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A Refinement-by-Superposition hp-Method for
H(curl)- and H(div)-Conforming Discretizations

Jake J. Harmon, Graduate Student Member, IEEE, Jeremiah Corrado, and Branislav M. Notaroš, Fellow, IEEE

Abstract—We present an application of refinement-by-
superposition (RBS) hp-refinement in computational electromag-
netics (CEM), which permits exponential rates of convergence. In
contrast to dominant approaches to hp-refinement for continuous
Galerkin methods, which rely on constrained-nodes, the multi-
level strategy presented drastically reduces the implementation
complexity. Through the RBS methodology, enforcement of con-
tinuity occurs by construction, enabling arbitrary levels of refine-
ment with ease and without the practical (but not theoretical)
limitations of constrained-node refinement. We outline the con-
struction of the RBS hp-method for refinement with H(curl)- and
H(div)-conforming finite cells. Numerical simulations for the 2-D
finite element method (FEM) solution of the Maxwell eigenvalue
problem demonstrate the effectiveness of RBS hp-refinement. An
additional goal of this work, we aim to promote the use of
mixed-order (low- and high-order) elements in practical CEM
applications.

Index Terms—computational electromagnetics, continuous
Galerkin, finite element method, higher order methods, hp-
refinement, multi-level, refinement-by-superposition.

I. INTRODUCTION

GEOMETRIC discretization by quadrilaterals and hexa-
hedra, while significantly more accurate with respect to

degrees of freedom (DoFs) than modeling with triangles or
tetrahedra [1], presents significant challenge to fully dynamic
mesh adaptivity. In refinement with triangles and tetrahedra,
local adaptivity directives propagate to a small set of neigh-
boring elements, enabling the insertion of new DoFs without
modification to the entire element structure. Similar refinement
approaches with quadrilateral and hexahedral cells, however,
would dictate global refinement, thereby destroying the utility
of h-adaptivity. Inserting transition elements also poses sig-
nificant challenge to the approximation quality, particularly
for vectorial shape functions, which rapidly degrades as the
unit vectors lose linear independence in the physical domain.
Finally, application of a discontinuous Galerkin method, while
evading this problem, among its other difficulties, generally
requires more DoFs for the same level of accuracy.

As shown in [2]–[5], when the solution satisfies certain
regularity conditions, p-refinement enables exponential con-
vergence; when such conditions are not satisfied, however, the
benefit of p-refinement is heavily degraded, reduced instead to
algebraic convergence as in the case of pure h-refinement. Pure
p-refinement, while effective in certain situations (e.g., [6]),
is therefore insufficient in general, and as such, a combined
approach with both h- and p-adaptivity is necessary to achieve
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exponential convergence for solutions with singularities or
non-smooth behavior, motivating the need for more advanced
and versatile approaches to h-refinement.

Previous works in CEM, for example, have demonstrated
the potential of hp-adaptivity through hybrid meshes, e.g., in
[7]. Most typically, however, to address the hp-adaptivity lim-
itations the insertion of constrained-nodes, which—in contrast
to true DoFs—are constrained to enforce continuity conditions
with neighboring elements, is performed. Such approaches
in CEM have shown significant performance increases and
exponential convergence in the presence of singular solutions
[8]–[13], but at the cost of high implementation complexity,
impeding wide-scale adoption. Furthermore, such methods are
usually limited in implementation to 1-irregular meshes (i.e.,
only one hanging node per edge), which, while not a severe
limitation in practice, prevents arbitrary local refinement steps.
Open-source libraries—such as deal.II [14]—have signifi-
cantly simplified the implementation of hp-refinement codes,
yet in some cases it might be inconvenient or undesirable to
utilize third-party finite element method (FEM) libraries.

As such, we opt to extend the refinement-by-superposition
(RBS) approach introduced in [15]–[17] for hierarchical basis
functions, which demonstrated exponential convergence for
scalar problems with C0 finite elements, to H(curl)- and
H(div)-conforming finite elements. Additional studies with C0

finite elements and the RBS hp-method with adaptivity in [18]
further motivate extensions of the method to CEM.

While the proposed approach significantly simplifies the im-
plementation of hp-refinement infrastructure for applications
in CEM, in contrast to more traditional refine-by-replacement
(RBR) strategies, the proposed approach decreases the sparsity
of the system matrices under both h- and p-refinements,
whereas RBR only reduces sparsity under p-refinements. The
proposed approach is therefore less suitable for application to
very large problems with vast differences in scales. For appli-
cations of the approach to boundary element method (BEM)
problems, e.g., surface integral equation (SIE) problems in
CEM discretized by the method of moments (MoM), such
considerations do not apply given the global nature of the
Green’s function, but would instead concern the increase in
integration time due to the overlap of refinement layers.

The remainder of this paper is organized as follows. Section
II details the construction of the RBS hp-method, covering the
enforcement of the required continuity conditions (tangential
or normal continuity) and ensuring linear independence after
the insertion of descendant refinement layers. Section III
examines application to an H(curl)-conforming discretization
of the Maxwell eigenvalue problem. We examine a challenging
eigenpair with a singular eigenfunction as studied in [19].



2

The presented approach yields exponential convergence of the
eigenvalue with respect to the number of degrees of freedom
(NDoFs), which, along with the ease of implementation,
illustrates the practical value for applications in CEM.

II. REFINEMENT-BY-SUPERPOSITION: DESCRIPTION AND
CONSTRUCTION

With an underlying hierarchical H(curl)- or H(div)-
conforming basis, such as introduced in [20], exponential
convergence may be achieved with suitable refinements by
a collection of overlay meshes. This RBS approach yields
the desired discretization by imposing homogeneous Dirichlet
boundary conditions on the boundaries of the inserted descen-
dant cells (i.e., the collection of overlay meshes) [15]–[17].
Continuity requirements, therefore, may be easily enforced
for arbitrary levels of refinements (i.e., n-irregular meshes)
and heterogeneity in the chosen orders of the hierarchical
basis throughout the mesh. This enables an algorithmically
straightforward and low-cost method to add hp-refinement ca-
pabilities for H(curl)- and H(div)-conforming discretizations
by enforcing, respectively, tangential and normal continuity.

We approach the description explicitly from a 2-D perspec-
tive; however, the process generalizes trivially to 3-D. First,
we classify each shape function in the following manner. In
the case of an H(curl)-conforming discretization, we assign
each shape function according to the properties of the non-
zero tangential components at the boundary of the cell. These
shape functions are classified into three categories: the node-
functions, i.e., those functions with non-zero tangential com-
ponents at only one node; the edge-functions, i.e., those func-
tions with non-zero tangential components along one and only
one edge; and the cell-functions, i.e., those functions which
have no non-zero tangential components on the boundary. The
existence of node-functions is only necessary when in 2-D,
the axial component (i.e., perpendicular to the 2-D plane of
the geometry) of the solution is non-zero, as in the examples
in [6]. The same classification strategy, albeit according to
the non-zero normal components at the boundary, is applied
for seeking solutions in H(div). Naturally, the difficulty in
inserting unknowns rests in the treatment of the edge-functions
(and potentially the node-functions), while the cell-functions,
which introduce no DoFs influencing the boundary, may be
inserted or excised without non-local considerations.

Given some starting mesh, which, without loss of general-
ity, we assume to be regular, refinement directives are then
executed. Furthermore, while we focus on isotropic refine-
ment, the superposition-based approach supports anisotropy
in p-refinement directives trivially and, with modification, to
anisotropic h-refinements [21]. For example, for a single h-
refinement step applied to one cell in 2-D, four new child
cells are inserted one refinement layer above the parent cell
according to the constraint of isotropic refinement only. Note
that geometrically, the child cells lie in the same physical
space as the parent; rather, the designation of “above” is purely
conceptual.

We have two simultaneous considerations in the process:
continuity and linear independence. Continuity must be en-
forced due to potential non-uniformity in the polynomial

degree of the basis on neighboring cells and the existence (or
lack thereof) of child cells on the various refinement levels.
Linear independence, on the other hand, is guaranteed by
the proper delegation of DoFs between the refinement layers
descended from the origin cell. DoFs must be deactivated on
the parent cells and activated on the child cells, depending on
the refinement levels of the cell and its neighbors.

The refinement and coarsening directives are applied for
both cases through the assignment of the DoFs to the geomet-
rical structures as mentioned above (the cells, the edges, the
nodes, and, in 3-D, the faces).

A. Enforcing Continuity Requirements

The activation and deactivation of the DoFs on the bound-
aries of the cells follows a unified procedure based on [15]–
[17]. For each layer in the discretization, from the origin
layer to the highest refinement layer, DoFs are assigned to
each of the geometrical elements according to the continuity
requirements desired, in this case, tangential continuity for
seeking a solution in H(curl) and normal continuity for
H(div). Each cell, edge, node (when necessary in 2-D), and
face (exclusively in 3-D) collects a list of DoFs, both active
and inactive.

As the DoFs are accumulated, each one is matched as
necessary with the associated shape functions on neighboring
cells according to the vectorial direction and multi-index of
the associated shape function. As opposed to the boundary-
functions (i.e., node, face, and edge), the cell-functions au-
tomatically satisfy continuity requirements and therefore no
special considerations are necessary except for those related
to ensuring linear independence. The boundary-function DoFs
are marked as active according to the existence of neighbors
in the refinement level and the expansion order of those
cells. Both restrictions are handled seamlessly and without
distinction as the overall process amounts to traversing the
geometrical entities in the discretization, which are assigned
their maximal sets of associated DoFs, and activating only the
DoFs according to the above compatibility conditions.

We summarize the procedure for activating DoFs based on
the continuity requirements as follows:

1) For each cell, edge, node, and face in each refinement
layer, collect the associated DoFs

a) For H(curl), associate the DoFs based on the non-
zero tangential components

b) For H(div), associate the DoFs based on the non-
zero normal components

2) Iterate through each refinement layer and each edge,
node, and face

a) If a suitable refinement neighbor exists, match
the shape functions associated with the adjacent
cells, activating only the fully matched DoFs and
deactivating the rest

B. Eliminating Linear Dependence of the Hierarchical Refine-
ments

For ensuring linear independence between overlapping
shape functions, we prioritize the highest feasible refinement
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level possible. For example, the cell-functions, which by
definition satisfy the continuity requirements automatically,
require deactivation on the parent cell and activation of the
DoFs on the child cells. Unlike the handling of the edge- and
node-functions, this transfer occurs without any queries to the
discretization other than checking if the descendant cells exist.

Now, for the edge- and node-functions, additional care is
necessary. In this case, the preference to delegate DoFs to the
child cells is constrained by the refinement state of one or more
neighbors of the cell. In other words, in 2-D, if a parent cell
shares an edge with another refined parent cell, the DoFs on
the parent edge may be transferred to the corresponding edges
on the child refinement layer. Likewise, the deactivation of a
node-function on the parent refinement layers requires that the
corresponding node is surrounded by refined cells. In other
words, as in [15]–[17], active geometrical components may
not ”overlap” with respect to the refinement layers.

We summarize the activation and deactivation of DoFs as
follows:

1) On an h-refinement step, deactivate cell-functions on the
parent cell and activate the cell-function DoFs on the
child cell.

2) If a geometrical component (a node, edge, or face) on the
descendant layer is active (i.e., it has associated active
DoFs), deactivate the corresponding component on the
parent layer

According to this procedure, a parent cell sufficiently
surrounded by refined cells may be entirely deactivated to
ensure linear independence and maximize the resolution of
the approximation. In such cases, the sparsity of the resulting
system is enhanced.

C. Summary of the Overall Approach

Illustrated in Fig. 1, the entire procedure, from enforcing
the continuity requirements to ensuring linear independence,
requires only the straightforward rules as summarized in the
preceding subsections. Similarly to the descriptions of the
RBS process in 1-D in [15]–[17], Fig. 1(a) summarizes the
procedure for a 1-D domain, including the transfer of DoFs
associated with lower refinement levels to the descendant lay-
ers and the ability to choose the expansion order p arbitrarily.
Note that in 1-D, we have only the linear class of boundary-
functions, i.e., at the boundary between two cells (across all
the refinement levels), only one active boundary-DoF exists.
The hierarchical basis functions illustrated in Fig. 1(a) and
those used in the Numerical Results Section are based on the
maximally-orthogonalized basis functions [20].

In 2-D (and 3-D), however, many active DoFs exist on
the cell boundaries as a result of employing higher order
boundary-functions. Depicted in Fig. 1(b), we demonstrate
a similar refinement model as in the 1-D case. Unlike in
the 1-D case, the depicted refinement in 2-D results in the
enforcement of the domain boundary conditions propagating
to the higher refinement levels when available. Furthermore,
in this case, many of the parent cells retain a large number
of DoFs assigned to the boundary due to the higher order
boundary-functions. In Fig. 1(b), such occurrences are denoted

(a)

(b) (c)

Fig. 1. The RBS hp-refinement activation and deactivation procedure. (a)
The depiction of the process in 1-D. (b) The depiction of the process in 2-D.
(c) An overhead perspective of the distribution of h-refinements applied in
the 2-D example.

by the cells with solid boundaries and transparent interiors,
in addition to the matching designations related to the active
geometrical components as seen in Fig. 1(a).

Finally, for each cell located on a new refinement layer,
an additional mapping is introduced, resulting in a succession
of mapping operations. Note, however, that regardless of the
curvature of the origin cell, all subsequent mappings from the
reference cell to the child cell have constant Jacobian deter-
minants, and may be handled with ease during integration.

III. NUMERICAL RESULTS

We now demonstrate the suitability of the RBS hp-
refinement methodology by solving the following Maxwell
eigenvalue problem (in variational form):

Find U = {uhp, λhp} ∈ Bhp × R such that

a(uhp, φhp) = λhpm(uhp, φhp) ∀φh ∈ Bhp, (1)

for Bhp ⊂ H(curl; Ω), where m(uhp, φhp) = 〈uhp, φhp〉,
and a(uhp, φhp) = 〈∇t × uhp, ∇t × φhp〉. We further assert
that the domain Ω ⊂ R2 is terminated by the Dirichlet
boundary condition n× uhp = 0 on ∂Ω. Finally, uhp is purely
transversal.

While not exclusively applicable to eigenvalue problems
with singularities, we study the approach for a 2-D cross-
section of an L-shaped waveguide, shown in Fig. 2(a), which
features many singular eigenfunctions, to demonstrate the ca-
pability to achieve exponential convergence in the presence of
solution irregularity. We focus our analysis on the convergence
of the smallest eigenvalue to an accurate numerical compu-
tation [19] of the benchmark problem originally proposed
by [22]. The eigenfunction associated with this eigenvalue
exhibits a singularity in the field at the reentrant corner, as
seen in Fig. 2(b).
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(a) (b)

Fig. 2. The model and problem under study. (a) The initial discretization
for the L-shaped domain. (b) The field magnitude of the first eigenfunction,
illustrating the singularity at the reentrant corner.

Following the procedure outlined in Section II, the initial
discretization is successively refined about the reentrant corner.
New refinement layers are inserted in groups with p = 1 and
the expansion orders of each pre-existing cell are increased by
one each iteration, resulting in an emphasis on h-refinements
closer to the reentrant corner and an emphasis on p-refinements
away from the reentrant corner. We note that this illustrative
a priori refinement strategy is neither optimal nor adaptive.
Adaptive strategies, such as in [19], may be applied in
place of the illustrative refinement approach presented in this
manuscript. A collection of discretizations with h-refinements
targeting the reentrant corner (from L = 0 to L = 8 refinement
levels) and global (i.e., uniform) increments in p serves as the
comparison approach.

Example discretizations from each approach with five re-
finement layers are illustrated in Fig. 3. Fig. 3(a) depicts
the progression from third-order field expansion to first-order
while undergoing simultaneous h-refinements and Fig. 3(b)
features the same level of h-refinement with homogeneous
third-order field expansion.

Fig. 4 shows the convergence results for the first eigenvalue
with the two approaches to refinement. RBS hp-refinement
achieves exponential convergence while the successively p-
refined discretizations at various levels of h-refinement (L = 0
to L = 8) provide only algebraic convergence. The linear trend
with respect to NDoFs1/3 as in Fig. 4(b) indicates the strong
consistency of the exponential convergence.

IV. CONCLUSION

We have demonstrated the capability to achieve exponential
convergence through an RBS hp-method in CEM. At the cost
of reducing sparsity in FEM applications, the significant reduc-
tion in implementation complexity facilitates straightforward
adoption of hp-refinement techniques with arbitrary levels of
refinement.

When applied to the computation of the eigenvalue asso-
ciated with a singular eigenfunction for H(curl)-conforming
elements, the method delivers perfect exponential convergence
while enforcing the tangential continuity requirements by
construction rather than through constraint equations. Finally,
the entire procedure directly applies to enforcement of normal
continuity when H(div)-conforming elements are required and
also extends to 3-D applications easily.

(a) (b)

Fig. 3. Example discretizations for the RBS hp-method and the selectively
h-refined comparison method with uniform p. (a) The RBS hp-method
discretization with maximum and minimum expansion orders of three and
one, respectively. (b) The RBS h-method with a uniform expansion order of
three. The two discretizations have L = 5 refinement levels.

(a)

(b)

Fig. 4. Convergence of the first eigenvalue for the RBS hp-method and the
comparison approach with h-refinement levels from L = 0 to L = 8 and
increasing uniform expansion orders. (a) Double logarithmic representation.
(b) log-cube-root representation.
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