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 13 

ABSTRACT 14 

We present improvements over our previous approach to automatic winter hydrometeor 15 

classification by means of convolutional neural networks (CNNs), using more data and improved 16 

training techniques to achieve higher accuracy on a more complicated dataset than we had 17 

previously demonstrated. As an advancement of our previous proof-of-concept study, this work 18 

demonstrates broader usefulness of deep CNNs by using a substantially larger and more diverse 19 

dataset, which we make publicly available, from many more snow events. We describe the 20 

collection, processing, and sorting of this dataset of over 25,000 high-quality multiple-angle 21 

snowflake camera (MASC) image chips split nearly evenly between five geometric classes: 22 

aggregate, columnar crystal, planar crystal, graupel, and small particle. Raw images were 23 

collected over 32 snowfall events between November 2014 and May 2016 near Greeley, 24 

Colorado and were processed with an automated cropping and normalization algorithm to yield 25 

224x224 pixel images containing possible hydrometeors. From the bulk set of over 8,400,000 26 

extracted images, a smaller dataset of 14,793 images was sorted by image quality and 27 

recognizability (Q&R) using manual inspection. A presorting network trained on the Q&R 28 

dataset was applied to all 8,400,000+ images to automatically collect a subset of 283,351 good 29 

snowflake images. Roughly 5,000 representative examples were then collected from this subset 30 

manually for each of the five geometric classes. With a higher emphasis on in-class variety than 31 

our previous work, the final dataset yields trained networks that better capture the imperfect 32 

cases and diverse forms that occur within the broad categories studied to achieve an accuracy of 33 

96.2% on a vastly more challenging dataset.  34 
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Significance Statement 35 

Classification of precipitation, namely, deciding to which of the several typical classes of 36 

winter hydrometeors the observed particles belong, can enrich our understanding of polarimetric 37 

radar signatures of snow, as well as ice cloud processes and the resulting precipitation 38 

production. The high-resolution photographs of snowflakes collected by the multi-angle 39 

snowflake camera (MASC) are especially suitable for snowflake classification. However, 40 

classifying particle types from MASC photographs by visual inspection is not practical given the 41 

typical amounts of MASC data. We present advanced automatic deep machine learning-based 42 

classification of MASC images using convolutional neural networks. This study demonstrates 43 

broad usefulness of our approach yielding trained networks that achieve extremely high 44 

classification accuracy on a large and diverse dataset from many snow events.  45 

 46 

1. Introduction 47 

Snowflake classification is important for improved weather radar, assessment of storm 48 

structure, and characterization of winter precipitation events from ground sensors (Zhang et al. 49 

2011, Straka et al. 2000, Libbrecht 2017). Several types of in-situ image capturing devices used 50 

for ground-based collection of data relevant to snowflake classification include the Two-51 

Dimensional Video Disdrometer (Schönhuber et al. 2008), the Precipitation Instrument Package 52 

(an improved version of the system in Newman et al. 2009), and the Multi-Angle Snowflake 53 

Camera (MASC). We focus on snowflake images collected by MASC systems in the present 54 

study. To allow researchers to study the microphysical characteristics of snowfall, relevant to a 55 

storm’s composition, the MASC captures high resolution images of falling hydrometeors from 56 
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several angles. These images can be processed to extract images of individual snowflakes from a 57 

variety of perspectives, or even used to generate 3D models of hydrometeors automatically 58 

(Kleinkort et al. 2017). A MASC system is capable of capturing tens to hundreds of thousands of 59 

images during a single winter storm event, leading to datasets too large for manual classification. 60 

This has been a major motivation for accurate, automated snowfall classification.  61 

Existing approaches to automated snowfall classification from MASC images vary and 62 

include the excellent work of Praz et al. (2017), our previous work (Hicks and Notaroš 2019), 63 

and an unsupervised technique (requiring no human input) from Leinonen and Berne (2020). The 64 

multinomial logistic regression (MLR)-based method described in (Praz et al. 2017) has been 65 

demonstrated effective but requires careful definition and algorithmic extraction of several image 66 

features from which classifications are made. This approach has achieved an outstanding 95% 67 

classification accuracy, but may be somewhat rigid, relying on human-described features such as 68 

morphological skeleton statistics, rotational symmetry, and gray-level co-occurrence. Older 69 

supervised classification work in Lindvquist et al. (2012), similarly, applies principal component 70 

analysis coupled with Bayesian and weighted nearest-neighbor techniques to classify ice-cloud 71 

particles, typically achieving accuracies between 80% and 90%. We have previously presented 72 

convolutional neural networks (CNNs) as a robust alternative that can easily be applied and 73 

generalized in a black-box manner without expert definition of features. Both methods, of 74 

course, require manual input to generate training and test data labels. The work of Leinonen and 75 

Berne (2020), on the other hand, automatically classifies snowflake images by exploring the 76 

latent space of generative, as opposed to predictive, models. Such unsupervised approaches are 77 

extremely promising for discriminating and classifying different hydrometeor images in general, 78 

but an unsupervised method inherently produces its own categories, rather than directly 79 
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assigning images to existing, known categories with which researchers are likely already 80 

familiar.  81 

Accordingly, we offer improvements to our existing CNN-based, supervised approach 82 

(Hicks and Notaroš 2019), using more data and improved training techniques to achieve higher 83 

accuracy on a more complicated dataset than we had previously demonstrated. As an 84 

advancement of our previous proof of concept study, which used a geometric dataset focused on 85 

easily identifiable examples of each of the snowflake classes considered, a principal goal of this 86 

work is to demonstrate broader usefulness of deep CNNs for automated snowfall classification 87 

by using a larger dataset containing wider in-class variety. We present improved training 88 

methods and new, automated techniques for detection, cropping, and normalization of snowflake 89 

images as well as quality and recognizability preprocessing of image data. From these 90 

improvements, we demonstrate higher overall test accuracy on a vastly more challenging dataset 91 

than that used in our previous work. Together, these improvements constitute an accurate, 92 

efficient, and robust supervised machine learning approach to snowflake classification, using 93 

deep neural networks and images collected by the MASC or another image-based particle 94 

recording instrument or system.  95 

 96 

2. Data Collection and Image Processing 97 

This section describes the collection of raw MASC images as well as the automated 98 

cropping and normalization performed on raw images to isolate potential snowflakes present in 99 

each image.  100 

  101 
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2.1 Raw Image Collection 102 

 The 3,458,848 raw images used to generate the training set were collected from several 103 

winter weather events between November 2014 and May 2016 using a modified MASC system. 104 

The system was located at a surface instrumentation field site established under MASCRAD 105 

(MASC + RADar) (Notaroš et al 2016; Bringi et al. 2017; Kennedy et al. 2018). This is the same 106 

site and system used for data collection in Hicks and Notaroš (2019).  The MASCRAD field site 107 

is located at the Easton Valley View Airport in La Salle, near Greeley, Colorado, shown in 108 

Figure 1. The MASC system, along with other ground-level instrumentation at the site, is 109 

situated within a double fence intercomparison reference (DFIR). Raw images from both winter 110 

storm events used in Hicks and Notaroš (2019) constitute a subset of the total raw image set used 111 

in the present work. Details of the MASC system used are presented in Hicks and Notaroš 112 

(2019). Although the MASC allows for collection of snowflake imagery from multiple angles to 113 

help determine three-dimensional shape (Kleinkort et al. 2017), we did not make use of this 114 

feature directly for the present work. As described in Leinonen and Berne (2020), it is common 115 

that a given snowflake will only be captured at usable quality by a single camera of a multi-116 

camera system, the snowflake often out of focus or occluded in other fields of view, so limiting 117 

study to only snowflakes that appear at high quality in all fields of view substantially reduces the 118 

number of useable examples. By limiting study to single-view cases, we were able to manually-119 

classify thousands, rather than hundreds of snowflakes at a cost of increased ambiguity due to 120 

lack of multi-angle data. Note that we did not explicitly remove cases where a single snowflake 121 

was imaged from multiple angles when forming the dataset for the present work. 122 

 123 

  124 
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2.2 Detection, Cropping, and Normalization 125 

As the MASC produces raw, wide field of view images, typically containing many 126 

snowflakes, it is necessary to isolate individual examples for classification. All images were 127 

processed in grayscale (single channel). To detect possible flakes in each raw MASC image, we 128 

first normalized the entire grayscale image, dividing all pixel values by the maximum brightness 129 

value. An example of a normalized raw image is shown in Figure 2. We then converted the 130 

grayscale image into a binary image by application of a threshold. Pixels in the grayscale image 131 

with brightness greater than or equal to the threshold were assigned value 1, and pixels less than 132 

the threshold were assigned value 0. For the present work, this threshold was set to 0.1. We then 133 

set any pixels in the binary image with value 0 to 1 if they were within a 2-pixel radius (using 134 

Chebyshev distance) of any pixel that had already been assigned value 1 in the previous 135 

thresholding step. The example image from Figure 2 is shown after thresholding and application 136 

of the 2-pixel radius in Figure 3. This radius was chosen by hand as a reasonable value. Next, we 137 

computed sets of connected components in the binary image. A connected component is any 138 

group of active (value 1) pixels that form an unbroken group. If a connected component 139 

contained fewer than 26 active pixels, it was discarded. For each connected component not 140 

discarded, we cropped a rectangular region from the original grayscale image corresponding to 141 

its bounding box. Two such examples produced from Figure 3 are shown in Figure 4(a) and (d). 142 

Cropped images were then contrast scaled linearly such that the top 1% of brightest pixels were 143 

saturated. Figure 4(b) and (e) show cropped image examples from the previous step after contrast 144 

scaling. Note that contrast scaling destroys some information theoretically available in the 145 

images (by loss of absolute brightness and saturation of some pixels). However, we found that 146 

brightness variations between flakes were dominated by differing lighting conditions, rather than 147 
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useful information like snowflake class, so contrast scaling was performed to give the network 148 

input for which pixel brightness variations are dominated by microphysical characteristics rather 149 

than lighting conditions. After scaling, any cropped image was rejected if the mean value of its 150 

pixels was greater than 0.5. We then centered each remaining cropped, scaled image on a 151 

224x224 black background to produce final image chips. Examples are shown Figure 4(c) and 152 

(f). Cropped images that exceeded the 224x224 image chip sized were cropped to 224x224 153 

pixels after centering. Camera configurations are  154 

This approach to cropping and normalization was arrived at for several reasons. In 155 

contrast to simply cropping a 224x224 pixel region centered on each connected component in an 156 

image (or similar), we found that the above method significantly reduced the number of image 157 

chips that contained multiple, physically disconnected snowflakes. In other words, during heavy 158 

snowfall events, we found it was common for two or more snowflakes to appear within 224 159 

pixels of each other. By cropping a tight bounding box as above, we were able to recover far 160 

more closely spaced snowflakes into usable, unambiguous image chips. Rejection of cropped, 161 

scaled images with mean pixel value greater than 0.5 rejected most crops of the sky and 162 

background that did not actually contain a snow particle. By also rejecting connected 163 

components with pixel counts below 26, we avoided cases where a single bright pixel caused a 164 

false detection. In general, the described cropping and normalization approach was able to detect 165 

far more small particles, and dim, unrimed planar crystals than the approach used for Hicks and 166 

Notaroš (2019). Application of this cropping algorithm to all raw MASC images from November 167 

2014 to May 2016 produced 8,441,563 image chips. 168 

 169 

 170 
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3. Hydrometeor Classification Scheme and Training Sets 171 

This section describes how the 8,441,563 224x224 pixel image chips extracted from raw 172 

MASC images were automatically sorted to quality classes and how images from the best class 173 

were manually sorted into the five geometric categories studied. A total of 25,199 examples were 174 

manually sorted for the final geometric dataset covering 32 snowfall events, an event defined 175 

here as a period during which no more than 24 hours passed between collection of any two 176 

image chips identifies as snowflakes during manual classification). All classification was 177 

performed by a single analyst who reviewed each image at least three times. Overall, we are 178 

confident the manual classifications used for training accurately represent the opinions of our 179 

analyst and have made this dataset available at Key et al. (2021). Note, however, that our use of 180 

only one human analyst has potential to introduce more bias relative to other work for which 181 

multiple humans performed analysis, such as Praz et al. (2017).  We had originally planned to 182 

also produce an expanded riming dataset in addition to the presented geometric dataset, but we 183 

found that some riming degrees were insufficiently represented for production of a larger, 184 

balanced riming dataset from our current pool of raw images. We hope to contribute such a 185 

dataset in future work. 186 

   187 

3.1 Quality and Recognizability Preprocessing  188 

 The snowflake detection, cropping, and normalization method described in Section 2.2 189 

remains imperfect. Therefore, many of the image chips produced contained bright points from a 190 

raw image that are not snowflakes. These included sources like glare, sensor noise, and 191 

sky/ground glow. In addition, operators of the MASC system occasionally forgot to turn off data 192 

collection while calibrating and testing the system after maintenance and redeployment. This led 193 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-20-0189.1.Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/24/21 04:14 PM UTC



Key, Hicks and Notaroš – Journal of Atmospheric and Oceanic Technology, Second Revision, 1 June 2021 

10 
 

to captures of test probes, hands, coins, and other objects to occasionally appear in the raw image 194 

dataset. Several examples of image chips due to non-flake objects are shown in Figure 5.  195 

 For image chips that contain snowflakes, there is an inherent range of quality. Some 196 

flakes appear out of focus in raw images. Others are poorly cropped, either due to over-cropping 197 

by the image processing method in Section 2.2, or because they originally appeared partially out 198 

of field of view in a raw MASC image. We considered image chips containing snowflakes to fall 199 

into four recognizability categories: Bad-Crop, Bad, Okay, and Good. Image chips in the Bad-200 

Crop category are those where unambiguous recognizability of the imaged snowflake is made 201 

difficult due to over-cropping by the processing method described in Section 2.2 or part of the 202 

flake appearing out of field-of-view in the raw image, leaving a substantial portion of the flake 203 

absent from the image chip. Note that cases where a flake was simply too large to fit in a single 204 

image chip were not included in the Bad-Crop category. In our manual exploration of the dataset, 205 

such flakes were almost exclusively in the AG class and easily identifiable despite cropping to 206 

224x224 pixels. Rather, over-cropping by the processing described in Section 2.2 is typically due 207 

to poor or uneven illumination of the flake causing the rectangular bounding box of the resulting 208 

connected component to not contain most of the pixels covered by the snowflake. Four examples 209 

of Bad-Crop image chips are shown in the first column of Figure 6. Bad image chips are those 210 

for which poor focus or poor illumination rendered the target snowflake unrecognizable. Image 211 

chips containing more than one disjoint (non-aggregated) snow particle are also included in the 212 

Bad category, regardless of lighting and focus. We consider two snow particles disjoint if they 213 

were clearly identifiable as discrete, physically unconnected particles by our human analyst. Four 214 

such examples are shown in the second column of Figure 6. Okay image chips were those that 215 

contained a recognizable snowflake but suffered from mild blur or high background noise that 216 
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made examination of microphysical characteristics difficult. Four examples of okay image chips 217 

are shown in the third column of Figure 6. Good image chips were those that were free of 218 

substantial over-cropping and clear enough to identify relevant microphysical features. Column 219 

four of Figure 6 shows four examples of Good image chips.  220 

 To avoid wasting human time visually inspecting images that did not contain flakes or 221 

were of quality too poor to use, we trained a preliminary quality and recognizability (Q&R) 222 

classifier on a small, manually sorted subset of the 8,441,563 image chips. This classifier was 223 

implemented by necessity to reduce the data volume needing manual inspection, and its results 224 

were not further analyzed or verified in the present work. To train the Q&R classifier, we 225 

collected at least 1,500 examples for each of five categories: Not-Flake, Bad-Crop, Bad, Okay, 226 

and Good, with an emphasis on variety within each class. Counts per category for the Q&R 227 

dataset are presented in Table 1 along with descriptions. When collecting example images, we 228 

included roughly equal numbers of examples from each geometric class in Okay and Good 229 

categories to avoid biasing the classifier against a given geometric type. The Q&R classifier was 230 

trained using the same methodology used for the geometric classifier in Hicks and Notaroš 231 

(2019). For training, 1,500 examples from each Q&R category were drawn randomly. The 232 

trained Q&R classifier was then applied to all 8,441,563 image chips to sort each into Not-Flake 233 

(3,791,326), Bad-Crop (723,550), Bad (3,062,288), Okay (582,333), and Good (282,001) 234 

categories. Only image chips assigned by the Q&R network to the Good category were examined 235 

to produce the geometric dataset for the present study. 236 

 237 

  238 
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3.2 Geometric Classes 239 

 A variety of attempts have been made to classify snowflakes (Nakaya and Sekido 1936, 240 

Magono and Lee 1966, Korolev and Sussman 2000, Grazioli et al. 2014, Vasquez-Martin et al. 241 

2020). As in our previous work (Hicks and Notaroš 2019), we chose to use the scheme adopted 242 

by Praz et al. (2017) for training and testing of their multinomial logistic regression snowflake 243 

classifier. We summarize this scheme here.  244 

 The scheme uses the nine categories of snowflakes defined in Magono and Lee (1966), 245 

with a few simplifications for data availability. Praz et al. (2017) additionally defined the 246 

Aggregate and Small Particle classes. Aggregates are defined as single snowflakes that are the 247 

result of in-air collision of two or more particles. Small Particles are snowflakes whose features 248 

are too small to categorize. Note that this is based on the subjective opinion of the analyst, rather 249 

than a strictly defined size threshold. Simplifications from Magono and Lee (1966) and addition 250 

of AG and SP classes resulted in 10 individual categories, of which only six were used in Praz et 251 

al. (2017) due to data availability: Aggregates (AG), Small Particles (SP), Columnar Crystals 252 

(CC), Planar Crystals (PC), Combination of Columnar and Planar Crystals (CPC), and Graupel 253 

(GR). As in Hicks and Notaroš (2019), we chose to exclude the CPC class from the present study 254 

due to data availability. We found only a few hundred clear examples of CPC in the Good Q&R 255 

class. CPC appeared far less commonly than the next rarest class, GR, which had several 256 

thousand Good Q&R examples. Image chips that fell into unconsidered categories, like CPC, we 257 

simply omitted from consideration for the present work. 258 

 259 

  260 
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3.3 Building the Geometric Dataset 261 

Our goal in collecting the geometric dataset for the present work was to establish a large, 262 

highly varied collection of image chips in each of the five categories considered. Deep neural 263 

networks, like that used in Hicks and Notaroš (2019) and the present work can achieve high 264 

accuracies but require substantial training data to avoid over-fitting (Simonyan and Zisserman 265 

2015, Szegedy et al. 2015). With tens of millions of parameters, deep CNNs like the ResNet-50 266 

architecture (He et al. 2016) can store substantial quantities of information to learn highly 267 

complicated associations and trends (Zeiler and Fergus 2014). Care must therefore be taken to 268 

train such networks on large enough datasets that they cannot simply memorize associations 269 

between specific images and their labels or extract spurious trends.  270 

Another important consideration is balance between classes during training. Unless 271 

special precautions such as class-specific learning rates are used (not used in the present study), 272 

training a neural network on a dataset biased toward a particular class will often bias the network 273 

toward that class. As an extreme example, consider a network trained on a dataset of 900 GR 274 

images and 100 PC images; the network can attain 90% accuracy on the training set simply by 275 

learning to label every image as GR. It is therefore important to present the network with roughly 276 

equal numbers of examples in each class during training.  277 

To account for these factors, we limited the number of examples in our geometric dataset 278 

for each class to the maximum number of Good Q&R examples we could find for the rarest class 279 

considered. After CPC (not considered), GR was the rarest class, for which we could only find 280 

roughly 5,000 examples. Accordingly, we collected roughly 5,000 examples of each of the other 281 

classes considered, for a total of 25,199 examples. Exact image chip counts per class are 282 

presented in Table 2. Figures 7 through 11 show representative examples from the final AG, CC, 283 
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GR, PC, and SP sets, respectively. When collecting examples for each class, we put emphasis not 284 

only on archetypical examples, but also examples we considered good counterexamples to 285 

possible oversimplifications of each class: e.g. AGs are always large, PCs always have six-fold 286 

symmetry, or GR always has a smooth outline. Image chips were not included in the geometric 287 

dataset if we could not determine an appropriate label based on information present in the image 288 

chip alone, i.e. no multi-angle information was used during manual sorting. We note overall that 289 

there is an inherent subjectivity in identification of snowflakes in single-view images, especially 290 

for classes like GR (Figure 9), for which distinguishing from other heavily-rimed particles is 291 

subjective, and SP (Figure 11), for which deciding unrecognizability of features due to small size 292 

is highly subjective. We did not avoid using backlit examples where available, although these 293 

were rare, only occurring where a snow particle was imaged while falling in front of a 294 

sufficiently bright glare point in the background. Due to their rarity, inclusion of backlit cases 295 

likely did not have a substantial impact on accuracy of the trained network. Our analyst 296 

recollects seeing at most a dozen backlit cases during manual classification, but such cases were 297 

assigned no special designation or identifying information that would make quantification of 298 

their impact possible without another manual review of the dataset. 299 

 300 

4. Convolutional Neural Networks Methodology 301 

A brief discussion of the network architecture is presented in this section. We also 302 

present a summary of the training method and hyperparameters used. Note that, although the 303 

network architecture remains the same as that in our previous work (Hicks and Notaroš 2019), 304 

hyperparameters for training differ. 305 

 306 
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4.1 Neural Network Architecture 307 

We used an identical ResNet-50 architecture to that in Hicks and Notaroš (2019). The 308 

ResNet-50 architecture has been demonstrated as an excellent balance between speed and 309 

accuracy for image classification tasks and is described in detail in (He et al. 2016). The residual 310 

approach, in general, was groundbreaking at the time of its publication, as it presented an elegant 311 

solution to the vanishing gradient problem that had previously limited scaling of CNN accuracy 312 

with increased depth. The use of residual connections (or similar), as described in (He et al. 313 

2016) has since been widely adopted by deep learning researchers and practitioners. As in (Hicks 314 

and Notaroš 2019), we used a ResNet-50 model that had been pretrained for general image 315 

classification on the ImageNet database (Russakovsky and Deng et al. 2015). We also 316 

experimented with randomly initialized (no pretraining) versions of the same architecture but 317 

found no substantial benefit. We therefore chose to only focus on the pretrained model for the 318 

present work for easy comparison with (Hicks and Notaroš 2019). A necessary change made to 319 

the architecture was reduction in the number of outputs of the final, fully connected layer for our 320 

substantially lower number of classes (the original ResNet-50 architecture trained on ImageNet 321 

had 1,000 classes, not five). Weights in the modified fully connected layer were initialized 322 

randomly.  323 

 324 

4.2 Training Method and Hyperparameters  325 

As in (Hicks and Notaroš 2019), network performance was determined by cross-entropy 326 

error, and network weights and biases were optimized by stochastic gradient descent to minimize 327 

this loss function. For training, validation, and testing, we again limited the number of examples 328 

used in each class to the number of examples available in the smallest class (in the present work, 329 
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GR with a total of 5,000 hand-classified image chips available). The examples used from classes 330 

with raw counts larger than the minimum were drawn randomly. We again used a mini-batch 331 

size of 10. Beyond this, we made several changes to the hyperparameters and training method 332 

used in (Hicks and Notaroš 2019). Our dataset was also substantially larger; the testing set alone, 333 

in this case, was comparable in size to the entire geometric dataset used for (Hicks and Notaroš 334 

2019), roughly 1,450 examples. In the present study, we randomly selected 500 examples from 335 

each class for a total of 2,500 testing examples. The remaining 22699 examples were randomly 336 

partitioned into a training set (~90%) and a validation set (~10%), both evenly distributed among 337 

the classes studied. The random partitioning between training and validation was unique to each 338 

training run. Only the training and validation sets were used for hyperparameter tuning, which 339 

was performed by a mix of expert hand-tuning and small parametric sweeps and included tuning 340 

of the mini-batch size, learning rate, and number of training epochs. We also trained for 341 

substantially longer than our previous work, training for a total of 20 epochs, as opposed to 10. 342 

The training set was shuffled (re-ordered) randomly every epoch. An epoch is defined as one 343 

complete pass through the training set, so, the present training dataset containing many more 344 

examples than that available in (Hicks and Notaroš 2019), this corresponds to roughly a 30-fold 345 

increase in training time. We were able to extend the training time substantially due to 346 

prevention of overfitting by the larger training dataset used in the present work. As opposed to 347 

the constant learning rate of 0.0003 used in (Hicks and Notaroš 2019), we began with a learning 348 

rate of 0.001 which was then scaled by a factor of 1/√10 every five epochs. We found this led to 349 

a small but noticeable improvement in final network accuracy. We expect improvements in 350 

network accuracy could be further improved with additional hyperparameter tuning using more 351 

compute resources for large parametric sweeps.  352 
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 353 

5. Results and Discussion 354 

 This section presents and discusses the performance of the trained classification networks 355 

on the test dataset. The final mean test accuracy achieved was 96.23% with a standard deviation 356 

of 0.29% across 10 training runs, the individual test accuracies of which are presented in Table 3. 357 

Only the order in which images were presented to the network and random partitioning of non-358 

test images between training and validation differed between training runs. We expect we could 359 

have achieved even higher accuracy if we had limited our dataset to only archetypal examples, 360 

but this would have diminished the usefulness of the dataset and resulting trained model for 361 

general snowfall classification tasks. 362 

 Figure 12 shows accuracy and loss of a typical trained network (test accuracy close to the 363 

mean) on the training and validation set with respect to training iteration (and epoch, indicated 364 

by alternating vertical bands) for a typical training run. There is no evidence of overfitting, and 365 

validation accuracy increased nearly monotonically with iteration count. Overfitting, if present, 366 

would be apparent in Figure 12 as divergence of the black validation accuracy and blue training 367 

accuracy curves. For the training run shown, the network achieved a validation accuracy of 368 

96.1% and a test accuracy of 96.2%. We suspect the much larger size of the geometric dataset is 369 

the dominant factor in improving performance over our previous work but did not have sufficient 370 

compute time to perform a full parametric sweep to confirm this. We found that network 371 

performance on the validation and training sets were comparable, indicating that training, testing, 372 

and validation datasets all sampled the underlying distribution of snowflake geometries well. The 373 

validation accuracy standard deviation for the 10 example runs shown in Table 3 was 0.42%, and 374 

their mean validation accuracy was 96.26%. We attribute the larger validation accuracy standard 375 
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deviation, as compared to the test accuracy standard deviation, to random selection of the 376 

validation set for each training run (the test set did not change between runs). There was little 377 

variation between training runs, with the only nominal differences due to this random 378 

partitioning of the validation and training sets as well as random re-ordering of the training set 379 

during each epoch. Figure 13 shows a confusion matrix for the same network, the training 380 

progress of which is shown in Figure 12.  381 

In general, trained networks would confuse PC and AG classes most often. We included 382 

many difficult examples in the AG class that featured a prominent planar crystal with several 383 

less-prominent particles that had adhered due to mid-air collisions, so confusion between the two 384 

classes seems understandable to us. Figure 14 presents examples of image chips misclassified by 385 

the typical network from Figures 12 and 13. Overall, most misclassifications appear to be blatant 386 

errors due to imperfection of the trained model, but several stand out as ambiguous cases or 387 

possibly even human error. Figure 14, row 2, column 2, for instance, was assigned by the 388 

network to the AG class, having been human labeled as a columnar crystal. Further inspection 389 

indicates this snowflake may indeed be a simple aggregate or even a malformed planar crystal, 390 

suggesting this misclassification is due human error rather than network error. Figure 14, row 4, 391 

column 3 shows a clear planar crystal adhered to a small aggregate of columnar crystals. 392 

Although the planar crystal dominates the image chip, the aggregation present indicates the 393 

network is correct to assign this image chip to the AG class. Figure 14, row 3, column 4 and row 394 

5, column 2, respectively show a GR image chip misclassified as SP and a SP image chip 395 

misclassified as GR, respectively. These two cases show the ambiguity of the SP class and the 396 

difficulty of drawing a distinction between small GR flakes and relatively large, round SP flakes. 397 

Figure 14, row 5, column 3 shows another ambiguous case. Human-classified as SP but network 398 
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classified as CC, this particle shows possible CC-like features (dominant uniaxial crystal growth) 399 

but is barely too small for our analyst to assign confidently to the CC category. 400 

 401 

6. Conclusions  402 

This paper has presented improvements over our previous approach (Hicks and Notaroš 403 

2019) to automated winter hydrometeor classification using deep convolutional neural networks. 404 

Using improved training methods and a substantially larger and more complicated dataset from 405 

many more snow events than in our previous study, we were able to achieve over 96.2% 406 

accuracy on a test set of 2,500 images. We consider this result substantial for several reasons. 407 

The MASC is a high-throughput sensor, collecting tens to hundreds of thousands of detectable 408 

snowflake images during a winter storm event, so even small accuracy improvements lead to a 409 

substantial reduction in the total number of misclassified snowflake images. Namely, this is a 410 

~40% reduction in the fraction of incorrectly classified snowflakes relative to the already very 411 

high geometric classification accuracy result reported in our previous work and corresponds to a 412 

2.8% increase in overall accuracy. Even more importantly, the dataset of 25,199 image chips 413 

sorted by geometric class used in the present study differs substantially from that developed for 414 

(Hicks and Notaroš 2019). As a proof of concept study, (Hicks and Notaroš 2019) used a 415 

geometric dataset focused on easily identifiable examples of each of the snowflake classes 416 

considered. To demonstrate the broader usefulness of deep CNNs for automated snowfall 417 

classification, the dataset used in the present study is not only larger but also contains wider in-418 

class variety. In using such a dataset, we have shown that, with a few modifications to the 419 

network training process, the geometric classification method described in (Hicks and Notaroš 420 

2019) can achieve higher accuracy on a vastly more challenging dataset. Finally, the paper has 421 
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presented several important components of the CNN-based, supervised approach to snowflake 422 

classification, including an improved training method and hyperparameters for training; new 423 

automated techniques for snowflake detection, cropping, and normalization of snowflake images; 424 

and new quality and recognizability preprocessing of image data. The described methodologies 425 

and techniques may be of great use to researchers and practitioners applying the same or similar 426 

approaches to hydrometeor classification based on the images collected by the MASC or another 427 

image-based particle recording instrument or system. 428 

 429 

Acknowledgment 430 

This work was supported in part by the National Science Foundation under Grants AGS-431 

1344862 and AGS-2029806. 432 

 433 

Data Availability Statement 434 

The dataset of MASC images generated for and used in this study has been made publicly 435 

available at Key et al. (2021).  436 

 437 

 438 

References 439 

Bringi, V. N., P. C. Kennedy, G.-J. Huang, C. Kleinkort, M. Thurai, and B. M. Notaros, 2017: 440 

Dual-polarized radar and surface observations of a winter graupel shower with negative Zdr 441 

column,” J. Appl. Meteor. Climatol., 56, 455–470. 442 

 443 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-20-0189.1.Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/24/21 04:14 PM UTC



Key, Hicks and Notaroš – Journal of Atmospheric and Oceanic Technology, Second Revision, 1 June 2021 

21 
 

Grazioli, J., D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne, 2014: Hydrometeor 444 

classification from two-dimensional video disdrometeor data, Atmos. Meas. Tech., 7, 2869-2882. 445 

 446 

He, K., X. Zhang, S. Ren, and J. Sun, 2016: Deep Residual Learning for Image Recognition, 447 

CVPR. 448 

 449 

Hicks, A. and B. M. Notaroš, 2019: Method for Classification of Snowflakes Based on Images 450 

by a Multi-Angle Snowflake Camera Using Convolutional Neural Networks. J. Atmos. Ocean. 451 

Tech., 36, 2267– 2282. 452 

 453 

Kennedy, P., M. Thurai, C. Praz, V. N. Bringi, A. Berne, and B. M. Notaros, 2018: Variations in 454 

Snow Crystal Riming and ZDR: A Case Analysis. J. Appl. Meteor. Climatol., 57, 695–707.  455 

 456 

Key, C., A. Hicks. & B. Notaros. (2021). Colorado State University Geometric Snowflake 457 

Classification Dataset (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4584200 458 

 459 

Kleinkort, C., G.-J. Huang, V. N. Bringi, and B. M. Notaros, 2017: Visual Hull Method for 460 

Realistic 3D Particle Shape Reconstruction Based on High-Resolution Photographs of 461 

Snowflakes in Free Fall from Multiple Views. J. Atmos. Oceanic Technol., 34, 679–702. 462 

 463 

Korolev, A. and B. Sussman, 2000: A technique for habit classification of cloud particles, J. 464 

Atmos. Ocean. Tech., 17, 1048-1057. 465 

 466 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-20-0189.1.Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/24/21 04:14 PM UTC



Key, Hicks and Notaroš – Journal of Atmospheric and Oceanic Technology, Second Revision, 1 June 2021 

22 
 

Leinonen, J. and A. Berne, 2020: Unsupervised classification of snowflake images using a 467 

general adversarial network and K-medoids classification. Atmospheric Measurement 468 

Techniques, 13, 2949-2964. 469 

 470 

Libbrecht, K. G., 2017: Physical Dynamics of Ice Crystal Growth, Annu. Rev. Mater. 2017. 47, 471 

271-295. 472 

 473 

Lindqvist, H., Muinonen, K., Nousiainen, T., Um, J., McFarquhar, G., Haapanala, P., Makkonen, 474 

R., and Hakkarainen, H. 2012: Ice-cloud particle habit classification using principal components, 475 

J. Geophys. Res-Atmos., 117, 2156–2202. 476 

 477 

Magono, C. and C.W. Lee, 1966: Meteorological classification of natural snow crystals, J. Fac. 478 

Sci., Hokkaido Univ., Series VII, 2, 321-335. 479 

 480 

Nakaya, U. and Y. Sekido, 1936: General Classification of Snow Crystals and their Frequency of 481 

Occurrence. J. Fac. Sci., Hokkaido Univ., Series II, 1, 243-264. 482 

 483 

Newman, A. J., P. A. Kucera, and L. F. Bliven, 2009: Presenting the Snowflake Video Imager 484 

(SVI). J. Atmos. Oceanic Technol., 26, 167–179. 485 

 486 

Notaroš, B. M., V. N. Bringi, C. Kleinkort, P. Kennedy, G.-J. Huang, M. Thurai, A. J. Newman, 487 

W. Bang, and G. Lee, 2016: Accurate Characterization of Winter Precipitation Using Multi-488 

Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar. 489 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-20-0189.1.Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/24/21 04:14 PM UTC



Key, Hicks and Notaroš – Journal of Atmospheric and Oceanic Technology, Second Revision, 1 June 2021 

23 
 

invited paper, Special Issue on Advances in Clouds and Precipitation, Atmosphere, 7, no. 6, 81–490 

111. 491 

 492 

Praz, C., R. Yves-Alain, and A. Berne, 2017: Solid hydrometeor classification and riming degree 493 

estimation from pictures collected with a Multi-Angle Snowflake Camera, Atmos. Meas. Tech., 494 

10, 1335-1357. 495 

 496 

Russakovsky, O.,*, J. Deng,*, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. 497 

Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei, (* = equal contribution) ImageNet Large Scale 498 

Visual Recognition Challenge. IJCV, 2015. 499 

 500 

Schönhuber, M., G. Lammer, and W. Randeu, 2008: The 2D video disdrometer. In Precipitation: 501 

Advances in Measurement, Estimation and Prediction; Michaelides, S., Ed.; Springer: Berlin, 502 

Germany, 3–31. 503 

 504 

Simonyan, K., and A. Zisserman, (2015): Very deep convolutional networks for large-scale 505 

image recognition. ICLR, 2015. 506 

 507 

Straka, J., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and 508 

quantification using polarimetric radar data: Synthesis of Relations. J. Appl. Meteor., 39, 1341–509 

1372. 510 

 511 

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and 512 

A. Rabinovich, 2015: Going deeper with convolutions. CVPR. 513 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-20-0189.1.Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/24/21 04:14 PM UTC



Key, Hicks and Notaroš – Journal of Atmospheric and Oceanic Technology, Second Revision, 1 June 2021 

24 
 

 514 

Vazquez-Martin, S., T. Kuhn, and S. Eliasson, 2020: Shape Dependence of Falling Snow 515 

Crystals’ Microphysical Proprties Using an Updated Shape Classification. MDPI Applied 516 

Sciences. 517 

 518 

Zeiler, M.D. and R. Fergus, 2014: Visualizing and understanding convolutional neural networks. 519 

ECCV. 520 

 521 

Zhang, G., S. Luchs, A. Ryzhkov, M. Xue, L. Ryzhkova, and Q. Cao, 2011: Winter Precipitation 522 

Microphysics Characterized by Polarimetric Radar and Video Disdrometer Observations in 523 

Central Oklahoma. J. Appl. Meteor. Climatol., 50, 1558–1570. 524 

 525 

  526 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-20-0189.1.Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 07/24/21 04:14 PM UTC



Key, Hicks and Notaroš – Journal of Atmospheric and Oceanic Technology, Second Revision, 1 June 2021 

25 
 

Tables 527 

Table 1. Category names, counts, and descriptions for the quality and recognizability dataset, a 528 

balanced subset of which was used to train a presorting network using the methods of Hicks and 529 

Notaroš (2019). 530 

Category Name Count Description 

Not-Flakes 7,020 Object other than a snowflake present in 

the image. Examples include sensor 

noise, glare, sky/ground glow, and 

calibration probes.   

Bad-Crop 1,500 Likely snowflake present, but poor 

cropping leaves a substantial portion of 

the snowflake out of the image chip, 

interfering with geometric classification. 

Bad 1,977 Likely snowflake present, but poor 

lighting or focus prevent identification. 

Image chips containing more than one 

disjoint (non-aggregated) snowflake are 

also assigned to this class, regardless of 

image quality.  

Okay 2,796 Focus and lighting are good enough to 

identify coarse flake features, and likely 

geometric class, but are insufficient to 

capture microphysical characteristics.  

Good 1,500 Lighting and focus are good enough to 

resolve microphysical characteristics and 

determine snowflake geometric class. 

 531 

Table 2. Number of examples in each class for the geometric dataset.  532 

Class Name Count 

AG 5,038 

CC 5,021 

GR 5,000 

PC 5,014 

SP 5,126 
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 533 

Table 3. Test accuracy results of 10 independent training runs. Note that training runs 5 and 6 534 

producing test accuracies identical to two decimal places occurred by chance and was verified 535 

not to be a mistake. 536 

Run Test Accuracy 

1 96.56% 

2 96.04% 

3 96.24% 

4 95.88% 

5 96.00% 

6 96.00% 

7 96.20% 

8 96.08% 

9 96.68% 

10 96.64% 

 537 

 538 

  539 
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Figure Caption List 540 

 541 

Figure 1. MASCRAD Snow Field Site at Easton Valley Airport, near Greeley, Colorado, under 542 

the umbrella of CSU-CHILL Radar. MASC (top right), along with other surface instrumentation, 543 

is contained in the 2/3-scaled DFIR.  544 

 545 

Figure 2. Example normalized raw MASC image. Several snowflakes can be seen in addition to 546 

background glare (center left) and subtle ground and sky glow (top and bottom). Note: ground 547 

and sky glow may not be visible in all prints or computer monitor settings.   548 

 549 

Figure 3. Example binary image produced by application of a brightness threshold and 5-pixel 550 

radius to the normalized raw image in Figure 2. Possible snowflake silhouettes are now apparent. 551 

Background glare (center left) was rejected due to exceeding the mean brightness threshold. 552 

Dimmer glare cases are reliably assigned to the Not-Flakes Q&R class.      553 

 554 

Figure 4. Example crops and image chips extracted from the MASC image shown in Figures 2 555 

and 3. (a) Cropped image of a planar crystal. (b) Example crop from (a) after contrast scaling. (c) 556 

Final image chip produced from contrast scaled crop in (b). (d) Cropped image of an aggregate. 557 

(e) Example crop from (d) after contrast scaling. (f) Final image chip produced from contrast 558 

scaled crop in (e).    559 

Figure 5. Examples of image chips in the Not-Flakes quality and recognizability category. A 560 

description of this category is given in Table 1. First row (left to right): a coin; background glare; 561 
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sky glow seen between fence posts; a finger. Second row: a sensor probe; an out of focus sensor 562 

probe; part of a pair of calipers; a string. Third row: a metal ball; part of a mitten; background 563 

glare; amplified sensor noise. Fourth row: background glare; sky glow seen above fence posts; 564 

background glare; background glare. 565 

 566 

Figure 6. Examples of Bad-Crop (first column), Bad (second column), Okay (third column), and 567 

Good (fourth column) image chips. Category descriptions given in Table 1.  568 

 569 

Figure 7. Examples of image chips in the aggregate (AG) class of the final geometric dataset. 570 

All image chips in the final geometric dataset had been automatically categorized into the Good 571 

Q&R category. We placed emphasis on collecting a wide variety of sizes and forms of aggregate 572 

with varying types of constituent particles. 573 

 574 

Figure 8. Examples of image chips in the columnar crystal (CC) class of the final geometric 575 

dataset. All image chips in the final geometric dataset had been automatically categorized into 576 

the Good Q&R category. We included a variety of sizes, forms, and degrees of riming. An 577 

example of a backlit snowflake is shown in row 2, column 2. Such cases were rare but were 578 

included whenever backlighting did not interfere with recognizability.  579 

 580 

Figure 9. Examples of image chips in the graupel (GR) class of the final geometric dataset. All 581 

image chips in the final geometric dataset had been automatically categorized into the Good 582 

Q&R category. We included a variety of textures and sizes. 583 
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Figure 10. Examples of image chips in the planar crystal (PC) class of the final geometric 584 

dataset. All image chips in the final geometric dataset had been automatically categorized into 585 

the Good Q&R category. We included difficult examples like row 1 column 2 where possible to 586 

help differentiate such PC cases from CC examples. 587 

 588 

Figure 11. Examples of image chips in the small particle (SP) class of the final geometric 589 

dataset. All image chips in the final geometric dataset had been automatically categorized into 590 

the Good Q&R category. As small particles are, by definition, particles with features too small to 591 

classify, there is little interesting variety among the collected examples other than various shapes 592 

and degrees of riming. 593 

 594 

Figure 12. Training progress for an example training run using the methods and hyperparameters 595 

described in Section 4.2 596 

 597 

Figure 13. Confusion matrix for the network trained in Figure 12 applied to the test set. A final 598 

accuracy of 96.2% was achieved. AG and PC were the most confused classes. 599 

 600 

Figure 14. Examples of image chips misclassified by a trained network. Misclassified aggregates 601 

(first row), misclassified columnar crystals (second row), misclassified graupel (third row), 602 

misclassified planar crystals (fourth row), and misclassified small particles (fifth row) are shown 603 

with the label assigned by the network overlaid for each image chip.   604 
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Figures 605 

 606 

  607 

Figure 1. MASCRAD Snow Field Site at Easton Valley Airport, near Greeley, Colorado, under 608 

the umbrella of CSU-CHILL Radar. MASC (top right), along with other surface instrumentation, 609 

is contained in the 2/3-scaled DFIR.  610 

  611 
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 612 

 Figure 2. Example normalized raw MASC image. Several snowflakes can be seen in addition to 613 

background glare (center left) and subtle ground and sky glow (top and bottom). Note: ground 614 

and sky glow may not be visible in all prints or computer monitor settings.   615 

 616 
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 617 

Figure 3. Example binary image produced by application of a brightness threshold and 5-pixel 618 

radius to the normalized raw image in Figure 2. Possible snowflake silhouettes are now apparent. 619 

Background glare (center left) was rejected due to exceeding the mean brightness threshold. 620 

Dimmer glare cases are reliably assigned to the Not-Flakes Q&R category.    621 

 622 

  623 
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(a)        (b) 

  

 
(c) 

(d)                       (e) 

 

 
(f) 

Figure 4. Example crops and image chips extracted from the MASC image shown in Figures 2 624 

and 3. (a) Cropped image of a planar crystal. (b) Example crop from (a) after contrast scaling. (c) 625 

Final image chip produced from contrast scaled crop in (b). (d) Cropped image of an aggregate. 626 

(e) Example crop from (d) after contrast scaling. (f) Final image chip produced from contrast 627 

scaled crop in (e).    628 

 629 

 630 

  631 
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Figure 5. Examples of image chips in the Not-Flakes quality and recognizability category. A 632 

description of this category is given in Table 1. First row (left to right): a coin; background glare; 633 

sky glow seen between fence posts; a finger. Second row: a sensor probe; an out of focus sensor 634 

probe; part of a pair of calipers; a string. Third row: a metal ball; part of a mitten; background 635 

glare; amplified sensor noise. Fourth row: background glare; sky glow seen above fence posts; 636 

background glare; background glare.   637 
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Figure 6. Examples of Bad-Crop (first column), Bad (second column), Okay (third column), and 638 

Good (fourth column) image chips. Category descriptions given in Table 1.  639 

 640 

 641 

  642 
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Figure 7. Examples of image chips in the aggregate (AG) class of the final geometric dataset. 643 

All image chips in the final geometric dataset had been automatically categorized into the Good 644 

Q&R category. We placed emphasis on collecting a wide variety of sizes and forms of aggregate 645 

with varying types of constituent particles. 646 

  647 
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Figure 8. Examples of image chips in the columnar crystal (CC) class of the final geometric 648 

dataset. All image chips in the final geometric dataset had been automatically categorized into 649 

the Good Q&R category. We included a variety of sizes, forms, and degrees of riming. An 650 

example of a backlit snowflake is shown in row 2, column 2. Such cases were rare but were 651 

included whenever backlighting did not interfere with recognizability.  652 

  653 
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Figure 9. Examples of image chips in the graupel (GR) class of the final geometric dataset. All 654 

image chips in the final geometric dataset had been automatically categorized into the Good 655 

Q&R category. We included a variety of textures and sizes and also included melting examples 656 

when available. 657 

  658 
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Figure 10. Examples of image chips in the planar crystal (PC) class of the final geometric 659 

dataset. All image chips in the final geometric dataset had been automatically categorized into 660 

the Good Q&R category. We included difficult examples like row 1 column 2 where possible to 661 

help differentiate such PC cases from CC examples. Emphasis was also placed on including 662 

examples that lacked easily identifiable six-fold symmetry. 663 

  664 
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Figure 11. Examples of image chips in the small particle (SP) class of the final geometric 665 

dataset. All image chips in the final geometric dataset had been automatically categorized into 666 

the Good Q&R category. As small particles are, by definition, particles with features too small to 667 

classify, there is little interesting variety among the collected examples other than various shapes 668 

and degrees of riming. 669 

 670 

  671 
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 672 

Figure 12. Training progress for an example training run using the methods and hyperparameters 673 

described in Section 4.2 674 

 675 

  676 
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 677 

Figure 13. Confusion matrix for the network trained in Figure 12 applied to the test set. Each red 678 

or green cell corresponds to a target class (horizontal) and output class (vertical). Row 2, column 679 

1, for instance, shows that 5 image chips in the test set with target class AG were assigned to the 680 

CC class by the trained network, and this corresponded to 0.2% of the entire dataset. The first 681 

five cells of the bottom row show accuracy (green) and error (red) for each target class. Row 6, 682 

column 1, for instance, shows that, of image chips in the test set with target class AG, 94.2% 683 

were classified correctly by the network while 5.8% were classified incorrectly. The first five 684 
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cells of the rightmost column similarly show accuracy and error for each output class. Row 1, 685 

column 6, for instance, shows that, of image chips assigned by the network to the AG class, 686 

96.3% were classified correctly while 3.7% were classified incorrectly. An overall network 687 

accuracy (all classes) of 96.2% is shown in the bottom right cell. AG and PC were the most 688 

confused classes. 689 

 690 

  691 
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Figure 14. Examples of image chips misclassified by a trained network. Misclassified aggregates 692 

(first row), misclassified columnar crystals (second row), misclassified graupel (third row), 693 
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misclassified planar crystals (fourth row), and misclassified small particles (fifth row) are shown 694 

with the label assigned by the network overlaid for each image chip.   695 

 696 
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