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Abstract—We propose and evaluate several improvements to the 

accuracy of the shooting and bouncing rays (SBR) method for 

ray-tracing (RT) electromagnetic modeling. We propose per-ray 

cone angle calculation, with the maximum separation angle 

between rays calculated for every individual ray, based on a set 

of local neighbors rather than a single global maximum. This 

allows the smallest theoretical error of the SBR method, adaptive 

ray spawning procedures, and a unique analysis of the effect of 

ray cone sizes on the accuracy of the method. For the 

conventional uniform angular distribution of rays, a less general 

and versatile but more expeditious approach, we derive an 

analytical expression for the optimal choice of cone angle to 

again maximize the overall accuracy of the SBR computation. 

Both approaches are derived using icosahedral ray spawning 

geometry and adjacent ray sets, which are also used for our 

double counted rays identification and removal technique that 

avoids complicated ray path searches. The results demonstrate 

that the advanced shooting and bouncing RT method––using 

both proposed ray cone generation approaches––can perform 

wireless propagation modeling of tunnel environments with the 

same accuracy as image theory RT, a dramatically less efficient 

but traditionally considerably more accurate solver.  

 

Index Terms – Wireless propagation modeling, asymptotic 

high-frequency techniques, propagation in large tunnels, ray 

tracing method, shooting bouncing rays techniques, ray cone 

angles, double count removal, image theory ray tracing.  

I. INTRODUCTION 

As communications frequencies become higher and the 

propagation environments that need to be electromagnetically 

characterized become physically larger and more 

interconnected given the increased complexities and demands 

of emerging wireless system functionalities, these structures 

become more difficult to model using full-wave 

computational electromagnetics (CEM) techniques. For 
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example, CEM modeling and simulation of wireless signal 

propagation in tunnels of underground mines or traffic (e.g., 

railway or subway) systems presents extraordinary challenges 

and is an open CEM research problem with unparalleled 

difficulty in many of its aspects. A mine or traffic tunnel at 

wireless communication frequencies is electrically an 

extremely large electromagnetic system, typically spanning 

thousands of wavelengths. High-frequency asymptotic 

techniques have been shown to be computationally efficient at 

modeling such structures [1]–[4].  

 Indeed, there has been a “renaissance” of CEM simulations 

and computations using high-frequency, asymptotic 

methodologies and implementations and renewed and 

growing interest in their applications to wireless propagation 

modeling within indoor and outdoor communication 

environments. While asymptotic methods for numerically 

approximate high-frequency modeling can never be as 

accurate as the full-wave methods for numerically rigorous 

field computation, it appears that there are opportunities for 

the improvement of accuracy of asymptotic modeling in some 

of its components and aspects. This paper addresses the 

accuracy of ray-based high-frequency modeling in general 

and when particularly applied to wireless propagation 

modeling of tunnel environments.  

One of the most important classes of asymptotic techniques 

for CEM modeling is constituted by the ray tracing (RT) 

approach, based on the theory of geometrical optics (GO), by 

which the electric field is discretized into rays, with two 

common methods used for RT simulations, (i) the image 

theory method (IT) and (ii) the shooting and bouncing rays 

(SBR) method. The IT approach uses the method of image 

transformation to mirror a transmitter across reflection planes 

in the environment to find exact propagation paths from the 

transmitter to a receiver.  From the accuracy standpoint, this 

method is advantageous due to the exact paths computed, 

making the phase error negligible. The only sources of phase 

error stem from geometric mesh approximations and 

numerical truncation, the latter typically being insubstantial 

compared to the former. However, the computational 

complexity of the IT method is O(NK) where N is the number 

of planar facets in the model and K is the number of 
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reflections [5]. In electrically extremely large, closed 

environments, many rays and reflections are needed for 

adequate sampling, making IT impractical despite its 

attractive accuracy characteristics.  

The SBR method, in contrast, launches rays from a 

transmitter in every direction, each ray is tracked as it 

propagates through the geometric environment according to 

Snell’s law, and its magnitude is adjusted according to 

Fresnel’s coefficients [1]. These paths are then tested to 

determine if the ray intersects a receiver, in which case its 

electric field is added to the field at the receiver point. The ray 

paths are inexact, so further phase error is introduced in the 

SBR method compared to the IT method. However, the 

computational complexity of SBR, O(NK), where N is the 

number of rays spawned and K is the number of reflections, is 

substantially lower than that of IT. Additionally, the SBR 

method allows for the extension of propagation to include 

refraction and diffraction, which IT alone cannot accomplish. 

This makes the SBR method much more efficient and 

versatile for use in large environments. 

Previous work has demonstrated the effectiveness of the 

SBR method in tunnel environments, with findings showing 

that this method is a useful simulation technique for large, 

complex environments. The accuracy of the approach, 

however, is poor when compared to IT and full-wave 

techniques [3]. In [5], the SBR model was shown to be 

ineffective at simulating fields in tunnel environments further 

than a few hundred meters. This is due to issues with ray 

receptions in the SBR model. The so-called SBR cones 

method uses reception spheres to model the reception of a 

wavefront at a receiving antenna, where the sizes of these 

spheres are extremely important for the accuracy of the SBR 

method [3]. With large spheres, the results become inaccurate 

due to multiple counting of propagating wavefronts. Too 

small of a sphere size, on the other hand, causes 

discontinuities in the wavefront, known as undercounting. 

Previous work has been done in determining the appropriate 

sizes of the reception spheres by using spheres of variable size 

determined by path length [3],[4],[6]–[10]. However, these 

works assume that the ray distribution is uniform across the 

three-dimensional (3-D) spawning volume, and this 

assumption is invalid in 3-D, which can lead to inaccuracies.   

This paper presents the development of an SBR model and 

analysis and improvement of the accuracy of the SBR 

computation based on three factors and associated novel 

contributions. Specifically, we theoretically and empirically 

analyze importance of the distribution angle of rays launched 

from the transmitter for phase accuracy, coupled with the 

importance of ray double count removal for magnitude 

accuracy. Firstly, we propose per-ray cone angle calculation, 

with the maximum separation angle calculated for every 

individual ray based on a set of local neighbors rather than a 

single global maximum. This allows the smallest theoretical 

error of the SBR method, with undercounting being 

completely removed from the model, as well as decreasing the 

ray cone size which substantially reduces the phase error. 

Secondly, we also analyze constant angular distributions of 

the rays, which allow for much more expeditious simulations 

but make the overall accuracy of the computation extremely 

sensitive to the choice of the angular distribution. Here, we 

derive an analytical expression for the optimal choice of this 

angle to maximize the overall accuracy of the SBR 

computation, and demonstrate empirically that the SBR 

simulations generated using the derived optimal constant 

angle are indistinguishable from those generated using per-ray 

angles, that is, from the theoretical best-case scenario for 

simulation accuracy. Thirdly, the two approaches to ray cone 

angle calculation are coupled with a double counted rays 

identification and removal approach using icosahedron 

geometry and neighbor ray sets to identify and remove double 

counted contribution without the need for lengthy and 

complicated path searches based on the full geometry of the 

ray paths, hence coupling improvements of phase and 

magnitude accuracies. We thus demonstrate how the SBR 

methodology and implementation can be advanced to produce 

an SBR approach of similar accuracy as the image theory RT 

method, in simulations of large tunnels. The results show that, 

with the proposed, implemented, and analyzed accuracy 

improvements, the SBR method can perform wireless 

propagation modeling of planar tunnel environments with the 

same accuracy as the dramatically less efficient image theory 

approach. The three contributions to the SBR methodology 

are completely general, and thus are capable of being applied 

to any existing SBR method, model, and simulation. These 

advancements are positioned and capable of increasing 

accuracy of an existing SBR technique to a point where the 

results are almost indistinguishable from the IT approach, as 

demonstrated in this paper. In fact, this demonstration is the 

fourth novel contribution of this work, as it has always been 

thought that the accuracy of the SBR approach can never be 

brought to the level of the IT accuracy. Note that the basic 

theory and preliminary accuracy validation of our SBR RT 

analysis of tunnels are presented in a summary form in [11].  

II. SBR METHODOLOGY 

A. Ray Receptions 

Once rays have been tracked as they propagate through a 

medium, they are tested to see if there is an intersection of the 

ray and a receiving antenna. The cones technique is 

advantageous here, because the regular, circular cross-section 

of the ray bundle. Reception points for the rays are modeled 

as growing spheres which represent the growing cross-section 

of the ray cone. An intersection test between the sphere and 

the center ray of the cone is used, as shown graphically in Fig. 

1, which is computationally simple and efficient. If this center 

ray intersects a receiver sphere, one of the rays represented in 

the ray cone is an exact hit. The linear nature of Maxwell’s 

equations results in the field at any receiver point being the 

linear superposition of all electric field contributions of rays 

that intersect this point. 

The radius of the ray cones, and thus the reception spheres, 

is determined for the  th ray by  
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Fig 1. Ray–sphere intersection: graphical representation for the scene of a ray 

approaching a sphere and the corresponding components used in the 

calculation of the reception sphere radius.  

 

        
 

    

√ 
                                                                                 

where    is the total distance a ray has travelled and    is the 

maximum separation angle between a ray and its neighbors 

[3]–[10].  This equation calculates the minimum possible ray 

cone radius that fully covers the electric field radiation.  In 

tunnel environments, it is possible to have multiple reflected 

wavefronts received from the source. However, the 

propagation distance is tracked individually with every ray, so 

this can be applied independently for each ray.  

B. Double Count Removal Method 

  The SBR approach requires launching discrete rays, each of 

which representing a cone of influence to fully cover the 

transmitting radiation pattern.  Any places where the cones do 

not overlap would represent a non-physical scenario, where 

receptions might be missed in the simulation, constituting 

undercounting.  To fully cover the 3-D radiation pattern 

without discontinuities in the field, the cones must overlap, as 

shown in Fig. 2. This overlap represents a substantial 

drawback as the overlapping wavefronts can be represented at 

least twice in the simulation. Any intersection of the 

overlapping wavefronts with a receiver will lead to the 

electric field from a single wavefront contributing twice to the 

total field, which is referred to as double counting [7],[8],[10]. 

The double counted fields can be removed but require 

searching ray paths to find common images.  This shows the 

important role both the ray distribution and cone sizes play in 

the accurate implementation of the SBR method.  

 The spawning techniques for the ray tracing application 

involve sampling points on surfaces that surround some ray 

origin point. Once these sampled points are determined, each 

ray for the ray tracing algorithm is launched from the origin to 

one of the sampled points. While different spawning 

techniques such as uniform grid sampling and Fibonacci 

spiral sampling have been tested and provide various 

advantages regarding sample spacing and ease of formation 

[1],[2],[12], we use here an icosahedron for the sampling 

method. Each face of an icosahedron is subdivided into 

equilateral triangles, where the number of vertices is given 

according to the nth triangular number. The rays are launched 

on the vertices of the subdivided icosahedron face with the 

number of rays launched on a face being        ⁄ , where 

n is the number of subdivisions along an edge of the face. 

This allows for very uniform distribution of launched rays, 

which is a requirement for accurate SBR simulations.  

Additionally, the icosahedron provides important topological 

information about the rays; the rays can be grouped together 

into sets of neighbor rays. These neighbor rays can be used to 

calculate the angle between rays, which proves extremely 

useful in calculating the sizes of ray cones, as will be 

discussed in detail in Section III.  Similar methods of ray 

spawning, such as normalized cube which subdivides cubes 

instead of triangles, offer similar ray topology benefits. The 

ray neighbor sets can also be used to remove double counted 

rays in a novel way. Namely, the double counts can only 

occur with overlapping ray cones, where the overlap 

represents the same wavefront. Any two ray cones that 

overlap and take the same path from the source to the receiver 

must represent the same wavefront which therefore will be 

counted twice. So any two rays that are neighbors that take 

the same number of reflections from the source to the receiver 

will be double counted, and one is easily removed. 
 

 
Fig. 2. Geometry of showing an adjacent and non-adjacent ray cone. 

 

To prove that overlap, and thus double counted wavefronts, is 

limited to adjacent ray sets, we can use the geometry shown in 

Fig. 2. The condition that must be satisfied is   ⁄     .  

This condition ensures overlap between adjacent rays to 

provide full radiation coverage, while preventing overlap 

between non-adjacent rays. From the figure, and using the law 

of cosines, we get   √           . Assuming that   is 

small and taking the small angle approximation of     , we 

get that     .  Thus, the inequality becomes, 

 
  

 
                                                                                          

As long as   is chosen as the largest angle between a ray and 

its neighbors, then the left-hand side of the inequality ensures 

full radiation pattern coverage. We see that (1) satisfies (2), 

showing that it is a good choice for the radius of the ray cone.  

Equation (2) leads to two important conclusions: (i) Because 

ray cone overlap is limited to adjacent rays, the path search 

can be limited to only a neighbor ray set, which drastically 

reduces the computational complexity of double count 

removal; (ii) This highlights the importance of choosing   

correctly.  If this angle is taken to be a constant value for 

instance, it is possible to cause undercounting since ray 

distribution is not constant and it is possible that not all ray 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2021.3060051

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 

cones overlap with all adjacent rays. Undercounting is 

problematic because it cannot be identified in post-processing. 

Choosing a constant value that is too large can also lead to 

cone overlap between non-adjacent rays, which expands the 

search for double count removal. 

 For the context, previous work in double count removal 

uses one of two common methods, where in the first 

approach, a characteristic sequence of a ray’s path can be 

tracked, and any rays at the same receiver with the same 

characteristic sequence represent a double count, such as in 

[10]. However, this method quickly exhausts available 

memory, in addition to lacking parallelizability. The second 

method uses geometric path searches to identify double 

counted rays by calculating the distance between rays at a 

reception and removing those that are within the cone radius, 

such as in [7],[8].  However, this technique requires a large 

number of memory accesses and thus represents a bottleneck 

in the simulation. Our double count removal technique 

requires no additional memory storage because the adjacent 

ray sets are calculated only once in the preprocessing portion 

of the simulation. Additionally, memory checks are limited 

due to only having to search a single set instead of multiple 

ray distance accesses. This means that our method not only is 

computationally more efficient, but it is also more memory 

friendly, which allows for larger and faster simulations.  

III. PER-RAY AND OPTIMAL CONSTANT RAY CONE ANGLE 

CALCULATIONS  

There is a very important relationship between ray cone 

sizes and simulation accuracy. In the SBR model, the 

distribution of rays being launched from a receiver becomes 

vital for the accuracy of the model, where an even distribution 

is desired [6]. However, when launching rays in 3-D, it is not 

possible to have exactly uniform distribution of rays.  

We choose the inscribed icosahedron spawning pattern 

because of its regular and predictable angular distribution of 

rays.  Equation (1) gives the radius of the ray cones required 

for full radiation pattern coverage with the minimum possible 

overlapping of the cones.  This formula requires that the angle 

  is the maximum angle between neighbor rays. Generally, 

the distribution of ray angles is assumed to be approximately 

uniform, and a constant value of   is used to calculate ray 

cone sizes.  On the other hand, as can be seen in Fig. 3, the 

angular distribution of rays is significantly larger at the 

centers of the icosahedron faces and is smallest at the vertices. 

For other ray spawning patterns, this discrepancy is typically 

even more pronounced. This variation in angular distribution 

between rays can prove to be problematic if a constant   is 

assumed (unless the proper value for   is chosen).  

Using the adjacent ray sets developed for use in double 

counted ray identification, we can also calculate the 

maximum angle between rays for every individual ray. This is 

advantageous for several reasons. Firstly, using these 

individual α values allows for the smallest theoretical error of 

this SBR method, because cone sizes are as small as possible 

for every ray while ensuring full radiation coverage, which 
 

 

 

  
Fig. 3. Angular distribution of rays on an icosahedron: distribution of the 

maximum angle between neighbor rays ( ) across an icosahedron spawning 

procedure with  n = 100 subdivisions along an edge of the icosahedron face.  

 

minimizes phase error. In complicated environments where 

cone cutoff is an issue, this method of calculating cone size 

will allow for the smallest possible error. Additionally, in 

adaptive ray spawning procedures, the method of calculating 

angular distributions for every ray allows for arbitrary 

refinement of the ray spawning while keeping physical 

interpretation of ray tube sizes. Lastly, per-ray calculations of 

angular distributions of rays allows for a unique analysis of 

the effect of ray cone sizes on the accuracy of the method.    

If a constant angular distribution is assumed, this value 

must be chosen wisely so that error in the method is 

minimized. If   is chosen to be too small, the cones calculated 

on rays at the center of an icosahedron face will be too small, 

leading to a lapse in radiation pattern coverage, namely, 

undercounting. These field lapses grow as rays propagate in 

large structures, leading to large errors in the simulation. Fig. 

4(a) shows a face of the icosahedron with cones inscribed 

calculated with too small an angle.  

 

  
(a) (b) 

Fig. 4. Illustration of ray cones calculated based on (1) with d = 1 and (a)   

chosen smaller than the optimal value, with lapses in radiation coverage 

being filled in red, and (b)   chosen larger than the optimal value, with 

overlaps between non-adjacent ray cones being filled in blue. 

On the other hand, if   is chosen to be larger than the 

optimal value, then cones will become too large towards the 

vertices of the icosahedron. This means that the cutoff issue 

will be more significant in these cases. Furthermore, non-

adjacent ray cones will start to overlap, leading to triple or 

quadruple counting of field contributions. These overlaps will 

not be identified in the double count identification procedures, 

meaning that this can lead to error in the model. A case with 
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the cones calculated using   greater than ideal is shown in 

Fig. 4(b).  

Based on Figs. 3 and 4, the most sensible choice of   for 

cones with the minimum overlap is the greatest maximum ray 

angle across the whole face. This ray lies in the center of the 

icosahedron face as seen in Fig 3. The optimal angle can be 

found analytically using the golden ratio, with the radius of a 

sphere inscribed in a regular icosahedron being [13] 

  
  

 √ 
  

√     √ 

  
                                               

where   denotes the golden ratio and a is the edge length of 

the icosahedron. The edges are subdivided equally in a regular 

icosahedron so that the segment length is the edge length 

divided by the number of segments,         ⁄ , with n 

again standing for the nth triangular number used in 

icosahedron subdivision. This scenario is shown graphically 

in Fig. 5, from which it is apparent that            ⁄ . 

After some rearranging, we are left with 

       
 √ 

       
      

  

     √ (  √ )
                            

This equation for optimized   is verified and tested in Section 

IV.  

 
Fig. 5.  Circle inscribed in an icosahedron: the radius of the inscribed sphere 

is given in terms of the edge length of an icosahedron face via the golden 

ratio. 

IV. RESULTS AND DISCUSSION 

Validation of the advanced SBR RT technique and 

demonstration of the accuracy improvements are presented 

here using several tunnels of different uniform cross sections. 

Tunnels are chosen as a challenging environment for RT 

solvers, due to the large distances covered and the higher 

order modes present in propagation. Tunnels offer a corner 

case enabling a rigorous test for SBR algorithms. The 

simulations in these tests were performed by creating a line of 

reception points directed down the long axis (z-axis) of the 

tunnels at evenly separated intervals. The solutions obtained 

using the presented SBR RT algorithm are compared with 

computed results of other asymptotic and full-wave CEM 

solvers that offer state-of-the-art performance for tunnel 

simulation.  

A. Validation Against Image Theory 

The first set of results is for comparison against an IT 

simulation. While IT is still an asymptotic approximation, it 

represents the perfect case for ray-based methods since the 

phase error is almost entirely eliminated. Our SBR method is 

compared to IT in a rectangular dielectric waveguide with 

cross-sectional dimensions 4 m × 4 m × 1000 m [3]. The 

rectangular waveguide is particularly appropriate for 

comparison with SBR because of the accuracy of IT in this 

structure. In planar geometries, IT produces the most accurate 

ray tracing results [3]. The waveguide is excited with a 

vertically polarized isotropic transmitter at 1 GHz located at 

(x, y, z) = (1.1 m, 2.1 m, 0), with the x, y, and z coordinates 

being measured from the bottom left corner of the opening of 

the waveguide when viewed toward the wave propagation. 

The receivers are also isotropic and located at (1.9 m, 1.7 m, 

z), chosen to avoid any advantage due to symmetries in the 

simulation. The tunnel wall parameters are relative 

permittivity       and conductivity    .  

In Fig. 6, we see that the SBR solution agrees very well 

with the IT reference results. The SBR method uses   

calculated per ray, showing that this technique is viable for 

simulating very large-scale environments. In fact, we observe 

a perfect match of the two sets of results as far as 1,000 m 

down the tunnel, which is a truly exceptional result that 

demonstrates an ability of our SBR RT method to correctly 

compute transmission path lengths at very large distances 

from the transmitter, a feature traditionally reserved for the 

dramatically less efficient image-theory RT.  

 

 
Fig. 6. Comparison of the presented SBR method with IT [3] in a dielectric 

(    ,      waveguide at 1 GHz [transmitter at (1.1 m, 2.1 m, 0), 

receivers at (1.9 m, 1.7 m, z)].  

B. Double Count Removal 

Since the SBR results in Fig. 6 match so well with IT, this 

case also seems ideal for examination of the effects of double 

counting on the accuracy of the model. Fig. 7 shows the 

absolute errors of SBR results with respect to reference IT 

data computed with and without double count removal, 

respectively. The results emphasize the substantial impact that 

the double counted rays have on the accuracy of SBR 

simulations. When compared to results in [7] and [10], we 

observe a similar error reduction from our technique as those 
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in existing literature. This shows that the proposed technique 

similarly reduces the computation error while drastically 

reducing the complexity of the double count removal search. 
 

 
Fig. 7. Double count removal results. Absolute error in dB of our SBR 

simulation with respect to the reference IT results [3] for the dielectric 

waveguide with and without double count removal. 

C. Ray Cone Angles 

Next, we compare the model’s ability to use a constant 

angular distribution given in (4). The per-ray α calculations 

are the theoretical best-case scenario for simulation accuracy, 

so simulations using constant   are compared to the per-ray α 

case. We generate simulations with an assumed constant α 

and plot mean absolute error of the simulation when 

compared to IT results. In this way, we expect that the mean 

absolute error is at a minimum when using the analytical 

expression derived in (4). The results of this comparison are 

shown in Fig 8. We draw several interesting conclusions upon 

examining these results. Firstly, the value of   predicted by 

(4) perfectly matches with the lowest error in every case. This 

empirically demonstrates that the derived value of   is indeed 

optimal. Additionally, we see that the error also increases 

after this optimal   as expected. The increase in error after the 

optimal value is smaller than expected. The reason for this 

comes in two parts. First, with such a regular structure as the 

rectangular dielectric waveguide, the tube cutoff that is 

  

 
(a) (b) 

Fig. 8. Mean absolute error of SBR calculation using a constant angular 

distribution, with respect to reference IT results, with the vertical line 

marking the optimal value of   predicted with (4) and the horizontal line 

representing the error using per-ray  : results for (a) N = 500 subdivisions 

and (b) N = 1001 subdivisions.  

 

expected with cones that are too large does not happen, so this 

does not contribute to the error in this case. In an analysis on a 

more complex and nonuniform structure, we expect the error 

to jump up more drastically. Second, we expected an increase 

in error due to ray cone overlap on non-adjacent rays. In these 

tests, the face of the icosahedron is oriented down the length 

of the waveguide, which means that the rays with extra 

overlap do not penetrate far into the length of the structure. 

This means that the error will not jump up drastically in this 

case either.  

D. Comparison to Full-Wave Simulation 

Next, we compare the SBR simulation to a full-wave 

technique for a mine tunnel with an arched ceiling presented 

in [14], where the tunnel is modeled using the surface integral 

equation (SIE) technique accelerated by the fast multipole 

method in conjunction with the fast Fourier transform (FMM-

FFT). The FMM-FFT accelerated SIE simulations of mine 

environments are rigorously verified by comparison against 

measurements [14]. The tunnel considered here has an 

irregular, curved cross section. However, the SBR 

methodology encounters difficulty when planar segments are 

used to approximate curvature, because many segments can 

lead to many non-physical images produced in the model. 

Due to these issues, the curvature is approximated using an 

equivalent rectangular cross-section approach, as shown in 

[15]. The results of the SBR and FMM-FFT-SIE simulations, 

with the material parameters of tunnel walls being        

and          ⁄  and the operating frequency 915 MHz, are 

displayed in Fig. 9.   
 

 
Fig. 9. Comparison of the SBR ray-tracing solution to the FMM-FFT 

accelerated SIE simulation of a mine tunnel with arched ceiling [14]. The 

tunnel is excited with a 915-MHz vertically polarized Hertzian dipole antenna 

and the material parameters are        and          ⁄ .  

 

We see an excellent agreement between our SBR method 

and the full-wave technique. This SBR simulation is 

generated using   derived in (4), but the results generated 

using per-ray angles are indistinguishable from the results in 

Fig. 9. This shows the robust nature of the proposed SBR 

technique and its ability to provide accurate modeling of 

wireless propagation in large environments. Moreover, while 

providing comparable accuracy in the tunnel simulation, the 

proposed SBR RT technique is dramatically more efficient 

than the fast full-wave solver; the FMM-FFT-SIE solver takes 
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over 19 hours to simulate this environment on a multi-GPU 

cluster [14], compared to less than 1 minute for the SBR 

technique on a modest single-GPU desktop.  

V.  CONCLUSION 

This paper has proposed and presented the shooting and 

bouncing rays method for ray-tracing modeling with 

improved accuracy, with accuracy improvements coming 

from several components of the SBR computation. The paper 

has examined the effect of the calculated sizes of the SBR ray 

cones on the accuracy of the simulations, proving a very high 

importance of the proper choice of the distribution angle for 

the overall performance of the SBR method. We have 

proposed calculating the ray cone sizes based on the 

maximum separation angle for every ray, individually. This 

per-ray calculation is an excellent choice in very complex 

environments and allows for adaptive ray spawning 

techniques to be implemented, but it comes at the cost of 

increased computational complexity in the model. The 

alternative is to assume a constant angular distribution of the 

rays, which allows for much more expeditious simulations but 

makes the overall accuracy of the computation extremely 

sensitive to the choice of the angular distribution. The paper 

has given the optimal choice for this angle, which has been 

shown to be viable in large tunnel environments. 

Additionally, we have shown the importance of removing 

double counted phase fronts in the SBR method that 

implements the ray cones approach. The presented technique 

uses icosahedron geometry and adjacent ray sets to identify 

and remove double counted ray contribution without the need 

for the analysis of the full geometry of the ray paths and 

lengthy path searches. The improvement of the magnitude 

accuracy due to the double count removal couples with the 

improvement of the phase accuracy associated with the 

optimal distribution angle of rays launched from the 

transmitter.  

The results have demonstrated that the SBR method with 

the proposed, implemented, and evaluated accuracy 

improvements can perform wireless propagation modeling of 

tunnel environments with the same accuracy as the image 

theory RT, a computationally much slower but traditionally 

more accurate solver. We have shown a perfect match of the 

improved SBR method and the IT method for a kilometer-

long tunnel, where it is important to note that correct 

computation of transmission path lengths at very large 

distances from the transmitter is a feature traditionally 

reserved for the dramatically less efficient image-theory RT. 

We have shown the SBR model’s ability to effectively use 

both the per-ray α calculations and an analytically derived 

constant angular distribution. The results have empirically 

demonstrated that the derived value of   is indeed optimal. 

The SBR simulations generated using the derived optimal 

constant   are indistinguishable from those generated using 

per-ray angles, the latter α calculations being the theoretical 

best-case scenario for simulation accuracy. This demonstrates 

the robustness and usability of both approaches. The example 

with comparison of the advanced SBR method with the 

FMM-FFT accelerated SIE simulations has demonstrated the 

accuracy of the proposed SBR RT technique in analysis of 

electromagnetic wave propagation in mine tunnel 

environments comparable to a full-wave solution, while 

benefiting from the efficiency of computation characteristic 

for asymptotic ray-based methods. 

Overall, the main contribution of this work is an SBR ray-

tracing method of similar accuracy as the IT RT approach. 

While demonstrated for electromagnetic propagation 

modeling of large tunnels, the proposed accuracy 

improvements of this SBR methodology should prove 

beneficial in other applications, either on its own or 

hybridized with other CEM approaches, in indoor and outdoor 

wireless propagation modeling. With growing challenges 

imposed by emerging communication technologies, e.g., nG 

communication systems, the “renaissance” of asymptotic 

CEM simulations will just be intensified, and hence a need for 

this and similar advancements of SBR and other general 

classes of asymptotic CEM techniques. 
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