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Abstract—In this letter, we demonstrate that adjoint-based a 

posteriori elementwise error contribution estimates can be highly 

correlated in the presence of changing material parameters for 

finite element method scattering problems. Using a simple lossy 

dielectric sphere scattering problem set, we explore trends in 

elementwise a posteriori error contribution estimates as the real 

permittivity of the spherical scatterer is varied. We show that, 

not only do elementwise error contribution estimates for this 

problem remain highly correlated as material parameters vary, 

but that this correlation is stronger than that apparent for 

quantities of interest or gradients of such quantities across the 

same range of dielectric parameters. We also show correlation 

between the mean and standard deviation of elementwise error 

contribution estimate magnitudes. 

 
Index Terms—Computational electromagnetics, adjoint 

methods, error estimation, finite element method, material 

parameters. 

I. INTRODUCTION 

RROR estimation, adaptive refinement, and uncertainty 

quantification are of growing interest in computational 

electromagnetics (CEM). Recently, adjoint-based techniques 

have been demonstrated as effective approaches to these three 

related research areas [1]. For error estimation problems, 

adjoint methods excel at producing accurate, signed error 

estimates for a quantity of interest (QoI), or many, stated as a 

linear or linearized functional on an approximate field solution 

obtained by finite element method (FEM), finite difference 

(FD) method, or method of moments (MoM). Such error 

estimates are typically more accurate than those produced by a 

priori means or application of a norm [2], [3]. Adjoint-based a 

posteriori error estimates can be applied effectively to 

adaptive discretization refinement to dramatically reduce 

solution error in few solves [4], [1].  

Applied to uncertainty quantification, adjoint methods serve 

as an accurate approach to estimating QoI responses to 
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uncertain model parameters. Higher-order parameter sampling 

(HOPS) [5] is the most notable approach. Recent research has 

demonstrated HOPS can approach the accuracy of Monte 

Carlo for FEM scattering problems while using two orders of 

magnitude fewer solves [6], making HOPS a compelling 

technique for accelerating uncertainty quantification 

computations in CEM. For complicated uncertainty 

quantification problems and low error tolerances, HOPS can 

still require tens or hundreds of solves, however, making 

HOPS a large, multi-solve problem.  

We have recently speculated that adaptive refinement using 

adjoint-based a posteriori error estimates may be applicable to 

achieve efficiency gains for large, multi-solve problems like 

HOPS, Monte Carlo simulation, and radar cross section (RCS) 

computation [1], all of which require the solution of many 

similar problems. Naively, we could imagine performing 

adaptive refinement for each sub-problem separately, perhaps 

performing a handful of simulations on adapted discretizations 

to meet an error tolerance for each sub-problem, treating each 

sub-problem as [4] does. However, as the individual sub-

problems composing most multi-solve problems relate closely, 

we contend that so too should their a posteriori elementwise 

error contribution estimates (EECEs). If this is true, then such 

refinement techniques could be iterated across sub-problems, 

rather than for each sub-problem, potentially yielding 

efficiency gains. Accordingly, this letter presents preliminary 

research exploring the relatedness (as measured by Pearson’s 

correlation) between EECEs for a set of lossy dielectric sphere 

FEM scattering problems like those used for HOPS estimates 

in [6]. 

As the scope of this paper is rather narrow and adjoint 

methods are relatively rarely applied in CEM, especially for 

error estimation, there is little related research other than 

literature that has laid the theoretical background for 

development and application of such methods to CEM. Most 

existing goal-oriented error estimation methods in CEM have 

relied on bounding error in a norm or forming a priori 

estimates [7], [8], although we note [9] and [10] which 

leverage the adjoint, with [10], demonstrating that adjoint-

based approaches can far outperform those using an energy 

norm. In general, much prior work concerning uncertainty 

quantification in CEM has applied polynomial chaos, rather 

than adjoint-based methods [11].  
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II. THEORY AND EXAMPLE PROBLEMS 

The theory and derivations for applying the adjoint 

methodology to CEM, including the application of adjoint 

analysis to 3-D FEM scattering problems for a posteriori error 

estimation and adaptive refinement, are described in [4]. The 

details of the double higher order FEM discretization 

methodology can be found in [12]. We use a conformal 

perfectly matched layer (PML) for curvilinear meshes for 

FEM domain termination in scattering problems [13].  

We simulated a set of 41 lossy dielectric sphere scattering 

sub-problems. Each sub-problem consisted of a lossy sphere 2 

wavelengths in diameter encased in a spherical shell of air 0.3 

wavelengths thick. The domain was truncated using a PML 

shell with 0.3 wavelength (λ) thickness surrounded by PEC. A 

single plane wave was used to excite each sub-problem, and 

double-higher-order frequency domain FEM was used to 

generate an approximate field solution for each, as in [6]. All 

discretizations were topologically identical, containing 256 

geometrically quadratic (Ku=Kv=Kw=2 in the notation of [12]) 

hexahedral elements, and used the same second order  

(Nu=Nv=Nw=2 in the notation of [12]) Legendre basis 

described in [12]. Sub-problems varied only in the real 

component of the complex relative permittivity, with values 

ranging from 4.0 to 8.0 and the imaginary component fixed at 

-2.0j. Figure 1 shows the basic geometry of the domain. 

 

 

Fig. 1. Lossy dielectric sphere problem geometry. Using the QoI from [6], a 

posteriori EECEs were computed using higher-order adjoint solutions, as in as 

in [4], for all sub-problems. The double higher order finite element was used 

to solve each problem. These adjoint solutions were also applied to compute a 

QoI value and QoI gradient for each sub-problem using the methods of [6]. 

Note that all QoI values, QoI gradients, and element-wise error contribution 

estimates are complex-valued. 

III. RESULTS AND DISCUSSION 

Solving and computing error estimates for all 41 sub-

problems produced 41 complex valued EECEs for each 

element: one per sub-problem. To perform a meaningful 

analysis of EECE correlation with respect to changing relative 

permittivity, we first ordered these 41 EECE values for each 

element by the real relative permittivity of their associated 

sub-problem. For each of the first 33 (out of 41) EECE values 

per element, we cut a continuous subset of length 9, consisting 

of the chosen (1 out of 33) EECE value and the next 8 in the 

list. Performing this for all 256 elements, we had a total of 

8,448 9-dimensional observations, the dimensions 

corresponding to relative indices between a given sub-problem 

and the 8 next sub problems (ordered by real relative 

permittivity). We similarly sampled 9-dimensional 

observations for real QoI values and QoI gradients. We 

computed correlation coefficients between all 9 dimensions 

for EECEs, QoI values, and QoI gradients, summarized in Fig. 

2.  
 

 
Fig. 2. Correlation coefficients for EECEs (error), QoI values, and QoI 

gradients (dqoi) with respect to relative sub-problem (or equivalently, real 

relative permittivity) index. Error contribution estimates are substantially 

more correlated between related sub-problems than QoI values or QoI 

gradients.  

 

As evident in Fig. 2, correlation coefficients for EECEs 

decay slowly with respect to increased separation between 

sub-problems (relative index), and therefore with respect to 

increasing relative permittivity difference. Correlation 

coefficients for QoI values and QoI gradients decay far more 

quickly, for reference. However, for applications like adaptive 

refinement, we care about values of some refinement indicator 

derived from EECEs, rather than EECE values themselves 

(complex values cannot be ordered consistently). For a simple 

example refinement indicator, we use the magnitude of each 

EECE.  

EECE magnitude has often been used as a simple 

benchmark for adaptive refinement using adjoint-based a 

posteriori error contribution estimates, for instance in [1] or 

[4]. Figure 3 shows EECE magnitudes for all 41 sub-problems 

and all 256 elements, ordered by the mean EECE magnitude 

over all sub-problems for each element. Qualitatively, the 

vertical banding of Fig. 3 suggests how slowly EECE 

magnitudes, and therefore our example refinement heuristic, 

vary over the range of real relative permittivity values tested.  

 

 

Fig. 3. EECE magnitudes normalized by L1-norm of EECE vector for each 

sub-problem. Vertical axis corresponds to sub-problems ordered by real 

relative permittivity. Horizontal axis corresponds to element index sorted by 

mean normalized EECE magnitude (ECM). Mean was evaluated for each 

element over all sub-problems. Note that several elements have nearly 

identical error trends due to symmetry of the problem. 
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However, Fig. 3 also qualitatively suggests something 

potentially troubling: elements with higher mean EECE 

magnitude cover a wider range of EECE magnitude values 

with varying real relative permittivity. Figure 4 presents this 

trend quantitatively, showing EECE magnitude standard 

deviation with respect to EECE magnitude mean. We find the 

two are correlated with Pearson correlation 0.73.  

 

 

Fig. 4. EECE magnitude standard deviation with respect to mean. Standard 

deviation and mean are correlated.  

 

This suggests that EECE correlation for such elements with 

high refinement indicator values may decay more quickly. If 

EECE correlation decays too quickly between related sub-

problems, adaptive refinement methods like those presented in 

[4] may not satisfy desired error tolerances across all sub-

problems. However, in Fig. 5, we suggest this may not be the 

case for existing adaptive refinement schemes. Figure 5, like 

Fig. 2, shows correlation coefficients between EECE values 

for neighboring sub-problems. Unlike Fig. 2, Fig. 5 also shows 

correlation coefficients for the top and bottom 25% of 

  

 

Fig. 5. Correlation coefficients for EECE (error) for all problems, problems in 

the top 25% of EECE magnitude, and problems in the bottom 25% of EECE 

magnitude. Note the difference in vertical axis scale from Fig. 1. Top 25% and 

bottom 25% have similar correlation between related sub-problems.  

elements (as ordered by mean EECE magnitude). Even for 

elements with EECE mean magnitude values within the 

highest 25%, EECE values remain highly correlated over the 

relative index range tested.  

As demonstrated in [4], adaptive refinement approaches can 

reach low tolerances within a few iterations, so the mild 

correlation coefficient decay shown in Fig. 5 is likely 

tolerable, even given increased adaptive refinement 

convergence time due to application across sub-problems.  

IV. CONCLUSION 

Correlation statistics were presented for elementwise error 

contribution estimate values for 41 lossy dielectric sphere 

scattering problems with varying relative permittivity. We 

found that EECE values, in contrast to the QoI values 

themselves, were highly correlated between related sub-

problems, and their correlation coefficients decayed slowly 

with increasing difference in relative permittivity between 

problems. These results suggest that a single adjoint-based a 

posteriori EECE-informed adaptive refinement operation may 

yield a high-quality discretization across sub-problems and 

therefore achieve efficiency gains for multi-solve applications.  
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