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Abstract—We present an application of adjoint analysis for
efficient sensitivity analysis and estimation of quantities of
interest in the presence of uncertain model parameters in 3-D
finite element method scattering problems. We demonstrate that
the adjoint solution may be leveraged to expedite quantification
of uncertainty in the scattering model with extremely high
accuracy and vast efficiency improvements in comparison to
classic gradient approximation techniques and Monte Carlo
methods. The proposed method is demonstrated for low- and
high-dimensional parameter spaces for scattered electric field
quantities of interest. The results indicate strong agreement
with equivalent Monte Carlo simulations for quantity of interest
responses and probability densities.

Index Terms—adjoint methods, computational electromagnet-
ics, finite element method, higher-order parameter sampling,
sensitivity analysis, uncertain parameters, uncertainty quantifi-
cation.

I. INTRODUCTION

W ITH traditional uncertainty propagation and gradient
approximation techniques, analysis of variation among

many parameters involves substantial computation times. Di-
rect evaluation of gradients, for example, presents signifi-
cant challenges to computational efficiency and feasibility,
especially for high dimensional parameter spaces. Likewise,
classical Monte Carlo (MC) methods are unsuitable for prob-
lems with many unknowns (e.g., complex geometries or high
frequency), requiring many solutions of the forward problem.

Through the solution of a dual (or adjoint) problem, how-
ever, gradient approximation can be greatly expedited. The
adjoint approach links the forward problem to the quantity of
interest (QoI), permitting efficient analysis of changes in QoIs
due to perturbations in model parameters, including estimation
of the sensitivity of the output QoI to random variation.
Leveraging the adjoint information, the higher-order parameter
sampling (HOPS) technique enables a highly efficient method
to generate accurate gradients and updated QoIs, relying only
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on the original forward solve and its corresponding adjoint so-
lution [1]–[4]. Avoiding the need to directly evaluate gradients
with respect to each parameter, this updated approach therefore
yields vast improvements in computational efficiency. For un-
certain parameters, e.g., describing the spatial heterogeneity of
material properties in a scatterer, HOPS drastically reduces the
computation time required to quantify uncertainties, achieving
the accuracy of lengthy MC simulations with just a handful of
solves. Since most practical problems require optimization and
analysis of many parameters, this adjoint informed approach
yields significant computational efficiency improvements over
traditional methods.

In computational electromagnetics (CEM), adjoint analysis
has been studied primarily for optimization in finite-difference
time-domain (FDTD) methods, as in [5]–[16], rather than the
simultaneous sensitivity and uncertainty quantification for the
frequency domain finite element method (FEM) as in this
work.

Adjoint analysis in CEM has also been successfully applied
to inverse problems [17], [18]. The paper [19], in particular,
leverages empirical interpolation methods assisted by duality
for model reduction to expedite the analysis of uncertain
conductivity in low frequency electromagnetics. Earlier works
have also demonstrated the advantage of adjoint analysis for
goal-oriented refinement, such as in [20]–[22].

Overall, however, adjoint analysis has remained relatively
uncommon in CEM, while in other fields like computational
fluid dynamics, such methods have seen significant research
and development, such as for error estimation [23]–[29]. Ad-
ditionally, previous work outside CEM has shown the viability
of adjoint analysis for improving the analysis of unlikely
events [30], dimensionality reduction [31], and accelerating
optimization [32].

For determining the impact of uncertainty, traditional gra-
dient estimation techniques have been applied to radar cross-
section measurements for rough surfaces [33]. The use of auto-
matic differentiation for studying small perturbations has also
provided an efficient means to analyze parameter uncertainty
in CEM [34].

Aside from standard MC methods as in [35]–[37] for
rough surfaces, much of the remaining existing work in CEM
regarding uncertainty quantification and uncertain parame-
ters relies on solving stochastic partial differential equations
(PDEs), typically using finite difference methods, such as for
low-dimensional material parameter uncertainty [38], [39] or
geometric variation [40]. Notably, polynomial chaos expansion
(PCE) methods were applied in FDTD for analyzing variation
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in the scattered electric field for a dielectric sphere scatterer
with an uncertain relative permittivity and radius [41].

In FEM, similar stochastic PDE methods were applied to
analyze surface roughness effects in 2-D for scattered field
quantities [42], and transmission coefficient variation due to
material uncertainty [43], [44]. While highly efficient for low-
dimensional uncertainty, these stochastic methods, in addition
to requiring significant modifications to a deterministic solver,
are unsuitable for moderate and high dimensional uncertainty.
Typically, variants of the stochastic spectral Galerkin approach
(including intrusive PCE) require sophisticated precondition-
ers and computationally intensive model reduction to render
the problem tractable [45]. Our approach, however, requires
only the solution of deterministic PDEs, with the uncertainty
introduced externally to the core solver, and naturally excels
for high dimensional uncertainty.

On the other hand, nonintrusive uncertainty quantification
methods for FEM, such as those based on stochastic col-
location, seek to address the computational difficulties of
solving stochastic PDEs. Stochastic collocation, which enables
computing the coefficients for nonintrusive PCE, inherits a
significant limitation in the dimension of the uncertainty due
to the rapid growth in collocation points, particularly with stan-
dard tensor-product evaluations; however, sparse grid sampling
(e.g., Smolyak sparse grids) alleviates, but does not eliminate,
this difficulty [46], [47]. In [48], for example, nonintrusive
PCE assisted by an adaptive Smolyak sparse grid algorithm
provided a significant reduction in the computational load for
analyzing dosimetry with uncertain tissue material parameters
in 2-D FEM. A similar approach for 3-D FEM combined with
basis reduction was applied for dosimetry applications in [49].
Moreover, Smolyak sparse grids and PCE were applied to
construct stochastic impedance matrices for accurate analysis
of composite cylindrical scatterers with geometric uncertainty
in 2-D FEM [50]. Recently, a stochastic testing method with
Smolyak sparse grids for nonintrusive PCE was studied for
analysis of uniform waveguide dispersion with uncertain ma-
terial parameters [51]. However, the approach in [51] requires
Gaussian random variables, whereas our approach has no such
limitation. Additionally, stochastic collocation techniques were
applied to a variety of problems in FEM, as well as the method
of moments (MoM) and hybrid methods, for low dimensional
geometric and material uncertainty [52].

In contrast to these methods, our approach provides a
distinct emphasis on the effect of uncertainty on the scattering
QoI computed from the finite element solution. As an analog
to goal-oriented error estimation and adaptive refinement, in
which we address the particular regions contributing most
significantly to the QoI, the proposed approach emphasizes
the effect of uncertainty on the QoI specifically, permitting a
substantial enhancement of efficiency, even when compared
to sparse grid techniques, while retaining the convenience of
other nonintrusive methods.

Recently, adjoint analysis applied to 1-D FEM demonstrated
accurate QoI response estimation using the adjoint solution for
univariate and deterministic scattering problems for dielectric
slabs [53]. This work, in contrast, extends the findings of
[54]–[58] to 3-D FEM uncertainty quantification and outcome

prediction, and provides an efficient and effective methodology
for propagating uncertainty in the solution of PDEs in CEM,
with application to high dimensional parameter spaces.

Lastly, we provide derivations and explicit constructions
for accelerating the analysis of uncertain parameters for a
customizable and practical scattered electric field QoI through
adjoint sensitivity and HOPS, showing vast improvements over
traditional MC methods.

The rest of this paper is organized as follows. Section II
outlines the formulation of the adjoint problem and develops
the HOPS methodology for 3-D FEM. Section III provides nu-
merical examples, illustrating rapid HOPS QoI prediction and
probability density estimation for low- to high-dimensional pa-
rameter spaces in scattering problems. The examples demon-
strate extremely significant computational savings for QoI
estimation compared to the MC method with nearly identical
accuracy.

II. THE ADJOINT: DERIVATIONS AND ESTIMATORS

A. The Adjoint Problem

We first summarize the components of the standard forward
problem, referred to as the double-curl wave equation:

∇×µ−1
r ∇×Esc−k2

0εrE
sc = −∇×µ−1

r ∇×Einc+k2
0εrE

inc,
(1)

with µr and εr representing the relative permeability and
permittivity tensors, respectively, and k0 denoting the free
space wave number, and which we denote as

LEsc = G. (2)

The domain is truncated by introducing an air layer and a
perfectly matched layer (PML) [59], where the entire domain
is surrounded by perfect electrical conductor (PEC). The so-
lution is found using the double higher-order FEM [60]–[62];
however, the procedure is unchanged for low-order methods.

The adjoint operator L∗ is defined by the Lagrange identity
[3]:

〈Lu, v〉 = 〈u,L∗v〉, (3)

where 〈·, ·〉 denotes the standard L2 inner-product. As in [58],
the adjoint operator satisfies

(4)L∗v = ∇× (µ−1
r )∗∇× v− k2

0ε
∗
rv.

The adjoint operator therefore has the form of the forward
operator, with the complex conjugate or conjugate transpose
(in the case of tensor materials) of the model parameters.

Analogously to choosing different excitations for the for-
ward problem, we select a suitable adjoint problem to relate
the forward problem to a specific QoI. We therefore consider
an arbitrary linear (or linearized) functional J of the forward
solution Esc of LEsc = G, such that for all Esc the QoI is

J [Esc] = 〈Esc, p〉, (5)

where the Riesz representation theorem [63] guarantees the
existence of p, and (5) determines the choice for the adjoint
excitation:

L∗v = p. (6)
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Solving for additional QoIs simply requires solving the
adjoint problem with new right-hand sides. Conveniently, the
Galerkin approximate adjoint solution does not require an
explicit form for p. Rather, only the ability to evaluate (5)
is necessary [58].

For a practical choice of a QoI, we examine scattered
electric field quantities as in [58]. Starting from the Kirchhoff
integral and isolating the w-component of the electric field to
produce a scalar QoI, we have the following functional of the
finite element solution,

J [Esc] =

�
S

w · [n̂×(∇×Esc)+jk0(n̂×Esc× ir)]ejk0ir·r′ dS.

(7)

B. Handling Parameter Uncertainty with HOPS
Consider, for example, a model problem with ideal param-

eters (i.e., a perfectly smooth surface, exact conductivity and
permittivity, etc.). For this reference problem, we would like
to understand the impact of variations in the construction and
the constituent parameters on the output QoI. Classically, the
estimation of uncertain effects applies the MC method, in
which each sample of the uncertain parameters incurs the
additional cost of solving the perturbed forward problem.
While MC simulations are simple to implement and can
produce accurate results, the computation time demanded by
the method is simply not sustainable for a moderate number
of samples or for problems with many unknowns.

In the presence of parameter uncertainty, however, we can
also exploit the utility of the adjoint solution to expedite
sensitivity analysis, rapidly generating approximate gradient
information for any number of uncertain parameters which
perturb a deterministic PDE. HOPS requires just the solutions
to the adjoint and forward problems at the deterministic
references to generate gradient information for any number
of uncertain parameters which perturb the construction of
the model. This enables efficient generation of sensitivity
information for many parameters, especially compared to
classical gradient approximation approaches (e.g., first-order
finite difference) which require numerous solutions of the
forward problem.

By leveraging the adjoint solution with HOPS, we can
construct an accurate QoI response from a small set of deter-
ministic reference solutions, thereby addressing the efficiency
problem which hampers the utility of traditional approaches.
Random samples of parameters are propagated through the
piecewise-linear response built using HOPS, avoiding full
model solves. Additionally, considering that the adjoint solu-
tion might already be available from adaptive mesh refinement,
HOPS provides significant potential for computational savings
in uncertainty quantification.

To derive the form of the HOPS estimate, we proceed
analogously to [1], [3]:

We begin with the deterministic reference forward problem
(2)

LEref = G, (8)

and the corresponding reference adjoint problem,

L∗v = p. (9)

Perturbing some component κ of the reference problem with
the random variable η produces the adjusted equation

L̃Ẽ
sc

= G̃, (10)

noting that
L̃ = L+ δη−κL, (11)

G̃ = G + δη−κG, (12)

and
Ẽ
sc

= Eref + δη−κEref , (13)

where δη−κ signifies the effects of the perturbation.
To reveal the dependence of the perturbed QoI on the

reference QoI, we first expand (10) through substitution of (11)
and (12) and take the inner-product with the adjoint solution
v, which shows:

〈LẼ
sc
, v〉+ 〈δη−κLẼ

sc
, v〉 = 〈G, v〉+ 〈δη−κG, v〉. (14)

Applying the Lagrange identity to the first terms on the left-
and right-hand sides and rearranging, we have

〈Ẽsc,p〉 = 〈Eref ,p〉+ 〈δη−κG− δη−κLẼ
sc
, v〉. (15)

Under the assumption that the perturbations are relatively
small (i.e., Ẽ

sc ≈ Eref ),

〈Ẽsc,p〉 ≈ 〈Eref ,p〉+ 〈δη−κG− δη−κLEref , v〉. (16)

Finally, applying the definition of the QoI, we have

J [Ẽ
sc

] ≈ J [Eref ] + 〈δη−κG− δη−κLEref , v〉, (17)

which describes how, with the reference QoI and adjoint
solution, we can compute an updated QoI for the perturbed
problem.

For a specific realization of a HOPS-based estimate for an
updated QoI, let κ denote the reference relative permittivity,
and η the perturbed relative permittivity of a scatterer. To build
the estimate (17), we have

(18)DεrG = k2
0Einc,

and
(19)DεrLEref = −k2

0Eref .

Hence, we approximate the QoI for the perturbed model by

(20)J [Ẽ
sc

] ≈ J [Eref ] + k2
0〈(Einc + Eref )(η − κ), v〉,

where η and κ denote, respectively, the perturbed and reference
permittivities of the scatterer.

Substituting in the approximate Galerkin solution to the
deterministic reference forward problem Eref =

∑
i αifi and

the reference adjoint solution v =
∑
j βjfj and expressing the

inner-product in integral form, (20) becomes

(21)

J [Ẽ
sc

] ≈ J [Eref ] +

k2
0

∑
i

∑
j

αiβ
∗
j

�
Ω

(η − κ)fi · fj dΩ

+ k2
0

∑
j

β∗j

�
Ω

(η − κ)Einc · fj dΩ.
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We may analyze multiple parameters varied simultaneously,
in which case DεrG and DεrLEref are matrix quantities, and
(η−κ) is vector valued (with dimensions corresponding to the
dimension of the parameter space). Such a treatment is relevant
for varying material parameters independently throughout the
volume, for instance if the permittivity of each element in the
discretization is described by a random variable.

For example, we consider the 2-dimensional case where the
perturbation is complex valued. Hence,

η =

[
ηr

η′r

]
, (22)

and likewise for κ. The derivative matrix corresponding to the
subtraction of (18) and (19) is then

D =
[
k2

0Einc + k2
0Eref jk2

0Einc + jk2
0Eref

]
. (23)

As a result, the updated form of (20) is

(24)〈Ẽsc, p〉 ≈ 〈Eref , p〉+ k2
0〈D(η − κ), v〉,

which is equivalent to simply treating η and κ as complex
valued in the 1-dimensional parameter space estimate.

In addition to improved accuracy in general, for highly
sensitive QoIs, or for large variance in the perturbed parameter,
it is preferable to sample at multiple reference points. We
can accomplish this by sampling at a uniform set of grid
points or, for example, we can probabilistically tune the
HOPS approximation efficiently with k-means clustering. In
either case, samples of the perturbed parameter are associated
with a reference point by proximity and the updated QoI is
approximated as in (17).

III. NUMERICAL RESULTS

As discussed in Section II, the connection of the adjoint
solution to the sensitivity of the QoI permits the effective
estimation of changes in the QoI to parameters in the model. In
each of the following numerical examples, we consider mono-
static scattering from a sphere. While simple geometrically,
the spherical scatterer, nevertheless, allows exploration of the
prototypical problems in UQ. We note, however, several prac-
tical considerations for application to more complex problems
and geometries. Chief in the value of the HOPS approach,
not all parametric uncertainty drives equivalent effect in the
QoI. In the case of multilinear dependence of the QoI on
the uncertain parameters, the response may be constructed
precisely for high dimensional uncertainty by a single HOPS
point. Likewise, when sources of uncertainty induce limited
effect in the QoI, significant resources may be saved without
harm to the accuracy of the estimated probability densities.
In the case of surface roughness, for example, the QoI may
be insensitive to variation in a large portion of the surface,
simplifying the computational procedure drastically. However,
depending on the specific geometry and the scattering angle,
a small degree of uncertainty may drive large variation in the
QoI; in such cases, additional computational resources must
be allocated to compensate, resulting in a denser distribution
of HOPS points. Finally, the HOPS approach facilitates in-
creasing computational effort where uncertainty dictates the

largest change in the QoI. In the following examples, we
illustrate the performance of the method for uniform sampling
and probabilistically tuned sampling. In addition, the approach
is conducive to adaptivity, which, in the case highly sensitive
QoIs, simplifies the selection of HOPS points.

Consider a spherical scatterer with uncertain material pa-
rameters. We first impose that the conductivity of the en-
tire sphere—considered as the imaginary component of the
complex relative permittivity εd—is a random variable which
varies according to some distribution π(x) with a known
mean ν and standard deviation σ. Therefore, according to the
principle of maximum entropy, we let π denote a Gaussian
distribution; however, any other distribution can be substituted
(or treated simultaneously).

Furthermore, as the conductivity is a random variable, the
solution itself is a random vector, and hence the QoI is a
random variable. We therefore conduct a MC simulation of N
samples to generate an approximate probability distribution
which describes the behavior of the QoI.

In each of the N runs, the imaginary component of the
sphere’s relative permittivity is drawn from π(x), and—after
solving the forward problem on this discretization—the QoI
from (7) is computed and stored, which we denote as q. For
comparison, the results are demonstrated for three levels of
HOPS resolution, with one, ten, and twenty HOPS reference
points.

For a specific test case, let π be a Gaussian distribution of
mean ν = −2.0, and standard deviation σ = 1/3. The real
component of the relative permittivity of the sphere is fixed at
6.0. For simplicity, the HOPS points were chosen uniformly
within three standard deviations of the mean for the multi-
point simulations, while the mean was selected for the single-
point HOPS simulation.

As seen in Fig. 1, the adjoint-based method provides an
accurate approximation of the QoI behavior and replication of
the MC sampling. While the pure linear approximation about
a single reference point diverges from the MC simulation near
the extrema of the sample domain, the ten- and twenty-point
HOPS simulations successfully capture the QoI response over
the entire range.

We now apply HOPS to estimate the QoI probability den-
sities using Gaussian kernel density estimation (GKDE) with
bandwidths chosen according to Silverman’s heuristic [64], as
seen in Fig. 2. The probability density associated with varia-
tion in the conductivity is represented with acceptable accuracy
by a single reference point. By ten or twenty reference points,
however, the agreement with the 1000-point MC simulation is
near-perfect.

We now quantify the performance of the three HOPS
approximations by comparing the mean, variance, and total
variation (TV) distance between the HOPS and MC densities.
The TV distance provides a measure of the similarity of
two probability distributions, where a value of zero indicates
perfect agreement. As seen in Table I, HOPS converges to the
1000-point MC simulation by ten references points, producing
an almost identical mean and variance for both the real
and imaginary components. Lastly, the TV distances indicate
extremely strong agreement with the MC densities for the
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Fig. 1. Sampled real and imaginary monostatic scattering QoI responses for
random variation in the imaginary component of the relative permittivity of
the dielectric sphere.

two higher resolution approximations. The ten-point HOPS
approximation, however, indicates slightly better agreement
than the twenty-point approximation according to this metric.

TABLE I
QUANTITATIVE COMPARISON OF HOPS AND MONTE CARLO FOR THE

REAL AND IMAGINARY QOI PROBABILITY DENSITIES IN FIG. 2.

(a) Real QoI Density
1 pt 10 pts 20 pts MC

Mean -3.3673 -3.3750 -3.3732 -3.3741

Variance 0.0053 0.0023 0.0022 0.0022

TV 0.4158 0.0293 0.0310

(b) Imaginary QoI Density
1 pt 10 pts 20 pts MC

Mean -0.0648 -0.0313 -0.0361 -0.0298

Variance 0.0407 0.0373 0.0374 0.0406

TV 0.2404 0.0264 0.0327

To further validate the effectiveness of the HOPS methodol-

Fig. 2. Approximate real and imaginary monostatic scattering QoI probability
densities due to random variation in the imaginary component of the relative
permittivity of the dielectric sphere.

ogy, we repeat an identical procedure for random variation in
the real component of the relative permittivity. In contrast to
the variation in the conductivity, random variation in this com-
ponent of the relative permittivity induces a more complicated
QoI response. Specifically, in this case the real component
of the relative permittivity is described by a normal random
variable of mean ν = 6.0 with a standard deviation σ =

√
3/3,

and the imaginary component is fixed at −2.0. As before,
the HOPS reference points are chosen uniformly within three
standard deviations of the mean.

For the first level of accuracy, as seen in Figs. 3 and 4,
a single HOPS reference cannot adequately replicate the QoI
response. Due to its more linear response, however, the real
component of the QoI is much more reasonably modeled by
the single HOPS point.

With ten reference points, and even more so with twenty
reference points, the HOPS QoI response very closely matches
that of the very computationally expensive MC simulation.
As seen especially clearly in Fig. 3, the multi-point HOPS
simulations very accurately capture the non-linear response of
the QoI over the entire sample region.
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Fig. 3. Sampled real and imaginary monostatic scattering QoI responses for
random variation in the real component of the relative permittivity of the
dielectric sphere.

TABLE II
QUANTITATIVE COMPARISON OF HOPS AND MONTE CARLO FOR THE

REAL AND IMAGINARY QOI PROBABILITY DENSITIES IN FIG. 4.

(a) Real QoI Density
1 pt 10 pt 20 pt MC

Mean -3.3546 -3.3215 -3.3201 -3.3197

Variance 0.1342 0.0793 0.0781 0.0779

TV 0.2982 0.0242 0.0039

(b) Imaginary QoI Density
1 pt 10 pts 20 pts MC

Mean -0.0533 -0.1442 -0.1472 -0.1482

Variance 0.0174 0.0226 0.0222 0.0222

TV 0.7379 0.1140 0.0522

Fig. 4. Approximate real and imaginary QoI probability densities due to
random variation in the real component of the relative permittivity.

Moreover, the approximate densities for the real and imag-
inary components of the QoI demonstrate extremely close
agreement with the MC simulation, as seen in Fig. 4 and Table
II. In contrast to the variation in the imaginary component of
the permittivity, in this case the twenty-point HOPS approxi-
mation provides a substantial boost in accuracy. While the ten-
and twenty-point approximations provide close agreement with
the mean and variance of the MC simulation, the twenty-point
approximation produces very small TV distances of 0.0039
and 0.0522 for the real and imaginary components of the QoI,
respectively.

As discussed in Section II, however, the adjoint approach
excels when analyzing multiple parameters, and therefore
many gradients at each reference. As a simple extension of
the previous results, we demonstrate the combination of the
two previous examples by assuming random variation of the
real and imaginary components of the relative permittivity of
the dielectric sphere. The real and imaginary components are
described by separate random variables such that Re(εd) is
Gaussian with a mean of 2.56 and a standard deviation of 0.2,
and Im(εd) is pulled from a half-normal distribution of mean
0 and standard deviation 0.1.

In this case, the references are determined by k-means
clustering of the set of sampled material parameters, which
provides another simple and effective HOPS selection scheme.
In contrast to PCE and similar methods, we can leverage
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the parameter distribution to easily emphasize regions of the
QoI response deemed statistically important by the probability
distribution imposed on it. As such, selecting reference points
by k-means clustering enables an efficient probabilistic tuning
of the HOPS approximation, particularly for high dimensional
uncertainty. We repeat this procedure, as before, for three
levels of resolution, with one, ten, and twenty references.

Fig. 5. Approximate real and imaginary monostatic scattering QoI responses
due to simultaneous random variation in the real and imaginary components
of the relative permittivity of the dielectric sphere for a HOPS simulation with
ten reference points.

To illustrate the QoI reconstruction behavior for a two-
dimensional parameter space, the approximate QoI responses
are shown for the ten-point HOPS simulation in Fig. 5. Note
that each estimate is associated with a single reference point
as determined by Euclidean distance. The approximations,
which are linear in both dimensions, demonstrate accurate
replication of the QoI response generated through a 1000-point
MC simulation. As implied by the QoI response in Fig. 5, the
single-point HOPS simulation fails to capture the behavior
of the problem to random variation of the dielectric, and

Fig. 6. Approximate real and imaginary monostatic scattering QoI probability
densities due to simultaneous random variation in the real and imaginary
components of the relative permittivity of the dielectric sphere.

therefore fails to match the probability density of the QoI in
Fig. 6. However, using ten reference points, the HOPS density
closely matches the MC density, with the twenty-point HOPS
simulation providing even more accuracy in the response.
The results in Table III further characterize the performance
of the HOPS approximations. While the ten- and twenty-
point approximations performed similarly, according to the
TV distance metric, the twenty-point approximation achieved
moderately better agreement with the MC simulation.

As a final demonstration, to further illustrate the advantage
of the QoI-emphasis inherent to the HOPS approach, we
consider a much higher dimensional example, in which every
element of the spherical scatterer body is uncertain. This
example corresponds to a 64-dimensional parameter space,
where the material parameters of each element are purely
real and independent and identically distributed such that
εdi ∼ N(2.56, 0.072) for the ith element.

We continue the approach in the previous examples, with
a 1000-point MC simulation providing the benchmark for
the HOPS based approximation. As seen in Fig. 7, given
the relatively small variance of εdi and the approximately
multilinear local relationship between the uncertain parameters
and the QoI, the probability density is closely replicated by
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TABLE III
QUANTITATIVE COMPARISON OF HOPS AND MONTE CARLO FOR THE

REAL AND IMAGINARY QOI PROBABILITY DENSITIES IN FIG. 6.

(a) Real QoI Density
1 pt 10 pts 20 pts MC

Mean 6.5878 3.6884 3.6321 3.6450

Variance 233.8040 66.7393 65.5116 65.3725

TV 0.6177 0.0196 0.0106

(b) Imaginary QoI Density
1 pt 10 pts 20 pts MC

Mean 9.9566 4.1466 4.1130 4.0760

Variance 99.4212 65.5097 66.5074 65.8963

TV 0.5793 0.0369 0.0261

a single HOPS point. For the real and imaginary components
of the QoI, respectively, the HOPS approximation produced
means of 11.63 and 18.04, and variances of 3.96 and 1.27.
Likewise, the 1000-point MC simulation resulted in means of
11.39 and 17.84, and variances of 4.06 and 1.06. Lastly, the the
HOPS approximation yielded TV distances of 0.075 and 0.14
with respect to the real and imaginary MC densities. While the
previous examples illustrate the potential for high accuracy,
this example fully demonstrates the significant computation
time reduction that HOPS facilitates. A standard gradient
estimation strategy to predict the distribution of the QoI under
uncertainty as in this example would require 65 solves of the
forward problem, whereas the HOPS simulation requires only
one solution to the forward problem and one solution to the
adjoint problem.

Overall, when analyzing the computational performance of
HOPS compared to the MC simulations, we see a significant
reduction in the computational cost. In the case of the MC
simulations with 1000 samples, as the finite element discretiza-
tions have the same degrees of freedom for each approach,
the single-point HOPS simulation yields an improvement in
computation time by a factor of 500. Likewise, the ten- and
twenty-point HOPS simulations reduce the computational cost
by a factor of 50 and 20, respectively. Furthermore, as the
HOPS reconstruction matches the full QoI response rapidly
with increasing resolution, larger performance increases may
be found when studying larger equivalent MC simulations.
Finally, while the examples demonstrated apply uniform sam-
pling and probabilistically tuned sampling, adaptive HOPS
may yield additional performance increases and simplify ap-
plication of the method to arbitrary uncertainty quantification
problems in CEM.

IV. CONCLUSION

We have demonstrated the advantage of adjoint-based sen-
sitivity analysis for expediting uncertain quantification in 3-D
frequency domain CEM. Through application of the adjoint
solution, the HOPS methodology in CEM facilitates rapid
and accurate prediction of variation in practical quantities
of interest in the presence of uncertainty and randomness in
scattering models.

Fig. 7. Approximate real and imaginary monostatic scattering QoI probability
densities due to random variation in the relative permittivity of each element
of the dielectric sphere.

For outcome prediction of uncertain parameters, we con-
tributed explicit constructions for evaluating random variation
in the material parameters of a scatterer. And, finally, we
showed how leveraging the adjoint solution and HOPS can
replicate extremely computationally expensive Monte Carlo
simulations at a small fraction of the cost and with similar
accuracy, mandating just a handful of HOPS reference points
for extremely close agreement.

For one-dimensional parameter spaces, the adjoint-based
approach matches the efficiency of traditional methods, and
in such cases where the original discretization is constructed
through adjoint-based adaptive refinement, the readily avail-
able adjoint significantly boosts the effective performance of
the HOPS method.

We further demonstrated application to higher dimensional
parameter spaces, including a 2-dimensional problem, and a
64-dimensional problem with independent material uncertainty
throughout the scatterer. In these cases, the independence of
the computational complexity from the number of parameters
results in substantial decreases in computation time while
maintaining high accuracy.

We note several drawbacks of the proposed method in
its current form for uncertainty quantification. Firstly, when
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analyzing the effect of uncertainty on multiple quantities of
interest, each QoI requires its own adjoint solution. Of course,
when leveraging direct solvers, the added cost of solving
multiple right-hand-sides for the adjoint problem may be
significantly reduced. Secondly, while the HOPS methodology
is extremely versatile and accurate results may be achieved
efficiently even with uniform sampling, optimizing the selec-
tion of HOPS points requires either a priori knowledge or
adaptivity. For broad applicability in analyzing uncertainty in
CEM, we consider augmenting the proposed approach with
adaptivity as the next key extension needed.

Adjoint-based methodologies, overall, provide significant
value and potential to CEM applications, enabling the ability
to accurately and efficiently refine models and eliminate dis-
cretization error fully automatically, while also significantly
expediting the analysis of problems containing extensive ran-
dom variation and uncertainty.

Future works will investigate automating sampling for im-
proved efficiency and accuracy for high dimensional parameter
spaces and highly sensitive QoI responses.
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