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Introduction7

The Finite Element Method (FEM) is a powerful computation framework used to solve Partial8

Differential Equations (PDE)s on arbitrary geometries. In reality, physical systems behave in a9

continuous manner (both in space and time); however FEM solvers are able to model these10

dynamics with a high fidelity by decomposing a physical model into a finite set of elements.11

Each element supports a finite number of degrees of freedom, which are used to describe the12

behavior of the system. This way, the mathematically continuous dynamics can be expressed in13

terms of a system of linear equations. Linear algebra tools are then used to solve the problem14

such that the PDE is satisfied along with some boundary conditions (on the border of the15

Domain) and some continuity conditions (between neighboring elements).16

Some common PDE’s include the Navier-Stokes equations which characterize the behavior of17

fluids, Schrödinger’s equation which governs the evolution of quantum systems, and Maxwell’s18

Equations which are a macroscopic description of essentially all Electromagnetic phenomena.19

The ability to accurately and efficiently model these differential equations and others is20

imperative to the success of many engineering projects and scientific endeavors. Most of the21

technology that engineers are interested in developing has far exceeded the reach of direct22

mathematical analysis, and thus computational tools such as FEM are used ubiquitously to23

drive technological development forward.24

As such, innovations in FEM have a direct impact on essentially all engineering disciplines. The25

more efficient, accurate, and feature rich, we can make simulation tools, the more beneficial26

they will be to industrial and scientific applications. This is the motivation force behind27

academic work within the field of FEM. The FEM_2D library is a Rust package that aims to28

enable further research into a particular FEM innovation called Refinement-by-Superposition29

(RBS). The related research papers (Corrado et al., 2021), (Harmon et al., 2021) explore30

benefits of RBS using the 2D Maxwell Eigenvalue Problem as a proving ground.31

Although FEM_2D focuses on the Maxwell Eigenvalue problem specifically, it’s functionality32

is intended to extend easily to other domains using a generic interface over basis function33

evaluation and integration. The module-structure of the library is also designed to be open to34

new features.35

In addition to the centrally important hp-refinement functionality, FEM_2D is supported by a36

rich set of surrounding features. This includes two eigensolvers: a dense solver which is entirely37

native to Rust, and a sparse solver implemented using an external C++ library. There is also38

a solution plotting API, and an external Mesh plotting tool to assist in future research work39

based on the FEM_2D Library.40
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Statement of Need41

Efficiently computing FEM solutions over geometries with sharp edges or stark material42

discontinuities necessitates hp-refinement (whether isotropic or anisotropic). These situations43

tend to introduce multi-scale solution behavior which is challenging to model with pure p-44

or pure h-refinements, motivating combined hp-refinements (Harmon et al., 2021). Within45

the class of hp-refinements, the addition of anisotropic hp-refinements (over isotropic ones)46

presents a significantly larger capacity for solution efficiency, as small-scale behavior is targeted47

more directly and ineffectual Degrees of Freedom are left out of the system (Corrado et al.,48

2021). Increased efficiency in terms of the number of degrees of freedom is a key factor in the49

speed of large scale simulations, as well as the applicability of the method to smaller scale50

hardware (such as personal computers). Thus, a feature-rich anisotropic hp-refinement API is51

needed to enable efficient solution of challenging FEM problems. This is directly afforded by52

the underlying RBS methodology.53

For research purposes, it is also important that the implementation is straightforward and54

easy to understand. This way, other researchers can quickly read the code to validate the55

methodology itself or they can use it as a starting point for additional investigation and software56

development. This is yet another benefit of the RBS approach, as it greatly simplifies the57

enforcement of continuity conditions, which is typically the most challenging aspect of an58

h-refinement implementation over quadrilateral or hexahedral elements.59

Thus, we conclude that FEM_2D’s RBS implementation gives it a distinct advantage over60

other FEM libraries such as Deal.II (Arndt et al., 2021); specificity as a research package.61

The succinctness of the continuity enforcement algorithm removes much of the difficulty of62

implementing new features. This is a major barrier to entry for contributing to larger and more63

complex packages. Additionally, the generic Trait-Based interface makes it easy to leverage64

the advanced hp-refinement API against other domains of computational physics.65

Features66

hp-Refinement API:67

FEM_2D’s primary offering to the FEM research community is its highly dynamic and expressive68

hp-refinement API. Unlike many other quadrilateral-element FEM packages, FEM_2D supports69

n-irregular anisotropic h-refinement as well as anisotropic p-refinement. In other words, there70

are far fewer limitations on the shape, location, or orientation of new elements when adding71

them to the Mesh. The polynomial expansion orders of the Basis Functions associated with72

each element can also be modified separately in each direction. This level of freedom would73

not be possible without the underlying RBS methodology.74

The following example shows how some of the h-refinement methods may be used to modify a75

mesh structure. It is important to note that there are three primary h-refinement types which76

are designated by the HRef enum:77

• T - isotropic: produces 4 child elements78

• U - anisotropic in the u-direction: produces 2 child elements79

• V - anisotropic in the v-direction: produces 2 child elements80

There are also two sub-types associated with the U and V refinements which invoke a81

subsequent anisotropic refinement on one of the two child elements in the opposite direction.82

These are constructed with HRef::U(Some(child_index)) and HRef::V(Some(child_index))83

respectively, where child_index must be either 0 or 1.84

It is also important to note that the global_h_refinement and h_refine_with_filter85

methods will only apply refinements to Elements that are eligible for h-refinement (i.e., they86

must be leaf elements and the length of each of their edges must be above a minimum87
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threshold). Alternatively, the methods that expose more explicit control (h_refine_elems and88

execute_h_refinements) can return an error if one of the specified elements is not eligible89

for h-refinement. A detailed explanation of the error types is provided in the documentation.90

use fem_2d::prelude::*;

use std::error::Error;

fn do_some_h_refinements(mesh_file_path: &str) -> Result<Mesh, Box<dyn Error» {

let mut mesh = Mesh::from_file(mesh_file_path)?;

// isotropically h-refine all elems

mesh.global_h_refinement(HRef::T);

// anisotropically h-refine all elems connected to some target node

let target_node_id = 5;

mesh.h_refine_with_filter(|elem| {

if elem.nodes.contains(&target_node_id) {

Some(HRef::u())

} else {

None

}

});

// anisotropically h-refine a list of elems by id

mesh.h_refine_elems(vec![3, 4, 8, 12], HRef::v())?;

// directly apply a list of refinements to the mesh

mesh.execute_h_refinements(vec![

(1, HRef::T),

(5, HRef::U(Some(0))),

(6, HRef::U(Some(1))),

(10, HRef::V(None)),

])?;

Ok(mesh)

}

The following example shows how some of the p-refinement methods may be used. Here, the91

Mesh is provided as an argument rather than being loaded from a file. The p-refinements92

are constructed from the PRef Type using a pair of i8’s (8-bit signed integers). As such,93

any element’s u- and v-directed expansion orders can be modified independently in either the94

positive or negative direction.95

The behavior of these methods is straightforward with the slight caveat that the global_p_96

refinement and p_refine_with_filter methods will guard against any refinement pushing97

an element outside of its valid expansion order range. Specifically, refinements are clamped98

element-wise to ensure that the final expansion order is in the range [1, 20]. The p-refinement99

methods that can return an error (those followed by a ? in the example) do not exhibit this100

behavior. This is in keeping with the design of the h-refinement API in the sense that methods101

with less explicit control are safer, while the more explicit methods allow for failure.102

use fem_2d::prelude::*;

fn do_some_p_refinements(mesh: &mut Mesh) -> Result<(), PRefError> {

// isotropically p-refine all elems (with a magnitude 2 refinement)

mesh.global_p_refinement(PRef::from(2, 2));
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// positively p-refine all ”leaf” elems (with a magnitude 1 refinement)

// negatively p-refine all other elems (with a magnitude -1 refinement)

mesh.p_refine_with_filter(|elem| {

if elem.has_children() {

Some(PRef::from(-1, -1))

} else {

Some(PRef::from(1, 1))

}

});

// anisotropically p-refine a list of elems by id

mesh.p_refine_elems(vec![3, 4, 8, 12], PRef::from(4, 2))?;

// directly apply a list of refinements to the mesh

mesh.execute_p_refinements(vec![

(1, PRef::from(3, 2)),

(5, PRef::from(0, 1)),

(6, PRef::from(-1, -1)),

(10, PRef::from(4, -2)),

])?;

Ok(())

}

The Mesh data structure also has an alternative set of methods to modify expansion orders by103

setting them directly rather than additively. These methods can be very useful in scenarios104

where the current expansion orders are irrelevant, and elements require a specific expansion105

order which is either known beforehand or computed ad-hoc. The following example juxtaposes106

some of the functionality with the above p-refinement API.107

Here, both methods can return an error, as it is possible to specify an invalid expansion order.108

These methods take a length-two array of u8’s (8-bit unsigned integers), and thus preemptively109

remove the possibility of setting negative expansion orders, however, they still Err on expansion110

orders that are zero or too large.111

use fem_2d::prelude::*;

fn set_some_expansion_orders(mesh: &mut Mesh) -> Result<(), PRefError> {

// set the expansion order on all elems to (3, 3)

mesh.set_global_expansion_orders([3, 3])?;

// set the expansion orders to (4, 4) on all ”leaf” elems

// set the expansion orders to (2, 2) on all other elems

mesh.set_expansions_with_filter(|elem| {

if elem.has_children() {

Some([2, 2])

} else {

Some([4, 4])

}

})?;

Ok(())

}
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Problem Formulation and Solution112

The following example shows how a simplified formulation of the Maxwell Eigenvalue Problem113

maps to the corresponding code in the library. This is intended provide a general depiction of114

how one might translate a mathematical problem into an FEM_2D implementation.115

The Maxwell eigenvalue problem has the following Continuous-Galerkin formulation for an116

arbitrary Domain terminated with Dirichlet boundary conditions, (constraining the solution to117

TE modes only):118

Find a solution:119

U = {u, λ} ∈ B0 × R (1)

which satisfies:120

b(u, φ) = λa(u, φ) ∀φ ∈ B (2)
121

where:

 B ⊂ H0(curl; Ω)
a(u, φ) = 〈∇t × u,∇t × φ〉
b(u, φ) = 〈u, φ〉

(3)

The Generalized Eigenvalue Problem is built from a Mesh with the following code.122

use fem_2d::prelude::*;

use rayon::prelude::*;

fn problem_from_mesh(mesh: Mesh) -> Result<GEP, GalerkinSamplingError> {

// Setup a global thread-pool for parallelizing Galerkin Sampling

rayon::ThreadPoolBuilder::new().num_threads(8).build_global().unwrap();

// Generate a Domain (Ω) from a Mesh with H(Curl) Continuity Conditions

let domain = Domain::from(mesh, ContinuityCondition::HCurl);

// Compute a Generalized Eigenvalue Problem

let gep = galerkin_sample_gep_hcurl::<

HierPoly, // Basis Space

CurlCurl, // Stiffness Integral

L2Inner, // Mass Integral

>(&domain, Some([8, 8]))

}

The Domain structure represents the entire FEM domain, including the discretization and the123

basis space which conforms to the provided continuity condition (only H(Curl) is currently124

implemented; however, a framework is in place for implementing H(Div) and other continuity125

conditions).126

Galerkin sampling is then executed in parallel over the Domain, yielding a Generalized Eigenvalue127

Problem composed of two sparse matrices. The Domain and a Gauss-Legendre-Quadrature128

grid size are provided as arguments. This function may also return an Error, if the Galerkin129

Sampling fails due to an ill-posed problem.130

The three generic arguments – designated with the turbofish operator (::<>) – correspond131

to the three lines of Equation 3. The basis space can be swapped for any other space that132

implements the HierCurlBasisFnSpace Trait. HierPoly is a relatively simple implementation133

composed of exponential functions. A more sophisticated basis space: HierMaxOrtho can be134

included using the max_ortho_basis Feature Flag. Custom Basis Spaces can also be created135

by implementing the same Trait.136

The CurlCurl and L2Inner integrals, which correspond to the Stiffness and Mass matrices137

respectively, can be swapped for any other structure that implements the HierCurlIntegral138
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Trait. This generic interface allows users to leverage the galerkin sampling functionality against139

other curl-conforming problems.1140

The Generalized Eigenvalue Problem, can then be solved using one of the available solvers:141

// Dense solution (not recommended for large problems)

let eigenpair = nalgebra_solve_gep(gep, target_eigenvalue).unwrap();

// OR: Sparse solution (requires external Slepc solver)

let eigenpair = slepc_solve_gep(gep, target_eigenvalue).unwrap();

The dense solver, implemented using Nalgebra (“Nalgebra,” 2021), converts the eigenproblem’s142

sparse matrices into dense matrices. This is an expensive operation, and should be avoided for143

large problems. The sparse solver, implemented using Slepc (Hernandez et al., 2005) (Balay144

et al., 2021a) (Balay et al., 2021b) (Balay et al., 1997), is a direct interface to a generalized145

eigensolver. This is a relatively fast operation, but requires an external solver to be installed146

and compiled. It also avoids directly inverting the B-matrix, which is numerically advantageous147

for ill-conditioned problems.148

Both solvers look for the eigenvalue closest to the provided target_eigenvalue. They can149

return errors if the solution does not converge. Upon success, the returned eigenpair contains150

the eigenvalue and eigenvector with length equal to the number of degrees of freedom in the151

domain.152

Field Visualization153

The Fields API allows us to compute a solution-field with an eigenvector and associated domain.154

It also allows functions of field solutions to be computed. The following example shows how155

electric field solutions are generated and exported to a VTK file.156

use fem_2d::prelude::*;

use std::error::Error;

fn compute_solution_fields(

eigenpair: EigenPair,

domain: &Domain

) -> Result<(), Box<dyn Error» {

// build a solution field space

let mut field_space = UniformFieldSpace::new(domain, [16, 16]);

// compute the x and y directed electric fields

let [ex_name, ey_name] =

field_space.xy_fields::<HierPoly>(”E”, eigenpair.vector)?;

// compute the magnitude of the electric field

field_space.expression_2arg([&ex_name, &ey_name], ”E_mag”, |ex, ey| {

(ex.powi(2) + ey.powi(2)).sqrt()

})?;

// compute the absolute value of the x and y directed electric fields

field_space.map_to_quantity(ex_name, ”E_x_abs”, |e| e.abs())?;

field_space.map_to_quantity(ey_name, ”E_y_abs”, |e| e.abs())?;

1The provided functionality is obviously somewhat incomplete, as only Curl Conforming problems can be
solved; however, the library’s module-structure and trait-hierarchy provide a clear template for the analogous
H(Div) implementation. There is also room for other galerking sampling and integration functionality associated
with alternate continuity conditions. These methods, structures, and traits should require minimal additions to
the Domain structure, and no changes to the Mesh structure.
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// print E_x, E_y, E_x_abs, E_y_abs, and E_mag to a VTK file

field_space.print_all_to_vtk(”path/to/file.vtk”)

}

Here, we are using a UniformFieldSpace to define our solution space over the domain. This157

structure defines a grid of points, such that the density is uniform across leaf-elements.2 Here,158

we use a 16x16 grid. The parent elements will have a larger density because the leaf-element’s159

points are projected “downwards” onto their ancestors. So, in this case, an element that has160

four children (who are all leafs) would evaluate its local solution using a 32x32 point grid such161

that the points align with the grids on its descendants.162

On the following line, we compute the X- and Y-directed fields using the eigenvector (and the163

same basis-space as before). The UniformFieldSpace maintains an internal table of solution164

components designated by name. The names for the fields are returned.165

The following line uses the X- and Y-components to compute the magnitude of the electric166

field using a two-argument expression. This solution component is stored in the provided name167

”E_mag”. We also compute the absolute value of both components.168

Finally, the fields are exported to a VTK file for plotting. Multiple external tools are available169

to generate high-quality plots from the VTK data. Figure 1 shows an electric field magnitude170

generated using FEM_2D and VISIT.171

Figure 1: Example of an Electric Field Magnitude of an Eigenfunction

2There is also a need for an implementation with densities proportional to the size of the elements. This
would be useful for generating images of the fields, as the overall point-density would be globally uniform across
the domain.
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