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An Adaptive Anisotropic hp-Refinement Algorithm
for the 2D Maxwell Eigenvalue Problem

Jeremiah Corrado, Jake J. Harmon, Graduate Student Member, IEEE, and Branislav M. Notaroš, Fellow, IEEE

Abstract—We present a novel adaptive mesh refinement al-
gorithm for efficiently solving a continuous Galerkin formu-
lation of the 2D Maxwell Eigenvalue Problem over quadri-
lateral discretizations. The algorithm harnesses a Refinement-
by-Superposition framework with support for anisotropic hp-
adaptivity. Following a brief summary of the underlying method-
ology, we develop a novel approach to directing and deploying
intelligent fully anisotropic hp-refinements. Numerical examples
targeting the Maxwell Eigenvalue problem verify the ability
to achieve exponential rates of convergence on a challenging
benchmark and demonstrate that including anisotropic refine-
ment yields a significant enhancement of computational efficiency.
The success of this algorithm, along with the simplicity of
the underlying Refinement-by-Superposition approach, creates a
promising path for implementing highly efficient yet lightweight
finite element method (FEM) codes for a variety of applications
in computational electromagnetics (CEM) and elsewhere.

Index Terms—computational electromagnetics, continuous
Galerkin, finite element method, higher order methods, adaptive
refinement, dual-weighted-residual, hp-refinement, anisotropic h-
refinement, anisotropic p-refinement, multi-level, refinement-by-
superposition

I. INTRODUCTION

ADAPTIVE refinement algorithms are a crucial compo-
nent of any finite element method (FEM) implementa-

tion. Efficient acquisition of accurate results necessitates the
employment of highly specialized FEM discretizations. The ar-
rangement of elements and basis functions must adhere to the
dynamics of interest and the intricacies of the physical model;
however, simulations generally begin with a discretization that
is a minimally complex realization of the geometry of interest
(i.e., the initial discretization is yielded directly from the 3D
modeling software with no concern for its fitness to the simu-
lation). For example, an accurate simulation of the radar-cross-
section of a jet requires an accurate map of the current density
on the aircraft’s surface, which in turn generally requires a
fine discretization of any sharp edges along the surface (many
elements must be concentrated around sharp edges). There is
no guarantee that the 3D modeling software will produce such
a discretization, and thus, adaptive refinement is necessary to
progressively transform the geometrically driven mesh into a
numerically optimal mesh. This work describes an adaptive
algorithm that uses a refinement-by-superposition (RBS) im-
plementation of hp-refinement to progressively generate an
accurate FEM solution from a granular mesh. We use a 2D
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department of Electrical and Computer Engineering, Colorado State Univer-
sity, Fort Collins, CO 80523-1373 USA (e-mail: jcorrado@rams.colostate.edu,
jake.harmon@ieee.org, branislav.notaros@colostate.edu).

Compute DWR 
Error Estimate

Solve the 
Maxwell 

Eigenvalue 
Problem

Partition 
Error Terms by 
Elements and 

Edges

Select Pairs of 
Elements for 
Refinement

Select 
Elements for 
Refinement

Select Refinement Type (h or p)

Convergence Trend Analysis

Edge Discontinuity Analysis

OR

Select 
Refinement 

Directions via 
Edge-Error 
Orientation 

Analysis

Merge 
Refinements

Global 
p-refienement

Apply Mesh 
Refinements

Fig. 1: Refinement Algorithm Overview. Execution of the
algorithm begins with the Domain (Ω) located in the top left
corner. Bold arrows show the primary flow of data, while light
arrows provide some additional detail.

FEM problem to develop and test the methodology; however,
a 3D generalization is trivial.

In many cases, it is possible to achieve highly accurate
results in FEM using higher-order elements (or p-refined
elements) alone; however, we also include h-refinements in
this work to better address challenging solution behaviors
such as discontinuities, singularities, and multi-scale behavior.
In these cases, the exponential convergence rates typically
afforded by p-refinement are disrupted, and we are left with
algebraic rates of convergence. The intelligent application of
h-refinement around the challenging behavior can restore fast
convergence rates by sequestering singular behavior to a small
region of the mesh; or, in the case of multi-scale behavior,
we can adapt the scale of the mesh such that the size of
the behavior is on the order of the element size. Specifically,
in the domain of Computational Electromagnetics (CEM), p-
refinements are most effective when the element scale is on
the order of a wavelength, and thus in the presence of much
smaller-scale (or higher frequency) variations, we benefit from
employing a combination of h- and p-refinement.

The RBS approach to hp-refinement is a powerful alterna-
tive to the more traditional Refinement-by-Replacement (RBR)
implementations of h-adaptivity for quadrilateral or hexahedral
elements. Like RBR, it has been shown to produce exponential
rates of convergence on challenging benchmark problems for
the Maxwell Eigenvalue Problem [1]. Here, singular and sharp
eigenfunctions were simulated efficiently using a mixture of h-
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refinement around the problematic (sharp or singular) solution
behavior and p-refinement elsewhere in the mesh. Similar
results have been achieved outside of CEM on 2D and 3D
problems [2].

Although the end result does not differ from RBR in
terms of performance, the RBS approach achieves exponential
convergence using a much lighter weight software implemen-
tation. [3], [4]. The most challenging component of RBR–
continuity enforcement over hanging-nodes–is avoided entirety
by adopting a slightly more complex mesh data-structure
which allows continuity to be enforced by construction. Using
this approach, we implement an H(curl) continuity condition
using only a few hundred lines of code. The simplicity of the
RBS implementation, allows engineers to adopt and modify
FEM codes more quickly and intuitively. It also yields smaller
binaries that are faster and easier to install.

Because RBS renders hanging-nodes trivial, it also supports
a relatively straightforward implementation of anisotropic h-
refinement, which is significantly more challenging to develop
under the constraints of RBR. Anisotropic hp-refinements have
been shown to yield improved efficiency on the benchmark
problem discussed in this work [5], as well as in other domains
[6].

The remainder of this work is organized as follows. Section
II provides a brief summary of the RBS approach to h-
refinement for 2D FEM. A more detailed explanation of the
underlying methodology and the anisotropic refinement imple-
mentation can be found in [1] and [5] respectively. Section
III gives a detailed breakdown of the adaptive refinement
methodology for the Maxwell Eigenvalue Problem in 2D
FEM as shown in Fig. 1. This includes subsections for each
procedure in the algorithm and the requisite mathematical
foundations. Finally, Section IV gives a numerical analysis
of the methodology using the aforementioned benchmark
problem with singular solutions. Here, we investigate the
usefulness of the methodology as a whole, and provide a
comparison with an isotropic version of the same algorithm.

II. THE REFINEMENT-BY-SUPERPOSITION METHODOLOGY

The RBS approach to FEM constitutes a generalization of
the typical Refinement-by-Replacement approach; however,
it has significant effects on the enforcement of continuity
conditions. With an RBR implementation, an h-refinement
introduces hanging nodes around the border of the refined
element (4 hanging nodes in 2D and 18 in 3D), requiring
specialized algorithms to enforce continuity between the new
elements and neighboring elements. Alternatively, an RBS h-
refinement leaves the parent element in the discretization to
handle continuity enforcement and introduces new elements
“above” it, making hanging-nodes inconsequential.

This difference is depicted in Fig. 2, where the RBR
refinement on the left shows the introduction of four hanging
nodes, while the RBS refinement on the right shows the new
elements superimposed over the base element. Here, active
edges are highlighted in green to show that the element on
the base layer is enforcing continuity with its neighbors, while
the edges along the border of the new layer are inactive. We

(a) RBR (b) RBS

Fig. 2: Comparison of hanging nodes in RBS and RBR for
2D FEM. Extension into the vertical axis is not physical, it is
merely a conceptual tool to represent superposition.

also show that the face of the refined element is inactive,
while the faces of the child elements are active. As such,
the new elements have inherited all basis functions from their
parent, except those necessary to maintain continuity with the
neighboring elements.

With this in mind, we note that the RBS mesh data structure
is composed of a list of element trees, where the root elements
are those from the initial discretization, and h-refinements
append new elements to the leaves of the trees. Edges are
also organized in tree structures and maintain lists of adjacent
elements on both sides. This arrangement is distinct from
an RBR mesh implementation where we simply have a list
of elements and a list of half-edges (who may connect to
one other half-edge, or multiple other half-edges due to h-
refinements).

After executing refinements, a simple procedure follows
to define a basis set over our domain such that continuity
is enforced among neighboring elements and overlapping
layers maintain linear independence. We give a summary here;
however, a full specification can be found in [1], [5]:

1) Iterate over each element and define basis functions
according to the local expansion orders

2) Associate basis functions with the relevant geometric
components based on the desired continuity conditions:

• H(curl): The non-zero tangential components
• H(div): The non-zero normal components

We separate basis functions into three types, based on
the value of the function along the edges associated with
its vectorial direction:

• Element: Zero along all relevant edges
• Edge: Non-zero along one relevant edge
• Node: Non-zero along two adjacent edges

3) Add the element-type basis functions on all the leaf
elements to the system

4) Iterate over each edge tree:
• Find the most h-refined edges, who have at least one

element on each side (if there are multiple elements
on a side, choose the most h-refined element)

• For each of the selected edges, match the edge-type
basis functions on the selected pairs of elements and
add them to the system

5) Iterate over each node:
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(a) T-Type (isotropic) (b) U-Type (c) V-Type

Fig. 3: h-Refinement Variants

• Find the most h-refined groups of four elements
(such that each pair of neighboring elements shares
an edge)

• Match the node-type basis functions on the four
elements and add them to the system

This algorithm is significantly more lightweight than an
RBR equivalent and is fully compatible with any hierarchical
basis compatible with RBR [7], [8]. It carries the additional
benefit of imposing no limit on mesh irregularity, meaning that
an edge can support any number of hanging nodes. Few RBR
implementations of FEM support discretizations with mesh
irregularity above one hanging-node per edge. This is not a
severe limitation in practice; however, it removes the need
for the mesh to support transition elements between regions
of dense h-refinement and sparse h-refinement. Notably, stark
transitions with many hanging nodes along an edge will reduce
the sparsity of the system matrices and make parallelization
more challenging; however, some work has been done to
overcome these difficulties [9].

Additionally, RBS imposes no constraints on the shape or
orientation of the elements on the superimposed layers (so
long as continuity is enforced among them). Thus anisotropic
h-refinement is straightforward to implement as it requires no
changes to the underlying methodology. For 2D FEM, we
utilize an implementation with three h-refinement variants:
one isotropic and two anisotropic, as shown in Fig. 3. Using a
combination of these anisotropic h-refinements and anisotropic
p-refinements (which are trivial to implement), one can achieve
significant efficiency improvements on sharp or singular prob-
lems [5]. In other words, anisotropic hp-refinement facilitates a
more surgical introduction of new Degrees of Freedom (DoFs)
over elements that have inaccuracies in only one direction or
region.

III. ADAPTIVE REFINEMENT STRATEGY

We now develop an adaptive refinement strategy to leverage
the anisotropic hp-refinements afforded by the RBS method-
ology from the previous section. This algorithm focuses
specifically on 2D problems; however, the principles described
here immediately generalize to other applications, including
3D FEM. In particular, we target the Maxwell Eigenvalue
problem for its solution behavior and availability of benchmark
solutions.

The Maxwell Eigenvalue problem is formulated as follows,
where we constrain the possible solutions to TE propagation
modes by asserting that the solution to the electric field is
purely transversal [8]:

Find an eigenpair U = {uhp, λhp} ∈ Bhp×R>0 such that:

a(uhp, ϕhp) = λhpm(uhp, ϕhp) ∀ϕhp ∈ Bhp (1)

for Bhp ⊂ H0(curl; Ω), Ω ⊂ R2, where:

m(uhp, ϕhp) = ⟨uhp, ϕhp⟩ (2)

a(uhp, ϕhp) = ⟨∇t × uhp, ∇t × ϕhp⟩ (3)

With this problem in mind, we will discuss the details of the
refinement algorithm summarized in Fig. 1. Each of the vital
steps will be outlined in detail in the following sections. It is
important to note that the main loop in the diagram (from the
initial discretization Γ, to our refined discretization Γ̂) shows
the process for executing a single refinement iteration. This
process is designed to be repeated many times, and various
stop conditions can be used to terminate it. For example, a
predefined number of iterations can execute, or refinement can
continue until a desired accuracy is achieved.

A. Dual Weighted Residual Error Estimation

A refinement iteration begins with the computation of a
solution and an accompanying error estimate generated using
the Dual Weighted Residual (DWR) procedure. We will give
a high-level description of how DWR applies to this problem;
however more detail is found in [10]. This procedure is the
driving force behind the refinement algorithm, as we must have
some spatially-localized notion of error contributions in order
to choose which elements to refine. Without such information,
one must employ indicators (as opposed to estimators) that
may inadequately relate the properties of the discretization to
the accuracy of goal computables.

For dictating refinements, the error,

eλhp
= λ− λhp, (4)

may be expressed in the following dual weighted residual
(DWR) form [10]:

eλhp
(1− 1

2M) = a(uhp,u − φhp)−
λhpm(uhp,u − φhp) ∀φhp ∈ Bhp (5)

Here, an overall estimate of the error in the eigenvalue
accuracy is given in terms of an approximate solution to
the primal problem uhp and an exact solution to the dual
problem u. Because this exact solution is not available, a
higher-order solution takes its place as an approximation.
This computation gives an accurate estimate of the error.
We compute the higher-order solution by applying a global
isotropic p-refinement of magnitude 1 to the entire mesh and
re-solving the eigenproblem.

The validity of the above equality relies on a pre-
normalization of the primal and dual solutions in terms of
the L2 norm:

⟨u,u⟩ = 1 and ⟨uhp,uhp⟩ = 1 (6)

To extract the maximum amount of useful information
from the error contribution estimates, φhp is chosen to be
Πcurl

hp u, which is the curl conforming projection of the dual
solution onto the primal solution space. The subtraction of this



4

information from the dual solution leaves only higher-order
information in the error estimate. As such, terms that would
cancel in the global assembly of the error contributions (due
to Galerkin orthogonality) are excluded preemptively.

Following [10], we extract more spatially granular data from
the DWR procedure by separating the stiffness-matrix integral,
shown below:

a(u,ϕ) = ⟨∇t×u,∇t×ϕ⟩ =
∫
ΩK

∇t×u·∇t×ϕ dΩK (7)

into its by-parts form. In this expanded form, the surface term
is computed separately from the edge terms, yielding direct
access to an error estimate associated with the solution on
each edge:

a(u,ϕ) =
∫
ΩK

(∇×∇t × u) · ϕ dΩK−∮
∂ΩK

(∇t × u)× ϕ · n̂ dSK (8)

These individual edge-terms are stored to be used later for
discontinuity analysis and refinement direction selection. The
full-valued solution of a(u,ϕ) is used for the purpose of
evaluating Equations 5 and/or 9.

Initially we accumulate error contributions in terms of dual
DoFs. The following equation shows the interactions of the ith
dual DoF with all primal DoFs; however, in practice, only the
overlapping integrals must be computed. Additionally, we note
that the higher-order portions of the dual solution constitute
the only non-zero error terms, as the others are eliminated by
the curl conforming projection operator.

eui =
∑

νhp∈uhp

a(uhp, (u −Πcurl
hp u)i)−

λhpm(uhp, (u −Πcurl
hp u)i) (9)

With this vector of error coefficients, we have an estimate
of how local approximation error hampers the quality of the
(global) eigenvalue quantity. As such, it is appropriate to
combine the coefficients of nearby DoFs to arrive at a list of
elements whose refinement would yield the most significant
improvement in accuracy.

B. Error Coefficient Partitioning and Thresholding

Here, we choose to accumulate the error coefficients into
two separate lists. One is composed of element DoFs and the
other of edge DoFs (because we are focused on TE modes
only, there are no DoFs associated with nodes). Specifically,
for each element in the mesh, the error terms associated with
its local Element-Type DoFs are summed up to generate an
error coefficient for the portion of the solution that lies strictly
on the element’s surface:

ek =

∣∣∣∣∣∣
∑

i∈u(Ωk)

eui

∣∣∣∣∣∣ (10)

Then, for each edge in the mesh, the error terms associated
with its Edge-Type DoFs are summed up to produce an error

coefficient for the solution which spans the two neighboring
elements. 1

e∂k =

∣∣∣∣∣∣
∑

i∈u(Ω∂k)

eui

∣∣∣∣∣∣ (11)

We now have two vectors of error coefficients, depicted by
the output of the hexagonal block in Fig. 1. This separation
is made to facilitate more effective h-refinement decisions.
In experimental analyses, singular or sharp behavior often
induced relatively large error terms associated with nearby
Edge-Type DoFs, but did not necessarily do the same for
Element-Type DoFs. As such, generating an error coefficient
for all DoFs (Element-Type and Edge-Type) over an element
can cause large edge-error terms to be ignored, leading to a
general under h-refinement of the mesh.

Two groups of elements are then selected for refinement
by choosing the top contributors from both lists. Specifically,
any element with an error coefficient greater than the mean
element coefficient is marked for refinement:

Kk = {k : ek > ek} (12)

Any edge with a coefficient greater than the mean edge
coefficient marks both of its active elements for refinement:

K∂k =
{
k+, k− : e∂k > e∂k

}
(13)

Now, with these lists of elements, we must choose between
h- and p-refinement and make refinement-direction selections.
The following sections discuss the heuristics used to make
these decisions.

C. Refinement Type Selection

The primary hp-decision heuristic is based on the theoretical
difference in convergence rates associated with h- and p-
refinements. This strategy is underpinned by the inequality
shown in the following equation [11]–[13]:

|ek| ≤ Ch
min(ξ−1,pi)
i p

−(ξ−1)
i ||u||Hξ(Ω) (14)

where ek is the error associated with a given element k, C is
a solution specific constant, ξ represents the local regularity
of the solution, hk is the diameter of the element, and pk

is the polynomial expansion order on the element. If the
regularity is large enough, the error magnitude is dominated
by an exponential relationship with the expansion order (as
shown in equation 15). When the regularity is too small–or
the solution is non-smooth–the error magnitude is dominated
by an algebraic relationship with the expansion order (equation
16).

|ek| ≤ C
hpk

k

pξ−1
k

||u||Hξ(Ω) (15)

|ek| ≤ C

(
hk

pk

)ξ−1

||u||Hξ(Ω) (16)

1These coefficients, e∂k , are not to be confused with the error terms
computed using integration-by-parts (Equation 8). Those terms only focus
on the error estimate along the inside of the edge, while these are associated
with the edge-type basis functions which are defined over the entirety of the
two neighboring elements.
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Thus, in smooth regions of a solution, one can expect the
local error to shrink exponentially with respect to pi, indicating
that p-refinement would be appropriate to efficiently move
towards a more accurate solution. Alternatively, if the solution
is non-smooth, the accuracy will converge algebraically, indi-
cating that h-refinement must be employed to sequester the
non-smooth behavior before p-refinements can be employed
profitably.

This fact offers a simple heuristic to identify whether h- or
p-refinement would better address a large error contribution
associated with an element or edge. As such, throughout the
refinement process, each element maintains a record of its
estimated error contributions and the local expansions order
associated with those contributions, as does each edge. For
the elements, these are denoted as eki

(the estimated error
on the kth element for the ith refinement iteration) and pki

(the expansion order on the kth element for the ith refinement
iteration) respectively. Edges also maintain a record of local
error contributions denoted as e∂ki

. They use the mean of the
expansion orders on the two neighboring elements, denoted as
p∂ki . The minimum of the two expansion orders could also be
used due to the inactivity of the higher order edge-type basis
functions on the element with a larger expansion order.

We now want to select between h- and p-refinement for all
elements in Kk. If at least three data points are available (two
historical, and one from the current refinement iteration), we
execute the following procedure:

1) Separately fit the (pki , eki) samples to an exponential
function and an algebraic function

2) Compute the sum of the squared residuals for both
functional fits (ê(exp) and ê(alg)):

ˆβexp =
∑
i

(|ei| − ê(exp)(pi))
2 (17)

ˆβalg =
∑
i

(|ei| − ê(alg)(pi))
2 (18)

3) If the exponential residual sum βexp is smaller than the
algebraic residual sum βalg (meaning that the conver-
gence behavior is better described by an exponential
relationship with p), then the element is marked for p-
refinement, otherwise it is marked for h-refinement

The same procedure is executed for each of the edges in
K∂k using the local convergence data (p∂ki , e∂ki). Again, this
requires at least three data points.

In order to ensure that the functional fits are relevant
to the current state of the mesh, each stack of historical
convergence data is limited to 5 entries. This way, if the
refinement process begins in the pre-asymptotic region, the
initially erroneous convergence information will be forgotten
during later iterations. Additionally, after an h-refinement, the
most recent data point is inherited by the child elements,
giving them some indication of the local convergence behavior
without over-influencing future refinement decisions.

During the first few iterations of adaptive refinement, ele-
ments will not be able to complete convergence-trend analysis
as they will not have a sufficient number of error estimates
to form functional fits. This problem also arises when new

elements are added to the mesh via h-refinement and have
not yet accumulated sufficient local convergence data. As
such, we need a secondary decision procedure to make hp-
refinement decisions when convergence-trend analysis cannot
be completed.

Our alternate heuristic analyzes discontinuities in the solu-
tion error among neighboring elements. Here, we analyze the
relevant edges by computing the magnitude of the difference
between the edge error terms on both adjacent elements (these
are the edge-error terms generated via integration-by-parts
in the DWR procedure). The following equation gives the
magnitude difference:

δedge =

∣∣∣∣∣
∣∣∣∣∣
∫
∂Ωk+

(∇t × uhp)× (u − φhp) · n̂ dSk+

∣∣∣∣∣ −∣∣∣∣∣
∫
∂Ωk−

(∇t × uhp)× (u − φhp) · n̂ dSk−

∣∣∣∣∣
∣∣∣∣∣ (19)

where ∂Ωk+ and ∂Ωk− designate the bounds for the integrals
along opposing sides of the same edge.

A small value of δedge indicates that the discretization
is well balanced. In other words, because both neighboring
elements “agree” about the accuracy of the solution along
their shared edge, we can assume that there is no small-scale
or discontinuous behavior that the current discretization fails
to capture. As such, p-refinement will be employed on the
elements associated with the edge in question. Alternatively,
when neighboring elements “disagree” about the solution
accuracy on a given edge, we can assume that there is some
discontinuity or small-scale behavior near the edge. As such,
an h-refinement is likely to be more profitable for improving
solution accuracy.

The δedge terms are computed for all elements in Kk and
K∂k that did not have a sufficient number of data points for
convergence-trend analysis. For element-refinement decisions,
the mean of the four local δedge vales is used. If this value is
large, according to some threshold, we select h-refinement,
otherwise we select p-refinement. For the edge-refinement
decisions, we only consider the discontinuity along the edge
in question. Again, this value is thresholded to select between
h- and p-refinement.

We now have two partially-defined lists of refinements,
R̃k and R̃∂k generated from our two lists of elements: Kk

and K∂k respectively. Under an isotropic formulation of the
same algorithm, we would be ready to apply these refinements
to the mesh; however, due to the availability of anisotropic
refinements, we need to make direction selections to optimally
address the orientation and location of the solution error.

D. Refinement Direction Selection
For each h-refinement, we would like to decide between the

three available refinement types: T-, U-, and V-Type (shown in
Fig. 3), as well as some more advanced composites of these
types. For p-refinements, we would like to decide between an
isotropic refinement of degree one (increment the expansion
order by 1 in both directions) and the degree-one anisotropic p-
refinements in either direction (increment the expansion order
by 1 in only one direction).
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Fig. 4: Physical arrangement of edge-error terms as used in
Equations 21 and 22.

This procedure analyzes the edge-error terms computed
during the DWR procedure via integration-by-parts. We define
a vector of edge-error coefficients for each element k as
follows:

eδk1

eδk2

eδk3

eδk4

 =


∫
∂Ωk1

(∇t × uhp)× (u − φhp) · n̂1 dSk1∫
∂Ωk2

(∇t × uhp)× (u − φhp) · n̂2 dSk2∫
∂Ωk3

(∇t × uhp)× (u − φhp) · n̂3 dSk3∫
∂Ωk4

(∇t × uhp)× (u − φhp) · n̂4 dSk4


(20)

where the subscripts on k represent the four edge indices. The
orientated of the indices is given in Fig. 4.

The edge-error vectors from the elements associated with
each of the refinements in R̃k and R̃∂k are multiplied by a di-
rectionality matrix which generates a weighting vector for each
refinement direction. The matrices for p- and h-refinement
are given in equations 21 and 22 respectively. Each row is
a magnitude-4 kernel that aims to produce a large coefficient
whenever the error vector points in a particular direction. The
refinements take whichever direction is associated with the
largest coefficient in the weighting vector W.

In both matrices, the isotropic refinement variants have
multiple associated kernels. The first, and most obvious, has
a large magnitude when the edge-error coefficients are nearly
equal across all edges. The other isotropic kernels produce
large coefficients when two adjacent edges have large error
magnitudes. In these cases, isotropic refinement is still prefer-
able as there is no clear separation in direction that could
be addressed more efficiently with an anisotropic refinement.
The next two kernels identify cases where two opposing
edges have significantly larger error coefficients than the other
two, indicating that anisotropic refinements are best suited to
improve accuracy without introducing superfluous DoFs.

W =



W(1,1)

W(1,1)

W(1,1)

W(1,1)

W(1,1)

W(1,0)

W(0,1)


=



1 1 1 1
2 0 0 2
2 0 2 0
0 2 0 2
0 2 2 0
2 2 0 0
0 0 2 2


×


eδk1

eδk2

eδk3

eδk4

 (21)

The h-refinement matrix has four additional refinement
kernels associated with composite h-refinement types. These
aim to efficiently address scenarios where most of the error is

(a) z := u-level (b) z := v-level

Fig. 5: Example of a composite h-refinement type. The central
element has been refined using the “V↓” h-refinement that
specifically targets its bottom edge. The same refinement is
plotted twice for different z-axis definitions.

concentrated around a single edge. During experimental anal-
ysis, these refinement types emerged naturally over multiple
iterations; thus, their explicit inclusion can yield the same
result in fewer iterations.

W =



WT

WT

WT

WT

WT

WU

WV

WV↓

WV↑

WU←

WU→


=



1 1 1 1
2 0 0 2
2 0 2 0
0 2 0 2
0 2 2 0
2 2 0 0
0 0 2 2
2.5 0 0.75 0.75
0 2.5 0.75 0.75

0.75 0.75 2.5 0
0.75 0.75 0 2.5


×


eδk1

eδk2

eδk3

eδk4



(22)
The composite refinement of an element successively ap-

plies two anisotropic h-refinements in one step. For example,
the refinement type “V↓” is invoked when the bottom edge
has an overpowering error coefficient. This will apply a V-
Type refinement to the element, then a U-Type refinement
to the resultant child element along the bottom edge. This
way, the scale of the bottom edge has been reduced, but the
scale of the top edge is left unchanged, leaving its continuity
with neighboring elements intact. This composite refinement
is depicted in Figure 5.

Applying direction selection to both lists of partial refine-
ments yields two lists of fully-defined refinements which we
denote as Rk and R∂k. These must now be combined and
applied to the mesh.

E. Refinement Combination and Application

Elements can be marked for refinement up to five times:
once by its surface DoF error term, and once for each of its
edge DoF error terms. As such, we must be able to compute
a sum of multiple refinements aimed at the same element. An
extension of this process follows naturally for 3D FEM where
faces must be accounted for.

For mixed scenarios (h- and p-refinements on the same
element), we simply execute the p-refinement before the h-
refinements in order to ensure that the resultant child elements
have the increased expansion order that was intended for the



7

Fig. 6: Re-Entrant Corner Benchmark Mesh

parent element. Executing the refinements in the opposite
order could cause p-refinements to be ignored entirety as
neighboring h-refinements could remove the need for edge-
type DoFs on the parent element.

When multiple h-refinements are defined over the same
element, they add constructively. For example, a U-Type and
V-Type refinement will add to create a T-Type refinement. P -
refinements add in the obvious fashion; however we limit the
magnitude to 2 in each direction to prevent over refinement.

The combined list of refinements is denoted as R in Fig.
1. These are applied to the mesh creating a new discretization
for the subsequent iteration.

IV. NUMERICAL RESULTS

We use the re-entrant corner waveguide mesh shown in Fig.
6 to assess the effectiveness of the refinement algorithm de-
scribed in the previous section. We target this model problem
as hp-refinement is necessary to efficiently solve most of its
eigenpairs and due to the availability of high-accuracy bench-
mark eigenvalue computations [14]. We evaluate convergence
behavior for six of the waveguide’s eigenfunctions, three of
which are singular about the re-entrant corner and possess
varying degrees of complexity elsewhere in the mesh. The
other three are sharp about the re-entrant corner and present
higher-energy variation elsewhere in the mesh. The electric
field magnitudes for these eigenfunctions are shown in Fig. 7.
We also investigate the value of anisotropic hp-adaptivity by
executing the same experiment with and without anisotropic
refinements. For the isotropic version of the algorithm, the
same exact DWR and hp-decision procedures are used, but the
direction selection algorithm always defaults to the isotropic
option.

Figure 8 shows the solution convergence behavior for both
classes of eigenfunction, and both versions of the refinement
algorithm. Results are plotted on a cube-root–log scale where
exponential convergence rates are indicated by straight lines.
Each data point is associated with one refinement iteration and
shows the relative error of the eigenvalue with respect to the
number of degrees of freedom used in that iteration.

Exponential convergence is achieved by the isotropic and
anisotropic versions of the adaptive algorithm. Figure 8 also

(a) 1st (b) 6th (c) 8th

(d) 2nd (e) 5th (f) 9th

Fig. 7: Eigenfunctions of interest for the re-entrant corner
waveguide benchmark problem. The Electric Field Magnitudes
are shown for the singular (1st, 6th, 8th) and Sharp (2nd, 5th,
9th) functions. All elements are plotted with an 8x8 grid of
points which is shown superimposed on the fields

indicates that anisotropic refinements can provide faster con-
vergence rates and significant improvements in efficiency
when the algorithm is applied to singular eigenfunctions. For
all three singular cases, and for the 2nd eigenpair, there is a
significant reduction in the number of DoFs needed to achieve
a given accuracy. By the final iteration, the difference is quite
substantial. This is a significant improvement from the a priori
refinement strategy used in [5], where efficiency gains became
slightly reduced over the course of refinement.

The same separation is not achieved for the 5th and 9th
eigenpairs, indicating that further tuning of the algorithm is
likely needed for cases where sharp and smooth behavior
exist in close vicinity. Regardless of the slight difference in
isotropic and anisotorpic results, both algorithms achieve ex-
ponential convergence on these difficult eigenfunctions, clearly
exhibiting the general viability of the methodology for other
challenging problems in CEM.

Figures 9 and 10 depict the final refinement states of the re-
entrant corner mesh for the singular eigenpairs. The isotropic
mesh arrangements are reminiscent of the a priori strategy
used in [5], while the anisotropic strategies show less uniform
refinement decisions and tend to introduce more h-refinement
farther from the corner. It is also clear that these algorithms
rely heavily on anisotropic p-refinements, which present sig-
nificant NDoF savings. For example, in the anisotropic mesh
for the first eignepair, some elements have an expansion order
of 10 in one direction and 4 in the other. An equivalent
isotropic refinement would require the element to support 6
additional degrees of polynomials in the other direction, which
are not necessarily beneficial to solution accuracy.

V. CONCLUSION

By leveraging a Refinement-by-Superposition approach to
FEM discretizations, we developed a powerful adaptive re-
finement strategy that efficiently conducts anisotropic hp-
refinements to solve complex problems in computational
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Fig. 8: Comparison of convergence rates for the isotropic and
anisotropic adaptive refinement algorithms. Behavior for the
Singular and Sharp eigenfunctions are shown on a cubed-root–
log scale

electromagnetics and other areas of applied mathematics.
This approach is composed of a DWR error estimator, two
hp-decision heuristics, and a direction selection heuristic
(which is necessary to guide anisotropy). Without any pre-
defined knowledge of how to address a re-entrant corner–
which typically introduces challenging multi-scale solution
behavior–the algorithm converged exponentially on accurate
solutions for all six eigenfunctions of a benchmark Maxwell
Eigenvalue problem. Additionally, we noted cases where the
anisotropic version of the algorithm significantly outperformed
the isotropic version in terms of efficiency.

Specifically, comparing the efficiencies of the final iteration
of the anisotropic and isotoropic simulations, we achieved
improvements of 1.5x, 1.77x, and 2.8x on the 1st, 6th and
8th eigenvalues respectively (where efficiency is defined as
the ratio of the achieved accuracy to the number of degrees
of freedom used). These results are an excellent indication of
the algorithms success, as they imply reduced memory con-
sumption (or improved accuracy) in practical applications that

(a) 1st Eigenpair

(b) 6th Eigenpair (c) 8th Eigenpair

Fig. 9: Final Mesh states for the Singular Eigenpairs after
anisotropic refinement. The keys in the top left show the
expansion orders

require h-refinement around singularities. This is especially
encouraging for shared memory applications (ex: running
simulations on a PC), where fast simulations require that the
entire system matrices fit in RAM.

For the 5th and 9th eigenvalues, efficiency gains were
approximately 1x over the course of refinement, meaning
that anisotropy was neither a help nor hindrance towards the
simulation efficiency. Thus, we conclude that there is further
room for improvement in the algorithm’s implementation. It
is likely that a more careful tuning of the somewhat arbitrary
thresholds and directionality kernels used in the algorithm
would result in a better use of the anisotropic refinements on
the sharp eigenfunctions.

For the adaptive solution of complicated partial differential
equations, the algorithm described in this work is a valuable
demonstration of an adaptive refinement strategy compatible
with RBS and anisotropic hp-refinements. It’s success serves
as further indication of the usefulness of RBS and anisotropy
for addressing challenging problems in CEM. These results
will likely generalize to other problem domains that re-
quire enforcement of continuity conditions over quadrilat-
eral/hexahedral elements.
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