center Institute for Water Resources U.S. Army Corps of Engineers

New Features in HEC-RAS 4.0

- Overflow Gates
- User Defined Rules for Gate Operations
- Pressure Flow in Pipes
- Pump Station Rules
- Hager's Lateral Weir Equation
- Geo-referencing Tools
- Water Quality Temperature Modeling
- Sediment Transport (erosion and deposition)

Overflow Gates

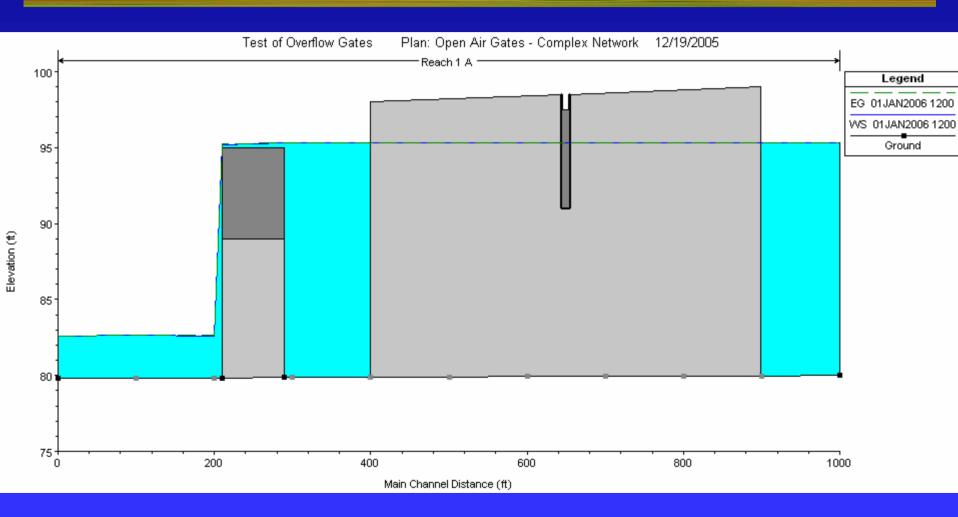
• Open Air

Ĩ

∼ c	ross Section - Warning Geometry is newer than output.	Gate Group: Gate #1 🔽 🖡 🖿 🛅 🏠 🗙 🖻
File	Options Help	Gate type (or methodology): Overflow (open air) 💌
River:	Reach 1 💽 🛌 🥘	Geometric Properties Weir Flow Over Gate
Reac	n: A 💌 River Sta.: 250 IS 💌 🖡 🕇	Height: 6 Weir Shape: Sharp Crested 💌
		Width: 6 Weir Method: User entered coefficient
	.04	Invert: 89 Weir Coefficient: 3.2
	95	# Openings: 2
		Centerline Stations
		Station
		_ <u>1 115.</u> 2 130.
£	90	
() ()		
Elevation (ft)		
	85	
		8
		10
	80	
	80 100 120 140 160	OK Cancel Help
4	Station (ft)	
4		

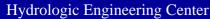
Inline Gate Editor

ĨHĬ


Overflow Gates

Closed Top		Inline Gate Editor			
	-	Gate Group: 🛛 Gate #1 💽 🗸 🖿 🖿 🚺 🖍 🖿			
	iss Section ptions Help	Gate type (or methodology): Overflow (closed top)			
	Harney T Harney	Geometric Properties Gate Flow Height: 4 Width: 4.7 Invert: 18.5			
Elevation (ft)		# Openings: 1 Station Submerged Orifice Flow 1 35. 2 Orifice Coefficient (typically 0.8): 3 Head Reference: 4 Sill (Invert) 4 Veir Flow Over Gate 6 Weir Shape: 7 Weir Method: 9 User entered coefficient 10 11 12 Veir Coefficient: 0K Cancel			
•	Station (ft)				

Overflow Gates Example



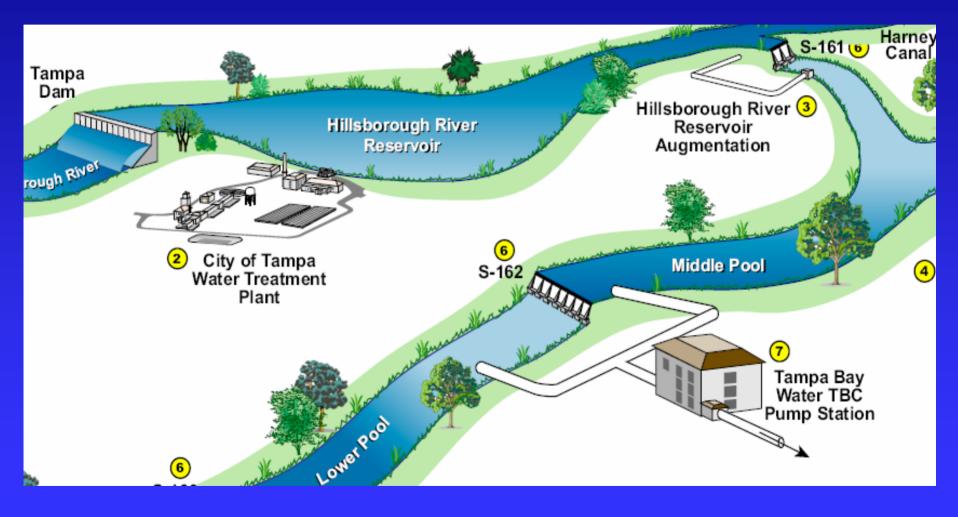
Operation Rules for Gated Structures

- Unsteady Flow Editor "Rules" boundary condition
- Inline/Lateral Structures
- Storage Area Connections
- Controls
 - Gates
 - Weir Coefficients
 - Min/Max Flow
- Rules are evaluated at every time step

Unsteady Flow Data - File Options Help	Unsteady	Flow with	ND target 22.65 wr	0 🔀
Boundary Conditions] Initial C	Conditions]			Apply Data
Select Location for Boundary Condition				
River: CowHouseCk	•			
Reach: 1		erSta.: 12	2500 👻 Add a Br	oundary Condition Location
neach: ji		J		bundary condition Eccation
Stage Hydrograph	Flow Hydro		dition Types Stage/Flow Hydr.	Rating Curve
Normal Depth	Lateral Inflo	w Hydr.	Uniform Lateral Inflow	Groundwater Interflow
T.S. Gate Openings	Elev Controlle	ed Gates	Navigation Dams	IB Stage/Flow
Rules				
River Reach	n	RS	Boundary Condition Type	
1 CowHouseCk	1	12500	Flow Hydrograph	
2 Harney	1	73.3 IS	Rules	
3 Hillsborough	1	605400	Flow Hydrograph	
4 Hillsborough 5 Hillsborough	1	605101.* 605100	Lateral Inflow Hydr. Lateral Inflow Hydr.	
6 Hillsborough	1	604999 IS		
7 Hillsborough	1	602447.*	Lateral Inflow Hydr.	
8 Hillsborough	1	602400	Lateral Inflow Hydr.	
9 Hillsborough	1b	601300	Lateral Inflow Hydr.	
10 Hillshorough	1h	601050	Lateral Inflow Hudr	<u> </u>
Storage Area and SA Conne	otions:		✓ Add a B	oundary Condition Location
Storage Area or SA Conne	ection		Boundary Condition Type	
1				
1.501.00.00.00.00.00.00.00.00.00.00.00.00.0				
Initial internal water surface elev	/ations set			

User Defined Rules Editor for Operating Gated Structures

Operation Rules

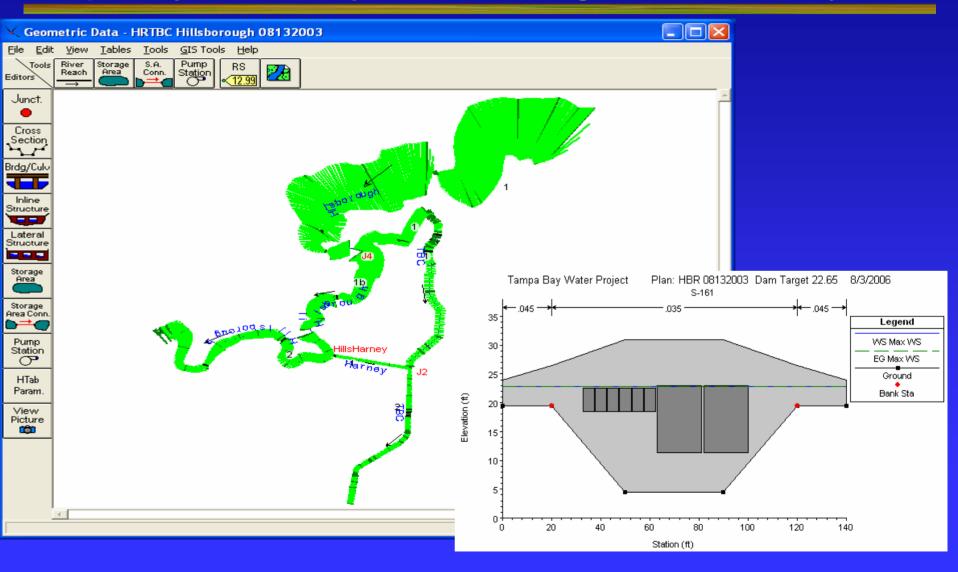

Rule Based Operations					
row Operation	True	False	^		
1 Real 'Tampa Dam Vol since midnight' (Initial Value = 0)	2	2			
2 Real 'S-161 Vol since midnight' (Initial Value = 0)	3	3			
3 Real 'S-161 Vol Diversion'	4	4			
4 'Tampa Dam 4 Hour Ave Flow' = Inline Structures: Structure - Total Flow (Fixed)(Hillsborough,2,600042,Average over previous time window,4,0)	5	5	-		
5 'Time Step hours' = Solution:Time Step(Value at current time step) 6 'Time Step seconds' = 3600 * 'Time Step hours'	5	ь 7	ľ		
7 'Tampa Dam Flow' = Inline Structures:Structure - Total Flow (Fixed)(Hillsborough,2,600042,Value at current time step)	8	8			
8 'S-161 Flow' = Inline Structures: Structure - Total Flow (Fixed)(Hamey,1,73.3,Value at current time step)	9 9	9			
9 'Tampa Dam Vol since midnight' = 'Tampa Dam Flow' * 'Time Step seconds' + 'Tampa Dam Vol since midnight'	10	10			
10 'S-161 Vol since midnight' = 'S-161 Flow' * 'Time Step seconds' + 'S-161 Vol since midnight'	11	11			
11 'Day Beg time step' = Time:Day of Month(Begining of time step)	12	12			
12 'Day End time step' = Time:Day of Month(End of time step)	13	13			
13 If ('Day Beg time step' <> 'Day End time step') Then 14 'HR 24hour ave Flow' = 'Tampa Dam Vol since midnight' + 'S-161 Vol since midnight' / 86400	14 15	50 15			
14 Hh 24hour ave Flow = Tampa Dam vol since mignight + 3-161 vol since mignight / 86400 15 'Tampa Dam Vol since midnight' = 0	16	16			
15 Tampa Dam Vol since midnight = 0 16 S-161 Vol since midnight = 0		17	~		
Insert New Operation					
Comment New Variable Get Sim Value Set Operational Param Branch (If/Else) Math Table Copy I I Disable					
- Get Simulation Value					
Assign Result Alue at current time step	1	-			
C Existing Variable Structure - Total Flow (Fixed)	-	-			
Churchurg Tabal Flow (Desired)					
(• New Variable Structure - Flow Additional					
S-161 Flow Structure - Flow Maximum RS: 73.3 IS					
Structure - Flow Minimum					
Structure - Total Gate Flow					
Structure - Total Gate Flow Maxi					
Structure - Total Gate Flow Minin					
Structure Cate Master Catting					
(Simulation variables in bold are only available for the current structure)					
OK	ſ	Connel			

OK Cancel

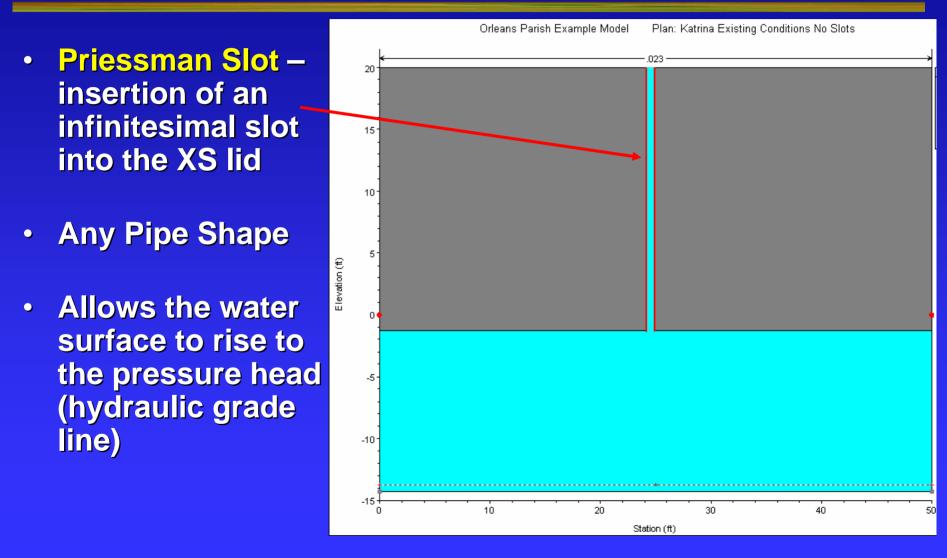
Tampa Bay Water System Overview

TBW S-161 Diversion Structure Rules

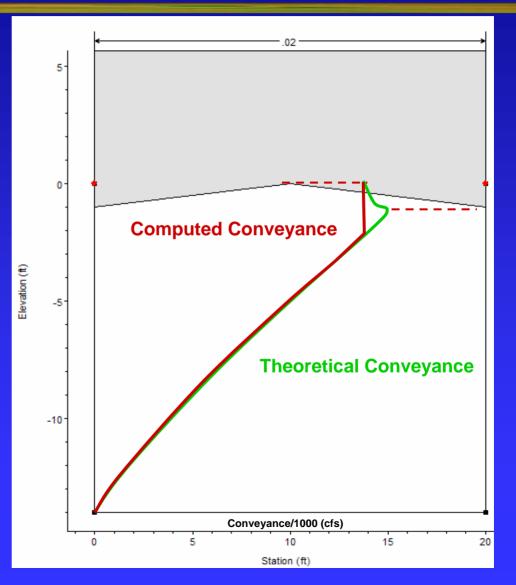
- Get previous 24 hour outflow
 - Outflow includes Tampa Dam & S-161
- Determine allowable diversion:


Discharge at Tampa Dam (mgd)	Withdrawal from Middle Pool (mgd)
Less than 65	0
65-97	10% of the discharge at Tampa Dam
97-139	10-30% of the discharge
139-647	30% of the discharge
More than 647	194

- Adjust S-161 gates to get allowable diversion in ~20 hours
- Close gates when/if:
 - Maximum volume diverted
 - 4 hour running average at Tampa Dam < 10cfs



Animation of Gate Operations Tampa Bay Water Project Hillsborough River – Harney Canal


Pressurized Pipe Flow

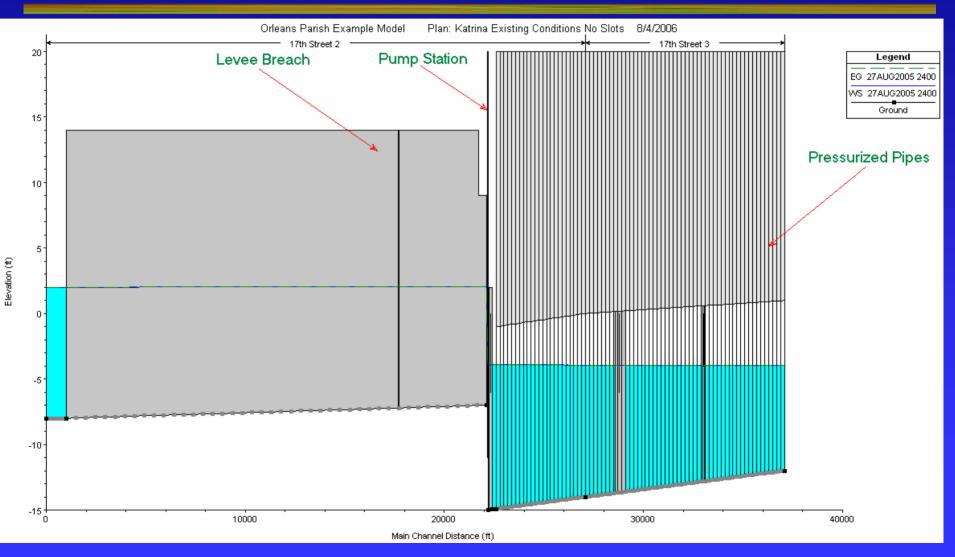
Pressurized Pipe Flow

- Conveyance and wetted perimeter are cut off at top of pipe
- Area is added, but it is negligible
- Conveyance curve is truncated to local minimum to increase stability

Ĭ

Pump Station Override Rules

Pump Station Data Editor				
Pump Station Name: Pump15 💽 🚽 🕇 Rename Pump Station				
Pump Connection Data Pump Group Data Advanced Control Rules				
Add New Rule Delete Rule Copy Rule 🖡 🕇				
Pump Rules				
Day/Hour based rule - flow max = 0 start at: 28AUG 0000 end at: 28AUG 1330 Day/Hour based rule - flow max = 250 start at: 28AUG 1330 end at: 28AUG 1530				
Day/Hour based rule - flow max = 750 start at: 28AUG 1530 end at: 28AUG 1545 Day/Hour based rule - flow max = 500 start at: 28aug 1545 end at: 2aug 1600				
Day/Hour based rule - flow max = 0 flow min = 0 start at: 28AUG 1600 end at: 13SEP 0900				
Edit Current Selected Rule Bule Flow Maximum: 250 Bule Flow Minimum:				
Transition (min)				
Transition (min): 5				
Rule Start Day: 28AUG Rule Start Hour: 1330				
Rule End Day: 28AUG Rule End Hour: 1530				
Plot Pump Curves OK Cancel				

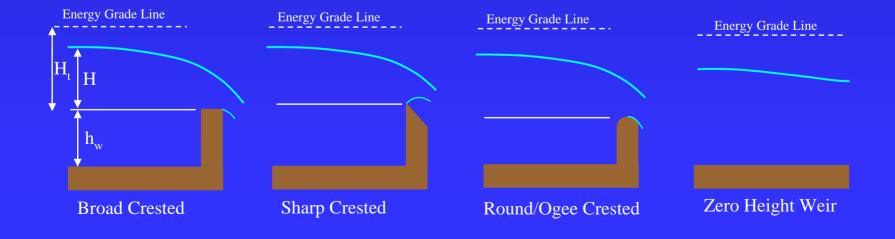

New Orleans - 17th Street Pump Station

Hydrologic Engineering Center

Pressurized Pipes, Pump Station, And Levee Breach Animation

Hager's Lateral Weir Equation

$Q = CLH^{3/2}$

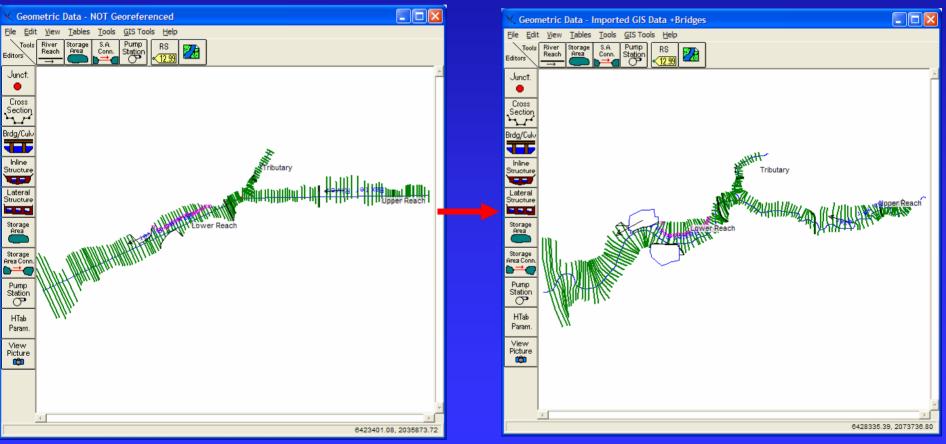

$$C = \frac{3}{5}C_0\sqrt{g} \left[\frac{1-W}{3-2y-W}\right]^{0.5} \left\{1-(\beta+S_0)\left[\frac{3(1-y)}{y-W}\right]^{0.5}\right\}$$

w

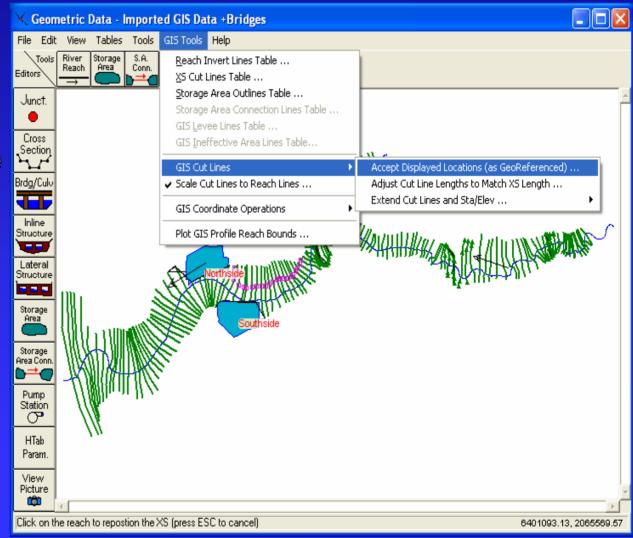
w

$$W = \frac{h_w}{H_t + h_w} \qquad y = \frac{H + h_w}{H_t + h_w}$$

$$C_0 = Function(weir shape)$$



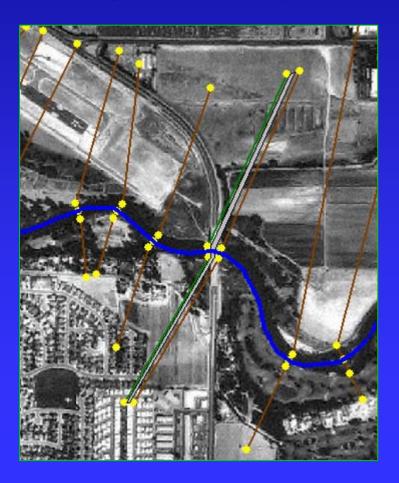
Geo-referencing Tools in HEC-RAS

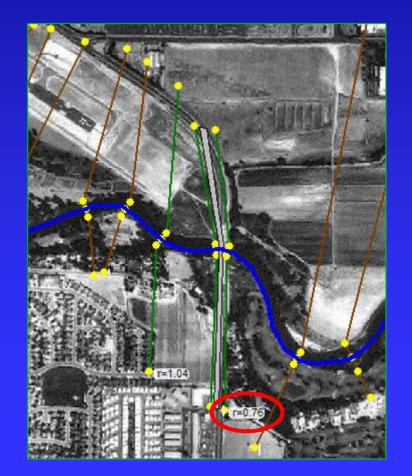

From "stick figure" to real locations

Geo- referencing Tools in HEC-RAS

- Fix the cross sections at "known" locations
- RAS will help move the rest of the sections

Geo-referencing


Move Cut Line Upstream/Downstream



Geo-referencing

Edit | Move Object

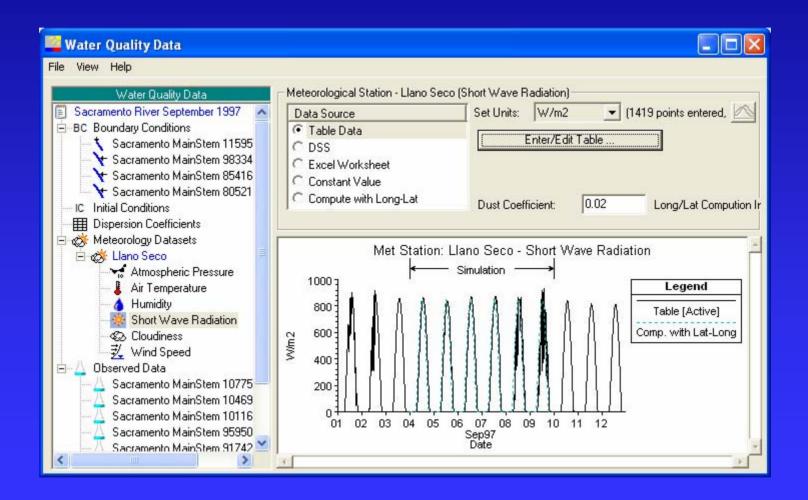


Geo-referencing: New XS Interpolation

Bank to bank perpendicular

Georeferenced XS

Left and right overbanks perpendicular to respective widths


Water Quality (Temperature) Model

- Based on unreleased version of CE-QUAL-RIV1
- Numerical Scheme
 - Finite Volume
 - Variable grid size
 - Automatic time step selection
- Full energy budget

Meteorological Data Editor – Solar Radiation

Source/Sink Term for Temperature (Energy Budget)

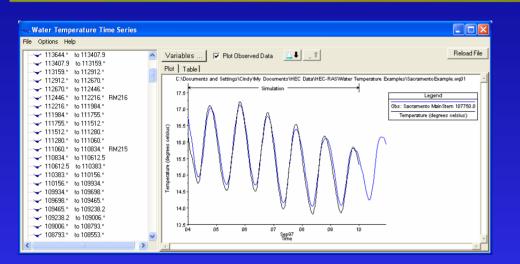
solar radiation (qsw)

f (site location, time of day, day of year, atmospheric turbidity, cloud cover)

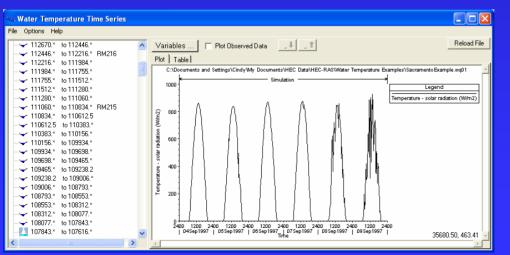
net longwave radiation (qlw) f (air temperature, water temperature)

sensible heat (qh) f (temperature gradient, wind, a&b)

latent heat (qe) f (vapor pressure gradient, wind, a&b)

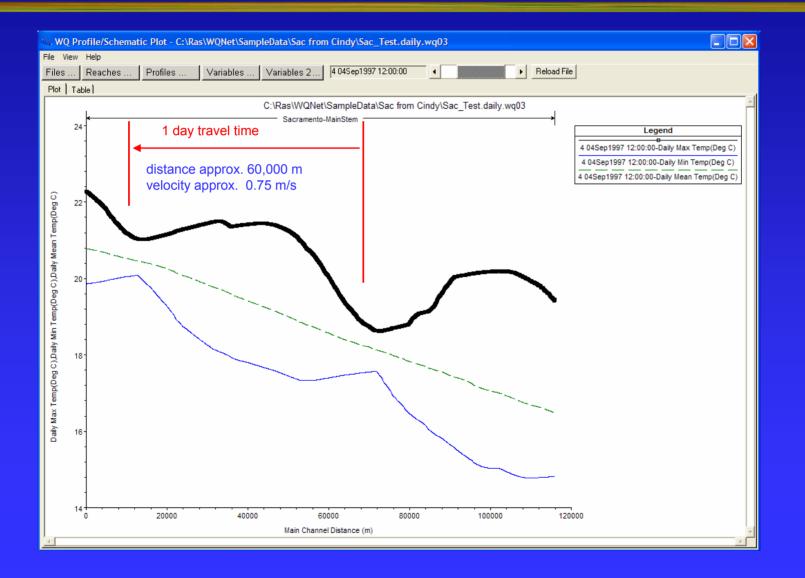

$$q_{net} = q_{sw} + q_{lwn} + q_h + q_e$$

Planned:

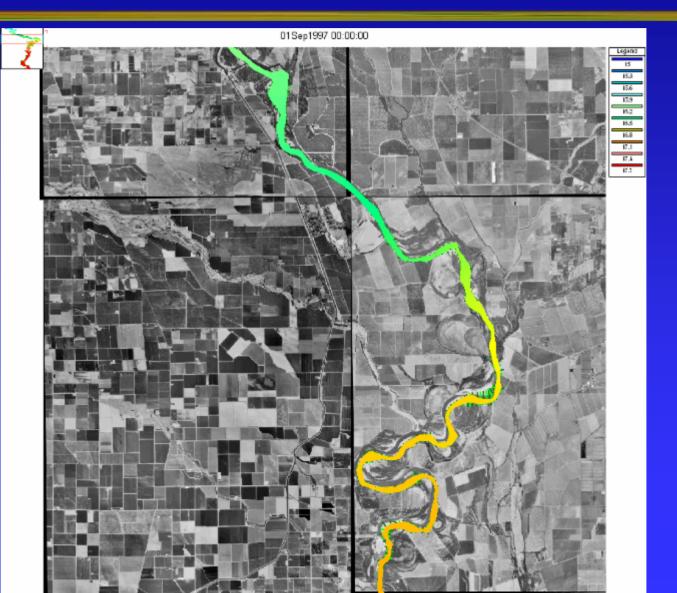

- ground heat conduction
- shading (topographic, riparian)

Time Series Plots

Water temperature



Solar Radiation


Profile Plot of Temperature

Map View

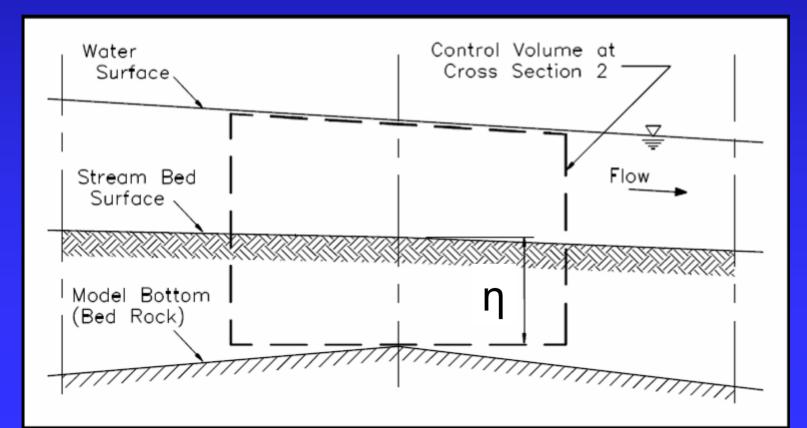
Mobile Bed Sediment Transport

- Quasi-Steady Hydrodynamics
- Transport Capacity
- Sediment continuity
- Sorting and Armoring
- Erosion and Deposition
- Graphical User Design

Transport Potential Functions

- Ackers-White
- •Englund-Hansen
- Laursen (Copland)
- •Myer-Peter-Meuler
- Toffaleti
- •Yang (Sand and Gravel)
- Wilcock


Transport Capacity by Multiple Grain Sizes

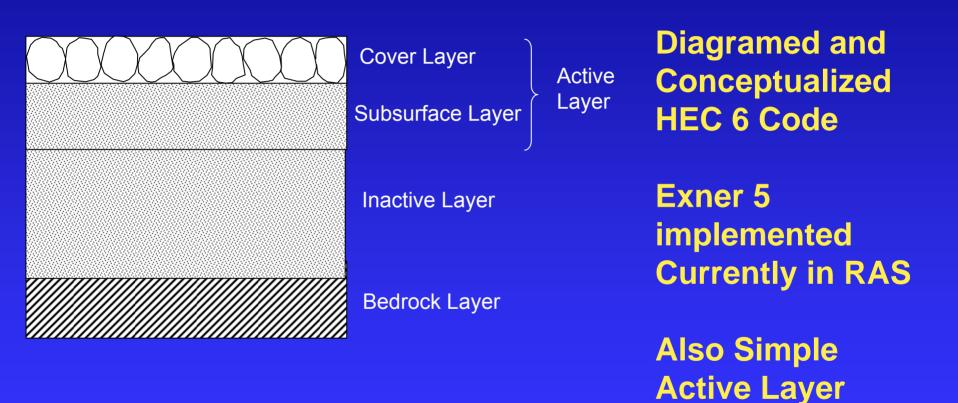

- Bed Material and Inflowing Load divided into separate grain classes (up to 20)
- Transport potential is calculated for each grain size
- Transport Capacity = (Transport Potential for each grain size) X (fraction of that material in active layer of bed)

Sediment Continuity: Exner Equation

Temporal Constraints on Eroding and Constraints on Eroding

- Erosion and deposition does not occur instantaneously.
- Deposition is based on settling velocity:
 - Deposition efficiency coefficient =

 $\frac{V_s(i) \cdot \Delta t}{V_s(i)}$

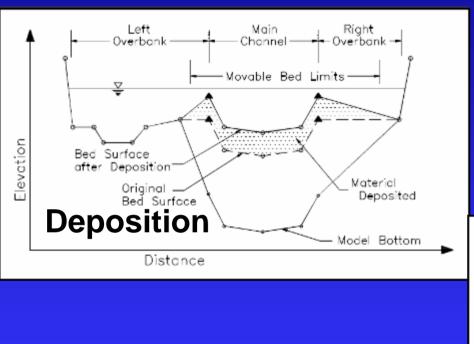

- Erosion is based on "Characteristic Flow Length"
 - Erosion = (Gs Qs) x Ce Entrainment Coefficient
 - Where:

$$C_{e} = 1.368 - e^{\frac{L}{30 \cdot D}}$$

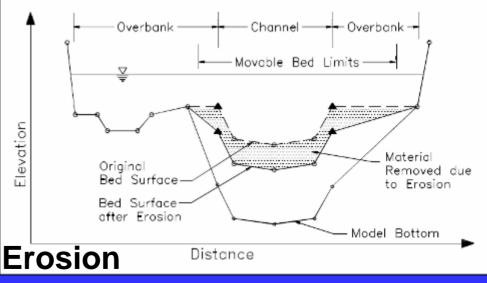
Hydrologic Engineering Center

Sorting and Armoring

Erosion can be further constrained by the cover Layer

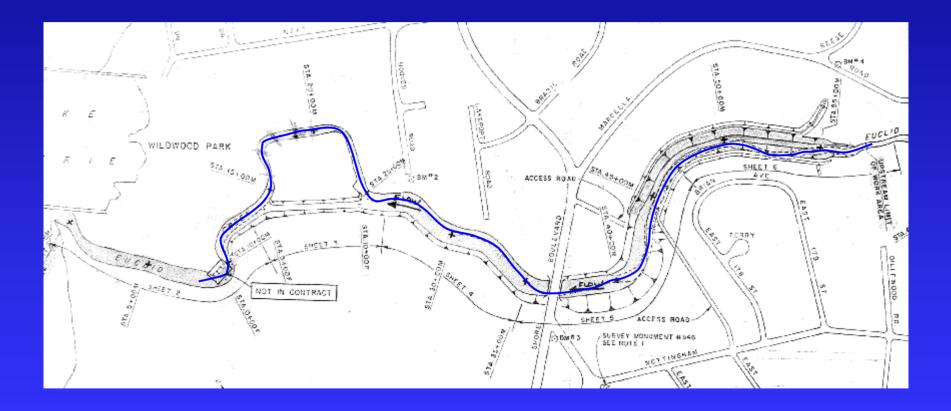

Method

Hydrologic Engineering Center



Erosion and Deposition to RAS Cross Sections

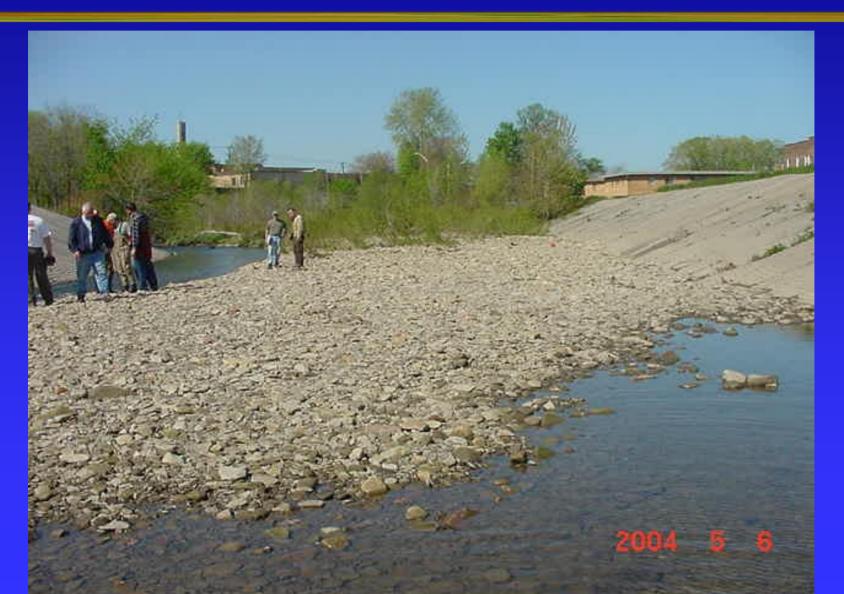
RAS computations modified to compute bed changes and modify cross sections before each time step



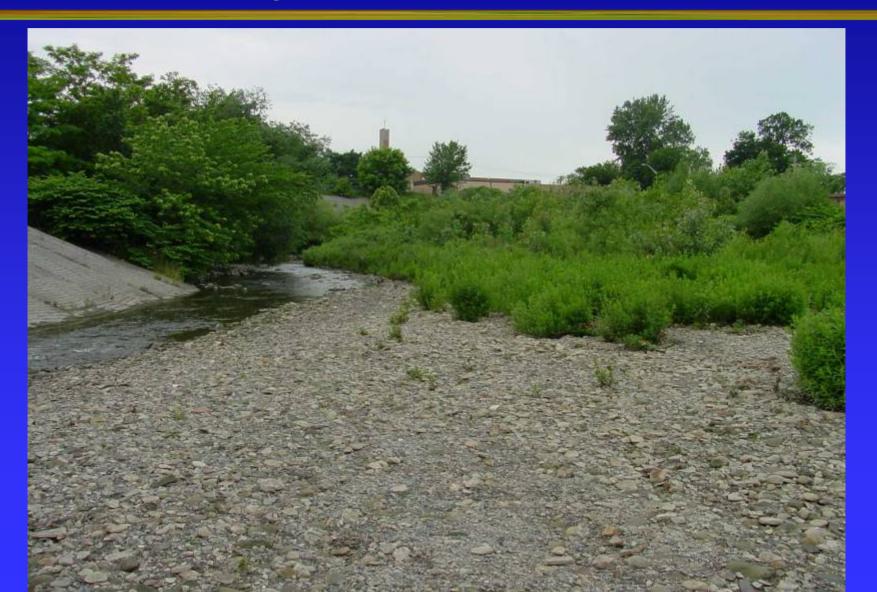
•Cross Sections •Bridges

Example Application: Euclid Creek

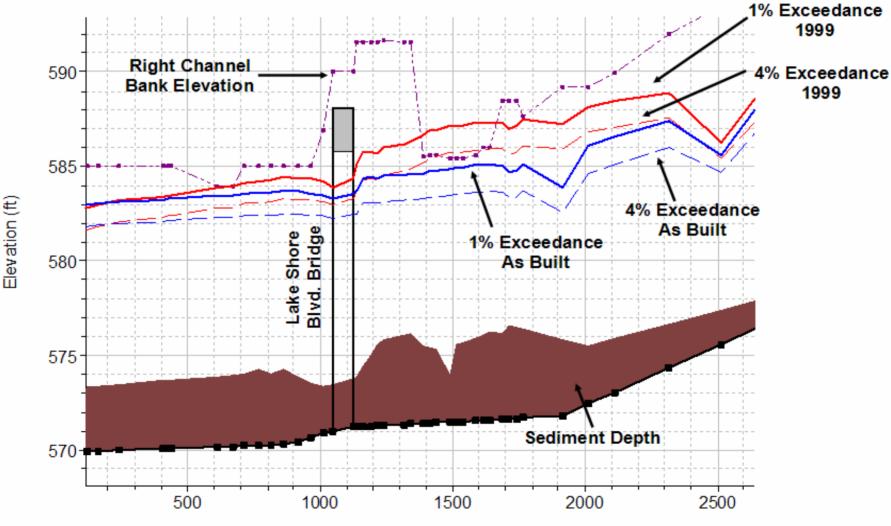
Ĭ


Case Study: Euclid Creek

Ĭ.

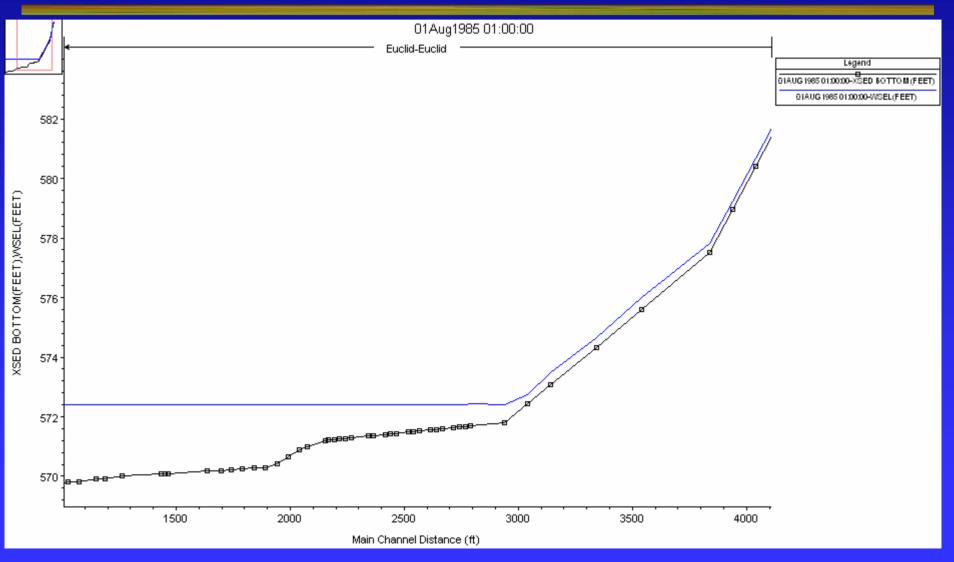

Case Study: Euclid Creek

Ĭ


Case Study: Euclid Creek

Υw

Case Study: Euclid Creek



Main Channel Distance (ft)

Animation of Bed Movement

