Anisotropic Locally-Conformal Perfectly Matched Layer for Higher Order Curvilinear Finite-Element Modeling

Aaron P. Smull, Student Member, IEEE, Ana B. Manić, Member, IEEE, Sanja B. Manić, Student Member, IEEE, and Branislav M. Notaroš, Fellow, IEEE

Abstract—A perfectly matched layer (PML) method is proposed for electrically large curvilinear meshes based on a higher order finite-element modeling paradigm and the concept of transformation electromagnetics. The method maps the non-Maxwellian formulation of the locally-conformal PML to a purely Maxwellian implementation using continuously varying anisotropic and inhomogeneous material parameters. An approach to implementation of a conformal PML for higher order meshes is also presented, based on a method of normal projection for PML mesh generation around an already existing convex volume mesh of a dielectric scatterer, with automatically generated constitutive material parameters. Once the initial mesh is generated, a PML optimization method based on gradient descent is implemented to most accurately match the PML material parameters to the geometrical interface. The numerical results show that the implementation of a conformal PML in the higher order finite-element modeling paradigm dramatically reduces the reflection error when compared to traditional PMLs with piecewise constant material parameters. The ability of the new PML to accurately and efficiently model scatterers with a large variation in geometrical shape and those with complex material compositions is demonstrated in examples of a dielectric almond and a continuously inhomogeneous and anisotropic transformation-optics cloaking structure, respectively.

Index Terms—Numerical algorithms, computational electromagnetics, finite element method, perfectly matched layer, transformation electromagnetics, scattering, higher order modeling, polynomial basis functions, curved parametric elements, hexahedral elements, numerical optimization.

I. INTRODUCTION

Boundary conditions in open-domain problems have long been an issue in computational electromagnetics (CEM) in the use of partial differential equation (PDE) based methods such as the finite element method (FEM) or the finite difference time domain method (FDTD) [1]. When dealing with electromagnetic radiation or scattering problems, effective truncation of the computational domain is a well-investigated problem both in the frequency-domain and the time-domain. Various methods such as operator-based absorbing boundary conditions (ABCs) [2-3] and hybrid boundary element method/FEM formulations [4-5] have been employed to mimic the behavior of an unbounded space in a bounded computational domain. Without carefully chosen boundary conditions, truncation of an otherwise infinite domain leads to artificial wave reflections.

The perfectly matched layer (PML) serves as a practical and effective alternative to traditional ABCs – instead of applying a specially formulated and generally difficult to implement boundary condition, an artificial lossy domain is added around the computational domain. This additional domain serves as a numerical analogue to pyramidal absorbers in an anechoic chamber. Incident fields propagate without reflection into the artificial domain and are attenuated before reaching the true edge of the computational domain, ensuring any numerical reflections from domain truncation do not contribute to the overall solution. The original perfectly matched layer was born as an alternative method to traditional ABC’s in the context of the FDTD method by Berenger [6]. The method utilized a splitting of the fields in Cartesian coordinates to derive a lossy material exhibiting the desired behavior. Alternatively, Chew and Weedon formulated an alternate derivation of the PML, originating from the idea of complex-coordinate stretching [7]. The coordinates of the original wave equation are effectively stretched from Euclidean space \mathbb{R}^3 onto a complex-valued manifold \mathbb{C}^3. With a redefinition of the curl operator in complex space, the outward propagating fields can be matched to exponentially decaying fields in the PML domain. Sacks et al. showed in [8] that the PML could alternatively be formulated in Cartesian coordinates as a set of anisotropic absorbers. These anisotropic elements are derived based on matching boundary conditions at the interface of air and a lossy material, and act identically to the complex coordinate stretching based method.

Pendry and Ward promoted the field of transformation optics/electromagnetics in their landmark paper [9], showing that the form of Maxwell’s equations in the frequency domain can be preserved under a change of coordinates if the constitutive material parameters are altered accordingly. Following this line of work, the coordinate stretching

Manuscript received March 11, 2017, revised August 18, 2017. This work was supported by the National Science Foundation under grants ECCS-1002385, ECCS-1307863, ECCS-1646562, and AGS-1344862.

A. P. Smull is with Colorado State University and the University of California, Berkeley. A. B. Manić, S. B. Manić, and B. M. Notaroš are with Colorado State University, Department of Electrical and Computer Engineering, Fort Collins, CO 80523-1373 USA (e-mail: asmull@berkeley.edu, anamanic@engr.colostate.edu, smanic@engr.colostate.edu, notaros@colostate.edu; phone: 970-491-3537).
formulation and anisotropic formulation can be seen as alternate formulations of an identical principle. The concept of complex coordinate based transformation was further extended to provide anisotropic PMLs in a variety of canonical geometries including spherical and cylindrical systems [10] and to match less usual material parameters including bianisotropic and lossy dispersive media [11-12].

Utilizing a local orthogonal coordinate system generated from Darboux frames, the perfectly matched layer was eventually extended by Teixeira and Chew to conform to general orthogonal coordinate systems [13]. Conformal PMLs have a distinct computational advantage over any fixed implementation, because the convex hull of a given scatterer or antenna is in general not spherical or rectangular. In order to match such geometry to one of the fixed PML implementations, requires the use of additional computational whitespace via unnecessary air elements. The rectangular PML has the benefit that, if the stretching function is linear, the material parameters in the anisotropic PML domain will be piecewise constant [8]. Such a benefit is not inherited by other PML boundary shapes, such as the cylindrical or spherical implementations.

In [14], the locally-conformal PML for FEM was introduced, which forgoes solutions of Maxwell’s equations for direct solutions of the modified set of equations, on a redefined complex manifold. Unlike the method based on local orthogonal coordinate systems, this PML formulation by Ozgun and Kuzuoglu requires no explicit dependence on the principle radii of curvature. As such, this method extends the complex stretching introduced to a larger class of geometries, simply by replacing the position element nodes with their complex-valued counterparts. In general, such formulations are referred to as non-Maxwellian, because the equations of interest are not the original Maxwell’s equations, but the modified form using the redefined curl operator.

More recently, a variety of other conformal PML implementations for FEM modeling have subsequently appeared in literature involving the application to finite-element time-domain (FETD) techniques. Most notably, a scheme for implementation of the PML in the mixed FETD context was presented in [15], which allows the simultaneous calculation of scattering over a wide band of frequencies. Alternatively, a separate method was presented in the context of discontinuous Galerkin (DG) FEM [16]. These methods again cast the PML as a set of anisotropic material functions derived from local orthogonal coordinate frames.

Continuing to use the concept derived from the field of transformation electromagnetics [17], here we map the non-Maxwellian formulation of the locally-conformal PML to a purely Maxwellian implementation using continuously varying anisotropic and inhomogeneous material parameters. We propose a novel PML method for use with electrically large curvilinear meshes based on a higher order FEM modeling paradigm and the concept of transformation electromagnetics. The interpolatory parameterization of higher order curvilinear geometries provides an interface to evaluate the required Jacobian matrices in a simple and effective manner. To the best of our knowledge, there has not been a significant work in the development of a conformal PML method for large, arbitrarily shaped, curved, higher order finite elements. This is the first higher order anisotropic locally-conformal PML-FEM method.

In addition, while the theoretical continuation of the PML to arbitrary element sizes and shapes follows from much of the past work on PMLs, many details of relevance to the implementation of such a method are entirely non-trivial in practice. PML implementation utilizing higher order modeling presents a unique set of challenges and advantages when compared to its low-order counterpart. One of these challenges is the automatic creation of a perfectly matched layer and the numerical calculation of the proper constitutive material parameters. It is well known that the majority of reflection error from perfectly matched layers is due to the associated discretization errors – as the name implies, the reflection would theoretically be zero in the case of infinite discretization accuracy [18]. One should expect that continuously inhomogeneous material approximations and curved PML interfaces should show significant performance improvement over the standard low-order modeling paradigm. In particular, we believe that the method of normal projection for generation of a conformal PML for higher order meshes and gradient-descent based PML material optimization algorithm described in Section III are very significant to this body of work. The basic theory and preliminary results of the new anisotropic locally-conformal PML for a higher-order curvilinear FEM are presented in a summary form in [19-20].

With recent advances in photonics and material sciences, and with the advent of manufacturing and design of metamaterial-based structures, we believe it is of a significant interest within the CEM community for the continual development of scattering codes to ease in the theoretical design phase of devices based on such metamaterials. There is an active push for commercialized design of metamaterial components [21]. Microscopic subwavelength features used in metamaterial design are too small to be modeled or to be resolved by an electromagnetic wave, but often admit bulk properties as effective anisotropic materials. Spatial variations in micro- and nanofabrication can lead to materials with effectively continuously inhomogeneous permittivity and permeability tensors. The future of electromagnetic and optical design will involve the computer-aided realization of metamaterial devices. This includes the accurate theoretical open-region modeling of electromagnetic devices containing arbitrary inhomogeneous and anisotropic media.

The rest of the paper is organized as follows. Section II outlines the exact finite element formulation, including the scattered-field wave formulation, parameterized curvilinear geometrical discretization, the set of hierarchical curl-conforming higher order vector basis functions, and continuously varying inhomogeneous and anisotropic material parameters for accurate modeling of arbitrary linear materials. Section III describes in detail the development of the perfectly matched layer scheme, beginning with the complex coordinate transformation leading to the PML behavior. It also presents a
novel approach to implementation of a conformal PML for higher order meshes; namely, by using a method of normal projection, the meshing of a PML around an already existing convex volume mesh can be done in a largely hands off manner. Once the initial mesh has been generated, a PML optimization method based on gradient descent is implemented to most effectively match the free-space impedance to the material parameters of the PML. In Section IV, several numerical examples are presented for numerical validation and comparison of the proposed method with alternate modeling paradigms. In particular, we examine the discretization error from finite element approximations regarding piecewise anisotropic material parameters, and compare these to the higher order material approximations provided by this method. We continue by investigating the effect of PML parameters on the discretization error. We then model a dielectric almond to show the behavior of the conformal perfectly matched layer on more diverse geometries. Finally, we examine a continuously inhomogeneous cloaking structure based on transformation optics.

II. FINITE ELEMENT FORMULATION

Higher order polynomials as basis functions are well known for the increase in the approximation accuracy of electric field solutions in the FEM [22]. The standard for mesh discretization in low-order modeling is usually taken to have elements no larger than $\frac{\lambda}{10}$ in each dimension, λ being the wavelength in the medium. With the use of higher order basis functions and curved parametric elements, one is able to do large-domain modeling, with elements sized up to 2λ.

Electromagnetic scattering can be analyzed in the frequency domain by dividing the electric field into incident and scattered components and writing the double-curl vector wave equation [18],

$$V \times \bar{\mu} \cdot V \times E^\infty - k_0^2 \bar{\varepsilon} E^\infty = -V \times \bar{\mu} \cdot V \times E^{inc} + k_0^2 \bar{\varepsilon} E^{inc}$$

Since the incident field must be a solution to Maxwell’s equations in free space, we may subtract the free-space contribution from the incident side of equation (1) to arrive at a scattering formulation for finite element implementation,

$$\nabla \times \bar{\mu} \cdot \nabla \times E^\infty - k_0^2 \bar{\varepsilon} E^\infty = -\nabla \times (\bar{\mu} \cdot \nabla \times E^{inc} + k_0^2 \bar{\varepsilon} \nabla \times -\nabla) E^{inc}$$

(2)

After testing equation (2) via the Galerkin procedure, and making use of appropriate boundary conditions, the finite element formulation of (2) can be written as (assuming that the entire computational domain is surrounded by a perfect electrically conducting boundary)

$$\int (\nabla \times f) \cdot \bar{\mu} \cdot \nabla \times E^{inc} dV - k_0^2 \int f \cdot \bar{\varepsilon} E^{inc} dV = -\int (\nabla \times f) \cdot \bar{\mu} \cdot \nabla \times E^{inc} dV + k_0^2 \int f \cdot \bar{\varepsilon} E^{inc} dV$$

(3)

The geometrical discretization of the scattering body is given by generalized curvilinear hexahedrons of arbitrary order defined by a set of Lagrange interpolatory polynomials. These can be described in terms of a mapping from a local set of coordinates (u, v, w) to their position by [22]

$$\mathbf{r}(u, v, w) = \sum_{k=0}^{K_u} \sum_{l=0}^{K_v} \sum_{m=0}^{K_w} \mathbf{R}_{klm}(u)L_u^{K_u}(u)L_v^{K_v}(v)L_w^{K_w}(w),$$

(4a)

where K_u, K_v, and K_w are a set of geometric orders, $L_i(x)$ is the i^{th} Lagrange interpolatory polynomial for a set of K_i, 1 equally spaced interpolation points. The local parametric coordinates are constrained to the unit cube,

$$-1 \leq u, v, w \leq 1$$

(4b)

For computational efficiency, a change of basis is undergone in order to describe the mapping (equivalently) in the polynomial basis of the local coordinates as

$$\mathbf{r}(u, v, w) = \sum_{i=0}^{N_u} \sum_{j=0}^{N_v} \sum_{k=0}^{N_w} \mathbf{f}_{ijk}(u)\mathbf{f}^{(u)} + \sum_{i=0}^{N_u} \sum_{j=0}^{N_v} \sum_{k=0}^{N_w} \alpha_{ijk}(u)\mathbf{f}^{(u)},$$

(4c)

This basis change allows for quick computational determination of intermediate element points during integration, as well as providing a simpler form for the evaluation of necessary derivatives during the implementation of the PML layer.

The scattered electric field vector over each element is approximated by a set of hierarchical curl-conforming polynomial vector basis functions as follows:

$$\mathbf{E}^{sc} = \sum_{i=0}^{N_u-1} \sum_{j=0}^{N_v} \sum_{k=0}^{N_w} \alpha_{ijk}(u,v,w)\mathbf{f}_{ijk}(u,v,w)$$

(5)

where the polynomial vector basis is defined as, for example,

$$\mathbf{f}_{ijk}(u,v,w) = u^i v^j w^k \mathbf{P}_i(v)\mathbf{P}_j(w)\mathbf{a}^k$$

(6a)

$$\mathbf{P}_i(x) = \begin{cases} 1-x_i & i = 0 \\ 1+x_i & i = 1 \\ P_{i-2}(x), & i \geq 2 \end{cases}$$

(6b)

Here, P_i denotes the i^{th} order Legendre polynomial [23]. These basis functions are defined in terms of a set of contravariant (dual) basis vectors $(\mathbf{a}^i, \mathbf{a}_i, \mathbf{a}_i^o)$ determined by the local parametric coordinates (u, v, w) of each element. The dual basis vectors are given in terms of the covariant basis vectors $(\mathbf{a}_i, \mathbf{a}_i, \mathbf{a}_i^o)$ and the Jacobian of the local-to-global coordinate transform as:
element) is etching.

\[
\begin{align*}
\mathbf{a}_u &= \frac{\mathbf{a}_x \times \mathbf{a}_w}{|J|}, \\
\mathbf{a}_v &= \frac{\mathbf{a}_y \times \mathbf{a}_u}{|J|}, \\
\mathbf{a}_w &= \frac{\mathbf{a}_y \times \mathbf{a}_v}{|J|}
\end{align*}
\]

(7)

\[
|J| = \mathbf{a}_w \cdot (\mathbf{a}_u \times \mathbf{a}_v)
\]

(8)

\[
\mathbf{a}_u = \frac{d\mathbf{r}}{du}, \mathbf{a}_v = \frac{d\mathbf{r}}{dv}, \mathbf{a}_w = \frac{d\mathbf{r}}{dw}
\]

(9)

The higher order modeling paradigm offers a few degrees of flexibility over traditional finite element methods. One of these is the ability to model general anisotropic and continuously varying material parameters [24]. This is accomplished by a similar Lagrange interpolation scheme to (4). For a general anisotropic, inhomogeneous material, we expand the continuously inhomogeneous material tensors in terms of the material tensors at the interpolation points as

\[
\overline{\varepsilon}_i (u,v,w) = \sum_{k=0}^{K_u} \sum_{l=0}^{K_v} \sum_{m=0}^{K_w} \overline{\varepsilon}_{k,l,m} \varepsilon^{K_u}_k(u) \varepsilon^{K_v}_l(v) \varepsilon^{K_w}_m(w),
\]

(10)

and similarly for \(\overline{\mu} \). Note that the material approximation orders \(K_{u/v/w} \) may generally be chosen independently of the geometrical approximation order \(K_{u/v/w} \).

III. CONFORMAL PERFECTLY MATCHED LAYER

This conformal PML implementation is generated via a spatial transformation based upon the locally-conformal formulation of the stretched-coordinate PML introduced by Ozgun and Kuzuoglu [14]. The PML consists of a layer of artificial anisotropic media. The goal is to generate an anisotropic PML layer around the existing mesh. We assume that a convex mesh of a scattering body exists, including a surrounding air cushion layer.

The first step of the PML implementation is to generate a geometrical model of the conformal PML layer given a higher order mesh. This can be accomplished via a method of projections. At each geometrical node on the surface, the unit normal to the surface is calculated. The surface normal directions are simply the dual basis vectors given by (7). The normal on nodes shared by multiple elements (corners and element edges) are averaged to determine the direction of projection. After the projection direction has been calculated for each node, elements constituting the PML layer are generated by projecting outwards along these directions by a predetermined PML thickness. Because the higher order modeling paradigm allows for electrically large elements, only a single element is needed for projection from each element face. A visualization of this process is given in Fig. 1.

The locally-conformal PML is initially defined by a complex coordinate transform which effectively “stretches” the coordinates in the PML away from the real domain boundary into a complex space. This is accomplished by introducing a coordinate transformation inside the PML as [14]

\[
\mathbf{r} = \mathbf{r} - \frac{j}{k_0} f_1(\|\mathbf{r} - \mathbf{r}_0\|)(\mathbf{r} - \mathbf{r}_0) + \frac{1}{k_0} f_2(\|\mathbf{r} - \mathbf{r}_0\|)(\mathbf{r} - \mathbf{r}_0)
\]

(11)

Each material interpolation point inside the generated PML layer is mapped back to the closest point on the surface of the previous computational domain. A given point in the PML domain \(P \) with position \(\mathbf{r} \) is “stretched” (in a complex manner) away from the closest point on the PML, \(P_0 \), with position \(\mathbf{r}_0 \) defined by

\[
\mathbf{r}_0 = \min_{\mathbf{r} \in \Omega_{pml}} \|\mathbf{r} - \mathbf{r}_0\|
\]

(12)

The imaginary complex factor serves the purpose of mapping oscillating fields to decaying ones. Additionally, by introducing a real coordinate stretching factor, the PML additionally serves the purpose of attenuating evanescent fields faster within the artificial layer.

This PML formulation allows the implementation of particularly troublesome areas where the radii of curvature on the initial mesh may be 0 and methods based on local orthogonal coordinate systems may fail [14]. Figure 2 shows

![Fig. 1: An illustration of the projection process applied to an arbitrarily shaped curved geometrically higher order mesh. Starting from the dielectric scatterer and surrounding air layer, the normal to the element face is calculated at each node on the mesh surface. An element is generated by projecting outwards along this normal. At corner regions, the surface normals are averaged to produce a direction of projection.](image1)

![Fig. 2: Visualization in 2 dimensions of a conformal PML layer around a predefined geometry (including a dielectric scatterer and air cushion). The shaded areas in the PML layer correspond to corner regions, in which the principle curvatures diverge, and the complex stretching function throughout the region maps back to the corner point \(r_0 \). The closest point on the PML boundary everywhere in this region is the corner point. Each point in these shaded areas will be effectively stretched away from these corner points.](image2)
what these traditionally troublesome regions look like. In regions generated from corners, the entire PML region may simply be stretched away from the corner points.

The requirement on the stretching functions \(f_i(\|r - r_0\|) \) is that they be monotonically increasing functions of the distance from the PML boundary. For example, these can be polynomial functions given by

\[
f_1(\|r - r_0\|) = \alpha_1 \|r - r_0\|^\gamma, \quad f_2(\|r - r_0\|) = \alpha_2 \|r - r_0\|^p,
\]

where \(p \) is a positive exponent. For simplicity, we consider \(p = 1 \) in our implementation. Note that \(p = 3, 4 \) are the typical choices to minimize spurious reflection from the PML in the FDTD context. Our future study will address the optimal choice of \(p \) in the higher order FEM context.

After every material interpolation point in the PML domain has been mapped to its according complex coordinate via (6), we can again define a Lagrange-based interpolation in the polynomial basis of \((u, v, w) \) as:

\[
\mathbf{\tilde{r}}(u, v, w) = \sum_{k=0}^{K} \sum_{l=0}^{L} \sum_{m=0}^{M} \hat{r}_{klm} u^k v^l w^m.
\]

Maxwell’s equations are well known to be invariant under coordinate transformations. Maxwell’s equations on a modified coordinate system have the same formal appearance as the original Maxwell’s equations with alternate material parameters. By modifying the permittivity and permeability tensors,

\[
\begin{align*}
\tilde{\varepsilon}_r' &= \frac{\mathbf{\tilde{J}}^T \varepsilon_r \mathbf{\tilde{J}}}{\|\mathbf{\tilde{J}}\|^2}, \\
\tilde{\mu}_r' &= \frac{\mathbf{\tilde{J}}^T \mu_r \mathbf{\tilde{J}}}{\|\mathbf{\tilde{J}}\|^2}
\end{align*}
\]

we can obtain the same behavior of the fields as if the complex coordinate transformation (11) were implemented. Such an idea forms the basis for an entire body of work in transformation optics/electromagnetics theory [9,17].

The interpolative mapping admits the Jacobian of the complex coordinate transform to be written in terms of the Jacobians of a given elements coordinate interpolation (1) and complex coordinate interpolation (9). By the chain rule, this Jacobian is given by

\[
\mathbf{J} = \mathbf{J}^{-1}_{\text{elem}} \mathbf{J}_{\text{elem}}
\]

Equations (15) and (16) together define the anisotropic material parameters given a complex coordinate transformation.

The minimization problem given by (12) has a unique solution provided the starting mesh is convex [10], which is already a necessary condition for the attenuating behavior of the perfectly matched layer [25]. While the projection process gives us an approximate idea of the closest point on a given mesh surface, it is not always exact. Failure to satisfy the condition given by (12) leads to an imperfectly matched boundary and numerical reflections.

To overcome this difficulty, it is useful to implement a numerical optimization algorithm to overcome any errors imposed by the projection process. For a given point, using its point of projection as a starting point, a search over the adjacent element faces is performed to ensure satisfaction of the condition in (12). We evaluate the aforementioned minimization problem numerically by means of a constrained gradient descent algorithm [26]. The gradient descent is evaluated to map back to the surface of the element from which it was projected, as well as the immediately surrounding elements on the surface.

The gradient descent algorithm involves starting with an initial guess on the PML boundary for the position of the point \(r_0 \) and continually updating the guess based on the partial derivatives of a given cost function. The cost function to be minimized is the square of the distance between the interpolation point \(r \) and surface point \(r_0 \).

\[
f_c(u, v, w) = \|r - r_0(u, v, w)\|^2
\]

The algorithm begins with a guess equal to the point of projection, and continually updates the \((u, v, w) \) coordinates of the guess, based on the gradient of (17) as

\[
(u, v, w)_{k+1} = (u, v, w)_k - \beta \nabla f_c(u, v, w)\gamma^k
\]

we can obtain the same behavior of the fields as if the complex coordinate transformation (11) were implemented. Such an idea forms the basis for an entire body of work in transformation optics/electromagnetics theory [9,17].

The interpolative mapping admits the Jacobian of the complex coordinate transform to be written in terms of the Jacobians of a given elements coordinate interpolation (1) and complex coordinate interpolation (9). By the chain rule, this Jacobian is given by

\[
\begin{align*}
\mathbf{\tilde{J}} &= \mathbf{J}^{-1}_{\text{elem}} \mathbf{J}_{\text{elem}} \\
\mathbf{J}_{\text{elem}} &= \frac{\partial \mathbf{x}}{\partial \mathbf{u}}, \quad \mathbf{\tilde{J}}_{\text{elem}} = \frac{\partial \mathbf{\tilde{x}}}{\partial \mathbf{u}}.
\end{align*}
\]
not present in the PML region. The right-hand side only needs to be filled for elements which are not part of the PML.

IV. NUMERICAL RESULTS

All simulations were run using Colorado State University’s ISTeC Cray High Performance Computing (HPC) System. The Cray HPC System is a Model XE6 computing system with 32 compute cores per node, and utilizes a Gemini 3D-torus interconnect [27]. Distributed direct solutions of the associated sparse system of equations were found using multifrontal-based LU factorizations via the MUMPS library [28].

For our first numerical example, we analyze the difference in accuracy between piecewise constant and continuously inhomogeneous material parameters in the anisotropic perfectly matched layer. The perfectly matched layer derives from a set of exact impedance matching conditions which theoretically yields zero reflected waves. However, discretization errors lead to spurious reflections, which we wish to minimize. One should expect an increase in the accuracy of the PML in the higher order modeling paradigm, in which material parameters are described by continuous interpolatory polynomials. The well-known example of the accuracy of the PML in the higher order modeling paradigm, we wish to compare a practical modeling scheme where the PML layer, $1\lambda/10$, is presented in Table I.

The second numerical example helps to illustrate the effect of element size. The mesh is made spherically symmetric with well overrefined elements in the transverse directions, but with more modest discretization in the radial direction. For practical purposes, the PML layer is modeled by a single layer. We consider a dielectric sphere of relative permittivity $\varepsilon_r = 2.25$. The sphere is excited by a plane wave incident from the $\phi = 0$ direction. A factor of 10 improvement in the numerical error is seen by using a continuously inhomogeneous PML when compared to piecewise constant material parameters.

The model is run with automatically generated material approximation parameters, and again with a piecewise approximation to the appropriate material parameters. A comparison of the numerical errors in the bistatic radar cross section (RCS) in the two cases is shown in Fig. 3. It is shown that by using a continuous approximation to the required material parameters, the reflection error is decreased by 1 to 2 orders of magnitude.

The second numerical example helps to illustrate the effect of the PML parameters on the numerical error in a setting based on practical discretization error. One of the advantages of a higher-order modeling paradigm for the PML is to reduce the complexity of modeling the PML by generating it from a single element projected outwards. For this reason, it is of interest to compare a practical modeling scheme where the PML is instead modeled by a single layer. We consider a dielectric spherical scatterer example identical to the first example, with variation in the parameters of the PML. The dielectric sphere is well overrefined, as is the $0.3\lambda_0$ thick spherical air cushion surrounding it, with λ_0 denoting the wavelength in air (free space).

![Fig. 3: Error in bistatic radar cross section of a 1λ diameter homogeneous dielectric sphere of relative permittivity $\varepsilon_r = 2.25$. The sphere is excited by a plane wave incident from the $\phi = 0$ direction. A factor of 10 improvement in the numerical error is seen by using a continuously inhomogeneous PML when compared to piecewise constant material parameters.](image)

<table>
<thead>
<tr>
<th>t_{PML}/λ_0</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>3.877</td>
<td>5.642</td>
<td>3.952</td>
<td>3.634</td>
<td>1.885</td>
<td>1.074</td>
<td>1.014</td>
</tr>
<tr>
<td>1.67</td>
<td>7.089</td>
<td>4.129</td>
<td>2.676</td>
<td>2.081</td>
<td>1.285</td>
<td>0.905</td>
<td>1.020</td>
</tr>
<tr>
<td>2.00</td>
<td>5.897</td>
<td>2.029</td>
<td>1.726</td>
<td>1.609</td>
<td>0.714</td>
<td>0.851</td>
<td>1.253</td>
</tr>
<tr>
<td>2.33</td>
<td>4.844</td>
<td>2.200</td>
<td>1.080</td>
<td>0.574</td>
<td>0.653</td>
<td>1.164</td>
<td>1.947</td>
</tr>
<tr>
<td>2.67</td>
<td>3.945</td>
<td>1.556</td>
<td>0.614</td>
<td>0.348</td>
<td>0.991</td>
<td>1.606</td>
<td>2.206</td>
</tr>
<tr>
<td>3.00</td>
<td>3.193</td>
<td>1.340</td>
<td>0.676</td>
<td>0.105</td>
<td>1.406</td>
<td>2.076</td>
<td>2.733</td>
</tr>
</tbody>
</table>

TABLE I: RMS error in bistatic radar cross section (dB) of the dielectric scatterer from Fig. 3 for a sweep of the PML parameters, the thickness of the PML layer, t_{PML}, and the coefficient a_t of the linear stretching function.

<table>
<thead>
<tr>
<th>t_{air}/λ_0</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.482</td>
<td>1.579</td>
<td>1.344</td>
<td>0.835</td>
<td>0.799</td>
<td>0.987</td>
<td>1.386</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t_{air}/λ_0</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>3.877</td>
<td>5.642</td>
<td>3.952</td>
<td>3.634</td>
<td>1.885</td>
<td>1.074</td>
<td>1.014</td>
</tr>
<tr>
<td>1.67</td>
<td>7.089</td>
<td>4.129</td>
<td>2.676</td>
<td>2.081</td>
<td>1.285</td>
<td>0.905</td>
<td>1.020</td>
</tr>
<tr>
<td>2.00</td>
<td>5.897</td>
<td>2.029</td>
<td>1.726</td>
<td>1.609</td>
<td>0.714</td>
<td>0.851</td>
<td>1.253</td>
</tr>
<tr>
<td>2.33</td>
<td>4.844</td>
<td>2.200</td>
<td>1.080</td>
<td>0.574</td>
<td>0.653</td>
<td>1.164</td>
<td>1.947</td>
</tr>
<tr>
<td>2.67</td>
<td>3.945</td>
<td>1.556</td>
<td>0.614</td>
<td>0.348</td>
<td>0.991</td>
<td>1.606</td>
<td>2.206</td>
</tr>
<tr>
<td>3.00</td>
<td>3.193</td>
<td>1.340</td>
<td>0.676</td>
<td>0.105</td>
<td>1.406</td>
<td>2.076</td>
<td>2.733</td>
</tr>
</tbody>
</table>

TABLE II: RMS error (ϵ_{rms}) in bistatic RCS (dB) of the dielectric scatterer from Fig. 3 for different values of the air layer thickness, t_{air}.

| ϵ_{rms} | 1.482 | 1.579 | 1.344 | 0.835 | 0.799 | 0.987 | 1.386 |

| ϵ_{rms} | 1.482 | 1.579 | 1.344 | 0.835 | 0.799 | 0.987 | 1.386 |
not well approximated by the space of basis functions. We find that the minimum error is obtained for \(\alpha_1 = 3.0k_0 \) and \(t_{\text{PML}} = 0.25\lambda_0 \). However, at these values, the solution is somewhat sensitive to variations in these parameters. At higher values of \(\alpha_1 \), the fields decay faster than the solution can accurately model, and the error again increases. In practice, we settle for a more moderate nominal selection of \(\alpha_1 = 2.5k_0 \) and \(t_{\text{PML}} = 0.3\lambda_0 \). We find that this represents a decent balance between the accuracy of the solution and the sensitivity of the accuracy with respect to the PML parameters. Next, we fix the values of these parameters at \(\alpha_1 = 2.5k_0 \) and \(t_{\text{PML}} = 0.3\lambda_0 \) and investigate the effect of the thickness of the air layer, \(t_{\text{air}} \), on the same error function. We keep the air layer well overrefined (maximum element size \(< 0.1\lambda_0 \)). The results are shown in Table II. Overall, only a minimal effect is seen on the error, and especially around the value of \(t_{\text{air}} = 0.3\lambda_0 \). We hereafter adopt \(t_{\text{air}} = 0.3\lambda_0 \) in all examples.

The third numerical example examines the ability of the in conformal PML on a more complicated geometry. The NASA almond model geometry [29] is used as a dielectric scatterer with \(\varepsilon_r = 2.25 \). The almond shape serves as a useful benchmark for CEM methods, because the round back and sharp tip provide a variation in geometrical shape. The excitation is by a vertically polarized plane wave incident on the tip of the almond (from the \(-z\) direction). The starting mesh consisted solely of the dielectric almond, and the projection procedure described in Section III was repeated twice to generate a 0.3\(\lambda_0 \) air layer and a 0.3\(\lambda_0 \) PML layer. The entire mesh including the air and PML consisted of 928 2\(^{nd}\) order geometric elements.

Figure 4 shows a comparison of the near scattered electric field of the dielectric almond in the FEM discretization with conformal PML with that obtained using a method of moments (MoM) solution from the industry solver WIPL-D [30]. An excellent agreement of the two sets of results is observed.

Figure 5 shows the comparison of the bistatic RCS of the almond. Good agreement is observed in the far-field pattern as well. Because of the tapered shape of the almond, one would expect the presence of evanescent fields, particularly at the scattering tip, due to the possible occurrence of total internal reflection inside the dielectric. To account for this, a real coordinate stretching function \(f_2 \) of the form given in eq. (11) is included with \(\alpha_2 = 0.8k_0 \). Indeed, we found that such an implementation was necessary to provide agreement with the MoM solution in the far-field.

The fourth and final numerical example is a simulation of a spherical continuously inhomogeneous and anisotropic cloaking structure. Such a structure can be described in terms of theory from transformation optics [31]. In [32], a higher order spherical cloak was simulated using continuously inhomogeneous material parameters based on a FEM-MoM hybrid formulation to deal with boundary conditions. We simulate a dielectric sphere with diameter of 3\(\lambda \) and a relative permittivity of \(\varepsilon_r = 2.25 \). The cloak is based on a linear mapping function, and consists entirely of an inhomogeneous layer 2 elements thick. The material parameters from [31] are approximated by 4\(^{th}\) order interpolations. The entire sphere and cloaking structure is surrounded by a 0.3\(\lambda_0 \) layer of air and a 0.3\(\lambda_0 \) thick PML. Figure 6 shows the normalized bistatic RCS calculated from the entire device, compared to the Mie’s series solution. We see a reduction of the cross section to less than 50 dB around the entirety of the sphere. Figure 7 shows a snapshot in time of the \(z \)-directed electric field in and around the dielectric sphere. The incident waves are in essence bent around the sphere, and the electric field inside the dielectric is reduced to near zero.
This paper has proposed a novel perfectly matched layer method for use with electrically large curvilinear meshes based on a higher order FEM modeling paradigm and the concept of transformation electromagnetics. The method maps the non-Maxwellian formulation of the locally-conformal PML to a purely Maxwellian implementation using continuously varying anisotropic and inhomogeneous material parameters, with the interpolatory parameterization of higher order curvilinear geometries providing an interface to evaluate the required Jacobian matrices in a simple and effective manner. The paper has also presented a novel approach to implementation of a conformal PML for higher order meshes, based on a method of normal projection for PML mesh generation around an already existing convex volume mesh of a dielectric scatterer, with automatically generated constitutive material parameters. Starting with such an initially generated mesh, a PML optimization method based on gradient descent is used to most effectively match the free-space impedance to the material parameters of the PML. Overall, this appears to be the first higher order anisotropic locally-conformal PML-FEM method.

The numerical results have shown that the implementation of a conformal perfectly matched layer in the higher order FEM modeling paradigm provides benefits over traditional PMLs with piecewise constant material parameters, with the reflection error in a spherical dielectric scatterer example being reduced by a factor of 10 to 100 using the higher order material approximations inherent to the new method. The ability of the new anisotropic locally-conformal higher order PML to accurately and efficiently analyze scatterers with a large variation in geometrical shape has been demonstrated in an example of a dielectric almond, which is challenging for PML modeling because of the sharp tip and round back, as well as the tapered shape of the almond. The performance of the method in analysis of objects with unconventional and challenging to model material compositions has been demonstrated in an example of a spherical continuously inhomogeneous and anisotropic cloaking structure based on transformation optics.

While the novel PML method can be applied to FEM modeling, analysis, and design of arbitrary structures, one of the areas of practical application and our future work is its utilization to aid in the theoretical design and analysis of novel devices based on metamaterials.

V. CONCLUSIONS

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2017.2759839, IEEE Transactions on Antennas and Propagation.

REFERENCES

of electromagnetic waves with matter, and the development of novel quantum information processing technologies through the study of atomic physics.

Ana B. Manić was born in Belgrade, Serbia, in 1986. She graduated with a B.S. from the Department of Electronics in the School of Electrical Engineering at Belgrade University in 2009. She received her Ph.D. degree at Colorado State University, Department of Electrical and Computer Engineering, in 2015. During her Ph.D. study, she worked on different applications of the method of moments in computational electromagnetics such as: method of moments coupling with the finite element method, diakoptics domain decomposition method, fast direct solvers, accurate and efficient calculation of singular and hypersingular integrals arising in the Galerkin-type method of moments system of equations, etc.

Sanja B. Manić was born in Belgrade, Serbia, in 1986. She received the B.S. degree in 2010 from the Department of Electronics, School of Electrical Engineering, Belgrade University, Serbia. She is a Ph.D. student, since 2010, at the Department of Electrical and Computer Engineering, Colorado State University. Her interests are in computational electromagnetics, higher order surface integral method of moments, higher order finite element method, iterative solvers and weather precipitation modeling.

Branislav M. Notaroš (M’00–SM’03–F’16) received the Dipl. Ing. (B.S.), M.S., and Ph.D. degrees in electrical engineering from the University of Belgrade, Belgrade, Yugoslavia, in 1988, 1992, and 1995, respectively. From 1996 to 1999, he was an Assistant Professor in the School of Electrical Engineering at the University of Belgrade. He spent the 1998-1999 academic year as a Visiting Scholar at the University of Colorado at Boulder. He was an Assistant Professor, from 1999 to 2004, and Associate Professor, from 2004 to 2006, in the Department of Electrical and Computer Engineering at the University of Massachusetts Dartmouth. From 2006 to 2012, he was an Associate Professor in the Department of Electrical and Computer Engineering at Colorado State University, where he is currently a Professor and University Distinguished Teaching Scholar, as well as Director of Electromagnetics Laboratory. His research interests and activities are in computational electromagnetics, higher order numerical methods, antennas, scattering, microwaves, metamaterials, characterization of snow and rain, and computational electromagnetics.
surface and radar precipitation measurements, RF design for MRI at ultra-high magnetic fields, and electromagnetics education. His publications include more than 200 journal and conference papers, and three workbooks in electromagnetics and in fundamentals of electrical engineering (basic circuits and fields). He is the author of textbooks Electromagnetics (Prentice Hall, 2010), MATLAB-Based Electromagnetics (Prentice Hall, 2013), and Conceptual Electromagnetics (CRC Press, 2017).