
q-bio Summer School!
!

Albuquerque, NM!
July 28 - August 12, 2014
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Welcome



q-bio Welcome and Introductions

• A brief history of q-bio!
• Educational and Professional Goals !
• Coursework!

✴ Course Selection!
✴ Projects and Presentations!
✴ Schedules (Lectures, Breakouts, Student Presentations)!
✴ Software!

• Contacts and Sponsors!
✴ Course Leaders!
✴ Administrative Support!
✴ Sponsors!

• Weekend Activities!
✴ Car Rentals and Trip Ideas.!
✴ Weather and Lightening Safety.!

• Conference Registration and Lodging.!
• Other and Questions.
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QB1 - Stochastic Gene Regulation
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Introduction and Course Overview



Education:!
! B.S. (2000) and M.S. (2002) in Aerospace Engineering,!
! Pennsylvania State University!
!
! Ph.D. (2008) in Mechanical Engineering,!
! University of California at Santa Barbara!
!
! 1st Annual q-bio Summer School (Student, 2007).!
!
Experience:!
! 2008-2010, Director’s Postdoctoral fellow — Los Alamos National Lab!
! 2010-2013, Richard P Feynman Distinguished Postdoctoral Fellow in !
! !     Theory and Computing — Los Alamos National Lab!
! 2014-          Assistant Professor — Colorado State University, !
! ! ! !            Chemical and Biological Engineering 
! ! ! !  
Contact Information: !
! EMAIL: munsky@engr.colostate.edu !
! MOBILE: 805-252-0712
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About me: Brian E Munsky!



Course Outline - Week 1

• Monday, July 28 !
‣ 09:00 - 10:15 — Introduction to stochastic effects in gene regulation (Munsky).!
‣ 14:40 - 17:00 — Crash Course in Stochastic Processes 1 (Flores).!
‣ 19:30 - 20:30 — Introduction to course Projects (Munsky)!
!

• Tuesday, July 29 !
‣ 08:30 - 10:00 — Modeling Evolution of the Myelodysplastic Syndrome (Kimmel)!
‣ 14:40 - 17:00 — Crash Course in Stochastic Processes 2 (Flores)!
‣ 19:30 - 21:00 — Stochastic Simulation Algorithms and other Kinetic Monte Carlo               !

! !        approaches (Munsky)!
!

• Wednesday, July 30!
‣ 08:30 - 10:00 — Stochastic models of stem cell renewal and dedifferentiation in cancer !

! !        (Jilkine)!
‣ 14:40 - 17:00 — Finite State Projection Analyses (Munsky)!
!

• Thursday, July 31 !
‣ 10:30 - 12:00 — TBA (Lidke)!
!

• Friday, August 1!
‣ 14:00 - 17:00 — Parameter/Model Inference using Single-Cell Data (Munsky)

5



• Monday, August 4!
‣ 08:30 - 10:00 — TBA (Ostheimer).!
‣ 10:30 - 12:00 — TBA (Shepherd).!
‣ 14:00 - 17:00 — Partial Least Square Regression (Ostheimer) — or —!

! !        Spectroscopy techniques (Werner)!
!

• Tuesday, August 5!
‣ 10:30 - 12:00 — TBA (Bellesia)!
‣ 14:00 - 17:00 —  Spatial Statistics and emerging experimental/computational tools !

                                  (Shepherd/Wilson) — or —!
! !       TBA (Bellesia)!
!

• Wednesday, August 6!
‣ 08:30 - 10:00 — Computation with Molecular Systems (Klavins).!
‣ 14:40 - 17:00 — Programming Multicellular Systems with gro (Klavins)!
!

• Thursday, August 7!
‣ 08:30 - 10:00 —  Quantitative tools to study signaling and gene regulation in single !

! !         cells (Neuert)!
‣ 14:40 - 17:00 — Identifying gene regulatory models through variations in mRNA !

! !        expression. (Neuert)
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Course Outline - Week 2



Stochastic Biochemistry: Theme Overview

• Origins of Stochastic Phenomena       

• Consequences of Stochastic Phenomena 

• Observations of Stochastic Phenomena 

• The Markov Description of Stochastic Biochemical Processes



Small numbers of important molecules
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protein • Proteins build cellular structures, pass cellular 
information and regulate cellular activities. 
Variable copy numbers (~0-100,000/cell).

DNA • DNA contains all of the genetic 
instructions. Extremely low copy 
numbers (~0-5/cell).

• mRNA transfer instructions for creating 
specific proteins. Low copy numbers 
(~0-100/cell).

Transcription

mRNA



Spatial fluctuations of cellular constituents

Thermal fluctuations can 
lead to randomness in 
times between reactions.
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Competition of exclusive events

Different reactions 
lead to different 
consequences.!
!
A molecular race 
may define the final 
outcome.
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“Extrinsic” fluctuations

Changes in temperature, nutrients, radiation, chemicals, 
pressure, etc...!
!
Fluctuations of upstream genes, transcriptional or 
translational machinery (polymerases, ribosomes), 
intercellular signals.!
!
Unknown elements left out from the current model (i.e., 
everything else).!
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Stochastic Biochemistry: Theme Overview

• Origins of Stochastic Phenomena 

• Consequences of Stochastic Phenomena 

• Observations of Stochastic Phenomena 

• The Markov Description of Stochastic Biochemical Processes



Stochastic Effects Lead to Phenotypical Differences
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Fingerprints of identical twins Cc, the first cloned cat and her 
genetic mother, Rainbow

J. Raser and E. O’Shea,  “Noise in Gene Expression: 
Origins, Consequences, and Control”, Science, 2005  



Signal Amplification and Damping
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•  Stochastic mean value different from deterministic steady state!
•  Noise enhances signal! 

Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, “Stochastic Focusing: 
Fluctuation-enhansed sensitivity of intracellular regulation” PNAS 2000

stochastic

deterministic
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Noise Induced Oscillations

Circadian Rhythms

Vilar, Kueh, Barkai, Leibler, PNAS 2002

• Oscillations disappear from deterministic model after a small change in one parameter.!
•These oscillations may be restored by noise.!
•Oscillation Regularity is altered by tuning the noise level [El-Samad, Khammash]

15



!Same genetic code.

Highly infectious 
phenotype.

Harmless 
phenotype.

Same chemical environment.

Random reactions can lead to 
vastly different results!

16

Stochastic Switches



!Same genetic code.

Highly infectious 
phenotype.

Harmless 
phenotype.

Same chemical environment.

Random reactions can lead to 
vastly different results!
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Stochastic Switches

★ What will happen? 
★ How frequently?      
★  Why does it happen? 
★ Under what conditions? 

★ What advantages does it 
provide? 

★ How can we prevent it? 
★ How can we cause it?

For these systems, we need  
single cell analyses to answer: 



Stochastic Biochemistry: Theme Overview

• Origins of Stochastic Phenomena

• Consequences of Stochastic Phenomena

• Observations of Stochastic Phenomena

• The Markov Description of Stochastic Biochemical Processes



!Same genetic code.

Highly infectious 
phenotype.

Harmless 
phenotype.

Same chemical environment.

Random reactions can lead to 
vastly different results!
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The Importance of Single Cell Analyses

Fluorescent labels and specific 
genetic mutations make it possible 
to observe the dynamics of single-

cell heterogeneity.



“Intrinsic” versus “Extrinsic” Noise

• Variability is present and can be measured

Elowitz et al, “Stochastic Gene Expression in a Single Cell”, Science 2002

• Inserted two reporters on the chromosome (cfp, yfp)!
• Each was controlled by the same promoter!
• Expression of cfp shown in green, yfp in red

Low Intrinsic Noise

High Intrinsic Noise
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Flow Cytometry 
• Measure expression with fluorescent 

proteins or antibody labels for thousands 
of cells per second.

0 µM Iptg 1 µM Iptg0.1 µM Iptg 5 µM Iptg 10 µM Iptg

30 µM Iptg 40 µM Iptg 50 µM Iptg 70 µM Iptg 100 µM Iptg

Time Lapse Fluorescence Microscopy 
• Measure spatial and temporal properties 

of fluorescent protein responses.

Experimental tools for single-cell analyses

Lou, et al, Nature Biotechnology, 2012

(Neuert, Munsky, et al, 2013)
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• Endogenous mRNA’s can be labeled 
with single molecule Fluorescence in 
situ Hybridization (smFISH--Femino, 
1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.

48 (20bp) probes/mRNA, 
Tetramethylrhodamine (TMR )

Single-Molecule FISH (smFISH)

22(Neuert, Munsky, et al, 2013)



• Endogenous mRNA’s can be labeled 
with single molecule Fluorescence in 
situ Hybridization (smFISH--Femino, 
1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.


• Spatial localization enable inter- and 
intra-nuclear detection.
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Single-Molecule FISH (smFISH)

(Neuert, Munsky, et al, 2013)



• Endogenous mRNA’s can be labeled 
with single molecule Fluorescence in 
situ Hybridization (smFISH--Femino, 
1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.


• Spatial localization enable inter- and 
intra-nuclear detection.


• Fast time resolution (1-2 min).
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Single-Molecule FISH (smFISH)

(Neuert, Munsky, et al, 2013)



• Endogenous mRNA’s can be labeled 
with single molecule Fluorescence in 
situ Hybridization (smFISH--Femino, 
1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.


• Spatial localization enable inter- and 
intra-nuclear detection.


• Fast time resolution (1-2 min).

Statistics are repeatable and therefore predictable!

2 Experimental replicates
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Single-Molecule FISH (smFISH)

smFISH has been applied to many different 
RNA in many different organisms 
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STl1 mRNA in 
Saccharomyces 
cerevisiae (budding yeast)  !
-G. Neuert (MIT)

IL1a mRNA in THP1 cells!
-D. Shepherd (LANL)

Ysr35 sRNA in Yersinia 
Pseudotuberculosis (339nt)!
-D. Shepherd (LANL)

2	  µm

2 µm

c-Fos mRNA (green) and p-
p38 kinase (red) in U2OS 
cells!
-A. Senecal (CNRS)

Senecal et al, Figure 4
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Stochastic Biochemistry: Theme Overview

• Origins of Stochastic Phenomena

• Consequences of Stochastic Phenomena

• Observations of Stochastic Phenomena

• The Markov Description of Stochastic Biochemical Processes



[10, 15]

# species 1 # species 2

[11, 15]

[11, 14] [12, 14]

A Markov description of single-cell gene regulation

• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:
x ∈ Z

N

28



[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]
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A Markov description of single-cell gene regulation

• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another.
• These reactions are random, others could have occurred:

x ∈ Z
N



Or others...

30

A Markov description of single-cell gene regulation

What is the probability for each state at all times? 
What is the mean level of each species? The 

variances and covariances? 
 What would trajectories look like? Auto- or cross-

correlations?



Reaction Stoichiometry

31

• The Stoichiometric vector, s, refers to the relative change in the 
population vector after a reaction.	


• There may be many different reactions for a given stoichiometry.

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

S1 → S1 + S1

S2 → S2 + S1

∅ → S1

s1 = [1, 0]T

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

S2 → S2 + S2

S1 → S1 + S2

∅ → S2

s3 = [0, 1]T

S2 → S1

S1 + S2 → S1 + S1

S2 + S2 → S1 + S2

s4 = [1,−1]T



Reaction Propensities

• The propensity,    , of a reaction is its rate.!
•          is the probability that the      reaction will occur in a 

time step of length    .!
• Typically, propensities depend only upon reactant 

populations. 

32

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

w

wµdt µ
th

dt

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T w2(x1, x2)

k1x2(x1 − 1)/2
k2x1x2

k3x1

k1x1(x1 � 1)/2



The (Chemical) Master Equation

• The CME Description

• Example: Transcription as a Birth-Death Process.

• Kinetic Monte Carlo Approaches

• Finite State Projection Approaches

• Moment Computations See notes online



p(x, t + dt)� p(x, t) = �p(x, t)
�

k

wk (x)dt +
�

k

p(x� sk , t)wk (x)dt +O(dt2)

Rk fires once
Rk reaction
away from x

at x No reaction fires

more than one
reaction in dt

The Chemical Master Equation 
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p(x, t + dt) = p(x, t)

�

⇤1�
⇧

k

wk(x)dt +O(dt2)

⇥

⌅

+
⇧

k

p(x� sk, t)

�

⇤
⇧

k

wk(x)dt +O(dt2)

⇥

⌅ +O(dt2)

Prob. that no reactions fire in [t, t + dt] = 1��
k wk(x)dt +O(dt2)

Prob. that reaction Rk fires once in [t, t + dt] = wk(x)dt +O(dt2)
Prob. that more than one reaction fires in [t, t + dt] =O(dt2)

The Chemical Master Equation

dp(x, t)

dt
= �p(x, t)

�

k

wk(x) +
�

k

p(x� sk, t)wk(x)



The (Chemical) Master Equation

• The CME Description

• Example: Transcription as a Birth-Death Process.

• Kinetic Monte Carlo Approaches

• Finite State Projection Approaches

• Moment Computations See notes online



Transcription: Probability a single mRNA

is transcribed in time dt is kdt

�

k

Degradation: Probability a single mRNA
is degraded in time dt is n�dt

RNA Copy Number as a Random Variable

36

φ

DNA

mRNA mRNA copy number N(t) is a random variable

N n� 10 1 2 n n + 1....

k k k k

(n + 1)�n��

....

k k

(n� 1)�2� 3�
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n� 10 1 2 n n + 1..

k k k k

(n + 1)�n��

..

k k

(n� 1)�2� 3�

Find p(n, t), the probability that N(t) = n.

P (n, t + dt) = P (n� 1, t) · kdt

+ P (n + 1, t) · (n + 1)�dt

+ P (n, t) · (1� kdt)(1� n�dt)

Prob.{N(t) = n� 1 and mRNA created in [t,t+dt)}

Prob.{N(t) = n + 1 and mRNA degraded in [t,t+dt)}

Prob.{N(t) = n and
mRNA not created nor degraded in [t,t+dt)}

P (n, t + dt)� P (n, t) = P (n� 1, t)kdt + P (n + 1, t)(n + 1)�dt� P (n, t)(k + n�)dt

+O(dt2)

Dividing by dt and taking the limit as dt� 0

d

dt
P (n, t) = kP (n� 1, t) + (n + 1)�P (n + 1, t)� (k + n�)P (n, t)

The Chemical Master Equation

Key Question:



We look for the stationary distribution

From the Master Equation ...

n = 0 kp(0) = �p(1)

...

mRNA Stationary Distribution

38

P (n, t) = p(n) �t

(k + n�)p(n) = kp(n� 1) + (n + 1)�p(n + 1)

The stationary solution satisfies: d
dtP (n, t) = 0

kp(1) = 2�p(2)

n = 2 kp(2) = 3�p(3)

n = 1

kp(n� 1) = n� p(n)



mRNA Stationary Distribution
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kp(n� 1) = n� p(n) We can express p(n) as a function of p(0):

p(n) = e�aan

n!

We can solve for p(0) using the fact
��

n=0
p(n) = 1

�
Poisson Distribution

1 =
�⇤

n=0

�
k

�

⇥n 1

n!
p(0)

= ek/� p(0) p(0) = e�k/�

a =
k

�

p(n) =
k

�

1

n
p(n� 1)

=

 
k

�

!2 1

n

1

n� 1
p(n� 2)

...

=

 
k

�

!n 1

n!
p(0)
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We can compute the mean and variance of the Poisson RV N̄ with
density p(n) = e�aan

n! :

µ = E[N̄ ] =
⇥�

n=0
np(n) = e�a

⇥�

n=0
n

an

n!
= a

The second moment

E[N̄2] =
⇥�

n=0
n2p(n) = a2 + a

Therefore,

⇥2 = E[N̄2]� E[N̄ ]2 = a

mean = variance = a

The coe�cient of variation Cv = ⇥/µ is

Cv =
1
⇤

a
=

1
⇤

µ



Relative noise decreases as system size increases.

41



The (Chemical) Master Equation

• The CME Description

• Example: Transcription as a Birth-Death Process.

• Kinetic Monte Carlo Approaches

• Finite State Projection Approaches

• Moment Computations See notes online



Kinetic Monte Carlo Algorithms

43

At each step, we ask two questions:!
!

When is the next jump?!
Where will that jump lead?



Kinetic Monte-Carlo Simulation Methods
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• Stochastic Simulation Algorithm  
• D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977) 
• M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000) 

• τ leaping 
• D. Gillespie, J. Chem. Phys. 115, 1716 (2001); 119, 8229 (2003) 
• M. Rathinam et al., J. Chem. Phys. 119, 12784 (2003) 
• T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004) 
• A. Chatterjee, et al.  J. Chem. Phys. 122, 054104 (2005)  
• Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. 123, 054104 (2005) 

• Chemical Langevin Equations 
• D. Gillespie, J. Chem. Phys. 113, 1716 (2000) 

• System Partitioning Methods 
• C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003) 
• Y. Cao et al., J. Chem. Phys. 122, 014116 (2005) 

• Hybrid Methods 
• E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002) 
• H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005)



Kinetic Monte Carlo Methods

• Exponential waiting times between events 

• Stochastic Simulation Algorithm

• Tau leaping

• Chemical Langevin (Stochastic Differential Equation)

• System Partitioning Methods

• Relationship between stochastic and deterministic trajectories

Online notes to be 
covered in this 
evening’s lab



The exponential is the only !
continuous r.v. with this property. 

• We have assumed that the system is fully described by the 
population vectors.!

• If no reaction occurs, then nothing will have changed.  !
• Waiting times must be memoryless random variables.!
!
!
!
!

• Wherever we cut and scale the distribution, it looks the same.
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cut

When is the next jump?

f(t� ⌧)
R1
⌧ f(t̂)dt̂

=
we�w(t�⌧)

e�w⌧
= we�w(t) = f(t)



• To generate an exponentially distributed random number, all 
we need is a uniform random number generator.!
!

• Find the cumulative distribution,!
!

• Generate uniform random number, !
!

• Find intersection where              :!
!
!

• This is the time of the next reaction.

47

time (s)C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 1 − exp(−λt)

F (t) = 1 − exp(−λt)

F (t) = r

r ∈ U[0, 1]

τ =
1

λ
log

1

1 − r

When is the next jump?



Kinetic Monte Carlo Methods

• Exponential waiting times between events 

• Stochastic Simulation Algorithm

• Tau leaping

• Chemical Langevin (Stochastic Differential Equation)

• System Partitioning Methods

• Relationship between stochastic and deterministic trajectories

Online notes to be 
covered in this 
evening’s lab



Stochastic Simulation Algorithm

49

s2

Step 1.  Generate the time of the 
next reaction. 

Step 2.  Decide which reaction 
has occurred. 
!
Step 3. Update current Time (t=t
+τ) and State (x = x+sk).

t = ti + τt = ti



Possible SSA methods:

• First Reaction Method (Gillespie ‘77)

• Next Reaction Method (Gibson and Bruck ‘00) 

• Direct Method (Gillespie ‘77) 



�µ =
1

wµ(x)
log

1
rµ

The First Reaction Method (FRM)

51

s2

Step 1.  Generate the time of the 
next reaction of each type. 
The time until the next reaction is a random 
variable of exponential distribution: !!!
To generate each next reaction time, generate r1 
from a uniform distribution on (0,1) and use the 
equation:

Step 2.  Decide which reaction has occurred. 
This is simply the reaction with the smallest       : !!!
Step 3. Update current Time (t=t+    ) and State (x = x+sk).

t = ti + τ

k = arg

{

min
µ∈{0,...,M}

τµ

}

τµ

τk

P⇥µ(t) = wµ(x)e�wµ(x)t

In the FRM each reaction requires M rv’s.



The First Reaction Method SSA in Matlab.

52

clear all	
t=0;tstop = 2000;                                  %% Specify initial and final times	
x = [0; 0];                                        %% Specify initial conditions	
S = [1 -1 0  0; 0  0 1 -1];                        %% Specify stoichiometry	
while t<tstop     	
    w = [10; 1*x(1); 10*x(1); 1*x(2)];            %% Specify Propensity functions	
	   tpos = 1./w.*log(1./rand(4,1));              % possible times until first reaction	  
    [tpos,i]=min(tpos);                           % find which is first reaction	
    t=t+tpos;	
    if t<=t_stop	
	 	     x = x+S(:,i);                             % update the configuration	    
	   end	  
end



Possible SSA methods:

• First Reaction Method (Gillespie ‘77)

• Next Reaction Method (Gibson and Bruck ‘00) 

• Direct Method (Gillespie ‘77) 



The Next Reaction Method (NRM)

• In the FRM, we generate times,        , for all M reactions and 
choose the reaction, k, with the smallest time,     .!

• Only a few species will change population as a result of this 
reaction--the rest will remain constant.!

• For most reactions, the propensity functions will remain 
constant.!
✴ For these, the times can be reused in the subsequent step to 

find the next reaction:                           .!
• When there are many different species and reactions, this NRM 

approach can be done with far fewer random number than the 
FRM.!

• Particularly useful for compartmental or Reaction-Diffusion 
processes.

54

τk

{τµ}

{τµ} → {τµ − τk}



Possible SSA methods:

• First Reaction Method (Gillespie ‘77)

• Next Reaction Method (Gibson and Bruck ‘00) 

• Direct Method (Gillespie ‘77) 



Minimum of two Exponential Random Variables

Let                      be a set of exponentially distributed 
random variables: !
The minimum of        is an exponentially distributed 
random variable given by:!
!
The argument, k, of this distribution is also a random 
variable with distribution:!

56

{τ1, τ2, . . . , τM}

{τµ}

τµ ∈ EXP (wµ)

P (k = µ) =
wµ

|w|
1

min
µ∈{0,...,M}

τµ ∈ EXP (|w|
1
)

In the DM, we only need to generate 2 rv’s.



The Direct Method (DM)

57

s2

Step 1.  Generate the time of the 
next reaction. 
The time until the next reaction is a random 
variable of exponential distribution: !!!!
To generate the next reaction time, generate r1 
from a uniform distribution on (0,1) and use the 
equation:

Step 2.  Decide which reaction has occurred. 
To obtain a realization of which reaction will occur, generate  
a second uniform random number, r2, and find the smallest  
k such that: 

!
Step 3. Update current Time (t=t+τ) and State (x = x+sk).

t = ti + τ

τ =
1

|w|
1

log
1

r1

k−1∑

µ=1

wµ(x) ≤ r2 |w|
1
≤

k∑

µ=1

wµ(x)

P� (t) = |w(x)|1e�|w(x)|1t



The Direct Method (SSA) in Matlab.
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clear all	
t=0;tstop = 2000;                                 %% Specify initial and final times	
x = [0; 0];                                       %% Specify initial conditions	
S = [1 -1 0  0; 0  0 1 -1];                       %% Specify stoichiometry	
while t<tstop     	
    w = [10; 1*x(1); 10*x(1); 1*x(2)];   		 	    %% Specify Propensity functions	     
    w0 = sum(w);                               	  %% Compute the sum of the prop. functions 	  
	   t = t+1/w0*log(1/rand);                       %% Update time of next reaction	  
    if t<=t_stop	
	     r2w0=rand*w0;               %% generate second random number and multiply by prop. sum         	  
	 	   i=1;                        %% initialize reaction counter	    
	 	   while sum(w(1:i))<r2w0             % increment counter until sum(w(1:i)) exceeds r2w0	    
	 	 	   i=i+1;	      
	 	   end	    
	 	   x = x+S(:,i);                                 % update the configuration	    
	  end	  
end	



Kinetic Monte Carlo Methods

• Exponential waiting times between events 

• Stochastic Simulation Algorithm

• Tau leaping

• Chemical Langevin (Stochastic Differential Equation)

• System Partitioning Methods

• Relationship between stochastic and deterministic trajectories

Online notes to be 
covered in this 
evening’s lab



•  τ-leaping 
•D. Gillespie, J. Chem. Phys. 115, 1716 (2001) 
•D. Gillespie, L. Petzold, J. Chem. Phys. 119, 8229 (2003) 
•M. Rathinam et al., J. Chem. Phys. 119, 12784 (2003) 
•T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004) 
•Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. 123, 
054104 (2005)



Step 0.  Specify length of each time step, τ. 

 Assume that all propensity functions are constant over  
the time interval (t,t+τ). 

 The number of times each reaction will fire is a  
Poisson* random number with mean wµτ: 

!
Step 1. For each µ, generate kµ. 

Step 2. Update the time: 

 Update the state: 

  

t = t + τ

τ Leaping

x = x +

M∑

µ=1

kµsµ

Pkµ(n) =
[wµ(x)� ]n

n!
ewµ(x)⇥



τ Leaping

s2

t = ti +τt = ti

The number of times each reaction will fire is a Poisson random 
number with mean wµτ: 
Step 1. For each µ, generate kµ.	


Step 2. Update the state: 
     
            Update the time:  
  

Update Time

t = t + τ

x = x +

M∑

µ=1

kµsµ

k1 = 4; s1 = [0, 1]T

k3 = 3; s1 = [0,−1]T
k2 = 2; s1 = [−1, 1]T

k4 = 4; s1 = [1,−1]T

Pkµ(n) =
[wµ(x)� ]n

n!
ewµ(x)⇥



Limitations of τ leaping
• For many situations τ leaping significantly speeds up 

the Monte Carlo simulation, but: 

– Poisson r.v.’s are unbounded 

– Propensity functions may change dramatically over 
small time intervals.  

– May result in negative populations.

Note that these concerns are most important when the population of 
some species are very small. 

Precisely the circumstance where stochastic models are most important!



Kinetic Monte Carlo Methods
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• Tau leaping

• Chemical Langevin (Stochastic Differential Equation)
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Comparison of step updates for 
SSA, tau-leap, Langevin and ODE’s	


• In SSA, every step has exactly one update.	

• tau leaping has a Poisson number of updates per step.	

• For large numbers of reactions, replace the Poisson distribution 

with a normal distribution (same mean and variance), which are 
cheaper to generate -- this is the chemical Langevin equation.	


• For very large numbers of reactions, the update number 
approaches a Delta distribution -- this is an ODE!
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• System Partitioning Methods 
• Fast--Slow Partitions 

•C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003) 
•Y. Cao et al., J. Chem. Phys. 122, 014116 (2005) 

• Continuous--Discrete Partitions 

•E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002) 
•H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005)



!

Separate into “fast” and “slow” 
partitions. 

Assume that the “fast” 
partitions reach probabilistic 
equilibrium before a slow 
reaction occurs.

Fast--Slow partitions.
PSS

68



PSS

Use the fast sets’ steady state probability distributions to scale 
the propensity functions of the slow reactions. 

Results in a vector of average propensity functions,     , for the 
slow reactions.

Slow Reaction  
Propensities

Average Slow  
Reaction Propensities

X =

69

Fast--Slow partitions.

⎡

⎢

⎢

⎢

⎣

wµ(x1)
wµ(x2)
wµ(x3)

...

⎤

⎥

⎥

⎥

⎦

w̄µ, for µ = {1, 2, . . . , M}

w̄



PSS

70

The projection to the slow 
manifold results in a new 
lower dimensional Markov 
chain.	

!
This is simulated with SSA.

Fast--Slow partitions.



• In some systems, there are great differences in scale:	


• Large populations (continuous)	


• Small populations (discrete)	


• All discrete models take too long.	


• All continuous models are inaccurate.	


• Hybrid models are necessary.

71

Continuous--Discrete partitions.



Separate into “continuous” and “discrete” 
partitions.

τ

Simulate the continuous part 
with ordinary or stochastic 
differential equations.	
!
Choose uniform rv, r.	
!
Numerically integrate propensity 
functions until:	

!
!
!!
Choose next discrete reaction.

co
nt

in
uo

us

discrete

− log r

∫ t0+τ

t0

M∑
µ=1

wµ(x(t))dt = − log r
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Relationship of Stochastic (X) and 
Deterministic (  ) Descriptions

d�A

dt
= �k1�A�B � k2�A

d�A

dt
= �k1�A�B + k2�A

d�A

dt
= k1�A�B

Example:

k1

k2

or

�

A + B �⇥ C

A �⇥ B

d�

dt
= Sf(�) where

S =

⇤

⌥⇧
�1 �1
�1 1
1 0

⌅

�⌃ , f(�) =

�
k1�A�B

k2�A

⇥B

C

Given N species S1, . . . ,SN and M elementary reactions. Let �i := [Si].

A deterministic description can be obtained from mass-action kinetics:

d�

dt
= Sf(�)

where f(·) is at most a second order monomial. It depends on the type
of reactions and their rates.



Define X⇥(t) = X(t)
⇥ .

Question: How does X⇥(t) relate to �(t)?

Fact: Let �(t) be the deterministic solution to the reaction rate equa-
tions

d�

dt
= Sf(�), �(0) = �0.

Let X⇥(t) be the stochastic representation of the same chemical sys-
tems with X⇥(0) = �0. Then for every t ⇤ 0:

lim
t⌅⇧

sup
s⇥t

���X⇥(s)��(s)
��� = 0 a.s.

�

Relationship of Stochastic (X) and 
Deterministic (  ) Descriptions�



�, or X� = X/�

k(x)

�0x
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0
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0
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100
� =1

� = 10
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0

50

100
� =3

0 10 20 30 40 50
0

50

100�
,

or
X

�
=

X
/�

time(s)

w1(X) = ��0X/� = �0X

w2(X) = �
�

20 + 40
(X/�)10

4010 + (X/�)10

⇥

Stochastic 

w1(⇥) = �0x

w1(�) =
�

20 + 40
�10

4010 + �10

⇥

Deterministic 
2



x

Using Simulations to Find Distributions
• The SSA does an excellent job of producing possible trajectories.

• Sometimes one might want to compute probability distributions at certain 

times.

• This is done in the SSA by binning results of several trajectories.

x
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After      tosses 
there is still an 
error of about	

              .      

Convergence of KMC Methods

78

•To get more accurate distributions, one needs more SSA runs.	


•Unfortunately, the convergence rate of any Monte Carlo algorithm is 
fundamentally limited:            	


•If very high precision is required, then MC methods will be very 
inefficient.

10
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Convergence for Coin Toss
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√

n
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The (Chemical) Master Equation

• The CME Description

• Example: Transcription as a Birth-Death Process.

• Kinetic Monte Carlo Approaches

• Finite State Projection Approaches

• Moment Computations See notes online



The Full System

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

Full Master Equation
[

ṖJ

ṖJ′

]

=

[

AJ AJJ′

AJ′J AJ′

] [

PJ(t)
PJ′(t)

]

Dimension =                  = Infinite         #(J) + #(J ′)

The FSP Theorem 
(Munsky, JCP ‘06)

∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(t)
PJ′

]

−

[

PFSP
J

(t)
0

]
∣

∣

∣

∣

∣

∣

∣

∣

1

= ε(t)

PJ(t) ≥ P
FSP
J (t) and

[

ṖFSP
J

ε̇

]

=

[

AJ 0

−1T AJ 0

] [

PFSP
J

(t)
ε(t)

]

The Projected System (FSP)

x1 x2 x3

x5 x6 x7

Dimension =           = 7         

FSP Master Equation

#(J) + 1

ε(t)

The finite state projection approach

80
Download software and tutorial available at: 
 http://www.engr.colostate.edu/~munsky/Software.html



Download software and tutorial available at: 
 http://www.engr.colostate.edu/~munsky/Software.html

FSP -- a quick and easy proof

split full probability into portions that ‘stay’ or ‘leave’ J:

compute approximation error: ����

����


PJ(t)
PJ 0(t)

�
�


PFSP

J (t)
0

�����

����
1

= ||Pleave(t)||1 = �(t)


PJ(t)
PJ 0(t)

�
=


PJ(t)
PJ 0(t)

�

stay

+


PJ(t)
PJ 0(t)

�

leave

apply FSP definition:
PJ(t)
PJ 0(t)

�
=


PFSP

J (t)
0

�
+


PJ(t)
PJ 0(t)

�

leave

81



The FSP Algorithm

82

Step 1: 	
Choose initial projection space, XJ0
.

Inputs: 
Initial Conditions, System Parameters,

Final time (tf ), Allowable error (εmax)

Step 2: 	

error, εi(tf ).
Use projection XJi

to find corresponding

Step 3: 	
If εi(tf ) ≤ εmax, Stop.

Step 4: 	
Expand projection, XJi+1
⊃ XJi

,
Increment i and return to Step 2.

PFSP
Ji

(tf ) approximates P(tf ) to within εmax.



FSP - Expanding the projection space
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

ε(t)

By using multiple sinks, one can determine how the 
probability measure exits      . XJ

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

From which state?

ε1(t)

ε3(t)

Which Reaction Leaves      ?XJ

ε3(t)

 ε7(t) ε6(t)



Finite State Projection Analyses

• Forming the Infinitesimal Generator

• Interpreting and Using FSP Sinks

• Advantages and Limitations of the FSP

• System Reductions to Improve FSP Efficiency

• Examples for Using the FSP

Online notes to be 
covered in 
tomorrows lab



A =

⎡

⎢

⎢

⎣

−w1 0 w4 0

w1 −w2 w5 0

0 0 −w4 − w5 w3

0 w2 0 −w3

⎤

⎥

⎥

⎦

Forming the Infinitesimal Generator

A has one row/column 
for each state.!
!
Each transition,             , 
contributes to A in two 
locations: !
                 goes in the 
diagonal element !
                 goes in the 
off-diagonal element 
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1 2

3 4

xi → xj

−wµ(xi)

+wµ(xi)

Ai,i

Aj,i

w1

w2

w3

w4
w5



A =

⎡

⎢

⎢

⎣

−w1 0 w4 0

w1 −w2 w5 0

0 0 −w4 − w5 w3

0 w2 0 −w3

⎤

⎥

⎥

⎦

Applying the Finite State Projection

Select the states to keep.!

Find the corresponding 
projection matrix:!

Collapse remaining states 
into a single absorbing state
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1 2

3 4

w1

w2w4
w5

A[1,3] =

[

−w1 w4

0 −w4 − w5

]

G

A
FSP
[1,3] =

⎡

⎣

−w1 w4 0

0 −w4 − w5 0

w1 w5 0

⎤

⎦

This is the generator for 
the new Markov chain.



Finite State Projection Analyses

• Forming the Infinitesimal Generator

• Interpreting and Using FSP Sinks

• Advantages and Limitations of the FSP

• System Reductions to Improve FSP Efficiency

• Examples for Using the FSP



A Test...
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x1 x2 x3

x5 x6 x7

ε1(t)

ε2(t)

What do          and          mean?ε2(t)ε1(t)



• In the original FSP,         is the amount of the probability measure 
that exits the projection region       .!

• Median exit time:  !
• In this form         gives information as to when the system       

exits       , but not how.

Interpreting the FSP Error Sink
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

ε(t)

ε(t)

XJ

t50 = t, s.t. ε(t) = 0.5

ε(t)

XJ



• By using multiple sinks, one can determine how the probability 
measure exits       . 

Using Multiple Sink to Track FSP Expansion
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

ε(t)

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

x1 x2 x3

x5 x6 x7

From which state?

ε1(t)

ε3(t)

Which Reaction Leaves       ?XJ

ε3(t)

ε7(t)ε6(t)

XJ



• Multiple sinks can also be used to 
get precise analyses of complex 
switches:!

• Does the cell reach phenotype A 
before phenotype B?!

• How long until the cell exhibits 
phenotype A and then B?!

• What is the likelihood of an 
observed trajectory from A to B 
and back to A at specific time 
points?

Using Multiple Sinks to Analyze Switch Decisions

91
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Advantages of the FSP Approach

• Deterministic.!
✴ Every run of the FSP yields the same result.!
✴ Enables easier comparisons of different systems 

(sensitivity analysis and system identification).!
• Provides accuracy guarantees.!

✴ Can be made as precise as required.!
✴ Allows for analysis of rare events.!

• Does not depend upon initial conditions.!
• Is open to many subsequent model reductions.
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Limitations of the FSP Approach

• Numerical stiffness may lead to computational 
inefficiency.!

• Systems may become very large as distributions cover 
large regions of the configuration space.!
✴ Compact distributions may drift over time.!
✴ Dilute distributions may spread over large regions.!
✴ Dimension grows exponentially with the number of 

species.!
• For these problems, the original FSP may not suffice,!

✴ BUT, with additional model reductions and systematic 
techniques, many of these problems may be alleviated. 
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Finite State Projection Analyses
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Reductions to the FSP

• Model Reduction Through Observability

• Time Interval Discretization 

• Slow Manifold Projection

• Coarse Meshes for the CME



• Often one is not interested in the entire probability 
distribution. !

• Instead one may wish only to estimate:!
✴  a statistical summary of the distribution (e.g. means, 

variances, or higher moments)!
✴  probability of certain traits (switch rate, extinction, 

specific trajectories, etc…)!
• In each of these cases, one can define an output y(t):
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Ṗ(t) = AP(t)

y(t) = CP(t)

Using Input & Output Relations for FSP Reduction.

Munsky/Khammash, CDC, 2006



• Begin with a Full Integer Lattice Description of the 
System States.

98

Using Input & Output Relations for FSP Reduction.

Munsky/Khammash, CDC, 2006



• Remove Unreachable States and Aggregate the 
Unobservable States.
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Using Input & Output Relations for FSP Reduction.

Munsky/Khammash, CDC, 2006



We now have a solvable 
approximation, for which 
the FSP gives bounds on 
the approximation’s 
accuracy.!
!
Even stronger reductions 
can be achieved using 
balanced truncations.
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Using Input & Output Relations for FSP Reduction.

Munsky/Khammash, CDC, 2006



Reductions to the FSP

• Model Reduction Through Observability

• Time Interval Discretization 

• Slow Manifold Projection

• Coarse Meshes for the CME



Time Interval Discretization for the FSP

• For many systems, the distribution 
may drift over time.!

• At any one time, the distribution 
may have a limited support, but...!

• The FSP solution must include all 
intermediate configurations.!

• This may lead to an exorbitantly 
large system of ODEs.

τ

2τ

3τ

4τ

5τ

0

102

Munsky et al, J. Comp. Phys., 2007



Time Interval Discretization for the FSP

• Instead:!
✴ Discretize the time 

interval into smaller 
steps and solve a 
separate projection for 
each interval.

Munsky et al, J. Comp. Phys., 2007



Time Interval Discretization for the FSP

• Instead:!
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separate projection for 
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Time Interval Discretization for the FSP

• Instead:!
✴ Discretize the time 

interval into smaller 
steps and solve a 
separate projection for 
each interval.

Munsky et al, J. Comp. Phys., 2007



Time Interval Discretization for the FSP

• Instead:!
✴ Discretize the time 

interval into smaller 
steps and solve a 
separate projection for 
each interval.

Munsky et al, J. Comp. Phys., 2007



Time Interval Discretization for the FSP

• Solving many small systems can 
be much faster than solving a 
single large system.!

• Control the error at each step to 
obtain a guaranteed final error.!

• Caching and reusing information 
from one step to the next may 
further reduce effort.

Munsky et al, J. Comp. Phys., 2007



Reductions to the FSP

• Model Reduction Through Observability

• Time Interval Discretization 

• Slow Manifold Projection

• Coarse Meshes for the CME



Perturbation Theory and the FSP

• Some reactions occur faster and more frequently than 
others.!

• This can result in a separation of time-scales in the 
CME.!
✴ Disadvantages: Often results in numerical stiffness 

and increased computational complexity.!
✴ Advantage: May be able to apply perturbation 

theory to reduce computational effort.
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Intuition (Slow Manifold Projection) 

Red Arrows = Fast (Frequent) Reactions
Black Arrows = Slow (Rare) Reactions
Orange Arrows = (Rare) Transitions to Sink

110

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

XJ′

1.Begin with a finite state 
(projected) Markov process.!

2.Group states connected by 
frequent reactions.



Intuition (Slow Manifold Projection) 

Red Arrows = Fast (Frequent) Reactions
Black Arrows = Slow (Rare) Reactions
Orange Arrows = (Rare) Transitions to Sink
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x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

XJ′

1.Begin with a finite state 
(projected) Markov process.!

2.Group states connected by 
frequent reactions.!

3.Find invariant distribution 
for each group.



XJ′

Intuition (Slow Manifold Projection) 

1.Begin with a finite state 
(projected) Markov process.!

2.Group states connected by 
frequent reactions.!

3.Find invariant distribution 
for each group.!

4.Average to find the rates of 
the slow reactions.!

5.Solve for the solution on 
the slow-manifold.!

6.Lift solution to original 
coordinate system.

Red Arrows = Fast (Frequent) Reactions
Black Arrows = Slow (Rare) Reactions
Orange Arrows = (Rare) Transitions to Sink
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Reductions to the FSP

• Model Reduction Through Observability

• Time Interval Discretization 

• Slow Manifold Projection

• Coarse Meshes for the CME



Coarse Mesh Approximation of the CME

• Precision requirements may change for different 
regions of the configurations space.!
✴ Small populations require great precision.!
✴ High populations require far less precision.!

• By choosing a good coarse approximation of the 
CME, we can take advantage of this.!
✴ The general idea is similar to discretization for the 

numerical solution of a PDE.
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Coarse Mesh:  One-species problem.

1 2 3 4 5 6 7 8 9 10 11 12

Start with the full 1-dimensional Markov lattice.

Ṗ = A · P(t) Original CME

1 2 3 5 8 12

Choose a subset of mesh points.

and specify an approximate relation for the !
probability of the removed points: P ≈ Φq(t)

Solve the reduced system ODE:
and lift back to the original system coordinates:
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P(t) ⇡ � exp(��LA�t)��LP(0)

q̇ = ��LA�q(t)



Coarse Mesh:  Multiple-Species Problems.

1. Begin with original lattice.!
2. Choose interpolation points.!
3. Form interpolation (shape) 

function:!
4. Project system to find 

reduced system of ODEs:!
!

6. Solve reduced system.!
7. Lift back to original 

coordinates.

P(t) ≈ Φq(t)

q̇(t) = Φ−LAΦq(t)
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Finite State Projection Analyses

• Forming the Infinitesimal Generator

• Interpreting and Using FSP Sinks

• Advantages and Limitations of the FSP

• System Reductions to Improve FSP Efficiency

• Examples for Using the FSP



Examples Using the FSP:

• Transcription and Translation 

• Feedback for Noise Suppression

• Stochastic Focussing / Stochastic Damping

• Stochastic Switches

• Stochastic Resonance

• Lambda Phage

• Bacterial heat shock




X1(t) is # of mRNA; X2(t) is # of protein
γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

Gene Transcription and Translation

Reactants

R1 : � �⇥ mRNA

R2 : mRNA �⇥ �

R3 : mRNA �⇥ protein + mRNA

R4 : protein �⇥ �

Reactions
kr

γr

kp

γp
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Examples:

• Transcription and Translation 

• Feedback for Noise Suppression

• Stochastic Focussing / Stochastic Damping

• Stochastic Switches

• Stochastic Resonance

• Lambda Phage

• Bacterial heat shock




X1(t) is # of mRNA; X2(t) is # of protein

Noise Attenuation through Negative Feedback

Reactants

R2 : mRNA �⇥ �

R3 : mRNA �⇥ protein + mRNA

R4 : protein �⇥ �

Reactions
kr

γr

kp

γp

k0 � k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

kr = k0 � k1 · (# protein)R1 : � �⇥ mRNA



�p = �r = 1 kp = 10;
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Note that these distributions are NOT Gaussian.



Examples:

• Transcription and Translation 

• Feedback for Noise Suppression

• Stochastic Focussing / Stochastic Damping

• Stochastic Switches

• Stochastic Resonance

• Lambda Phage

• Bacterial heat shock




Species X represses Y in 
convex fashion.

x yu(t)

u(t) activates production of X, which regulates Y

Effects of Nonlinearities

Species X activates Y in 
linear fashion.

Species X activates Y in 
concave function. 

The stochastic mean 
is equal to the 

deterministic model.

The stochastic mean 
is less than the 

deterministic model.

The stochastic mean 
is more than the 

deterministic model.

stochastic damping stochastic focussing

ky

x



Examples:

• Transcription and Translation 

• Feedback for Noise Suppression

• Stochastic Focussing / Stochastic Damping

• Stochastic Switches

• Stochastic Resonance

• Lambda Phage

• Bacterial heat shock




The Genetic Toggle Switch

LacI inhibits production of �cI
�cI inhibits production of LacI

UV Radiation increases degradation of �cI



The Genetic Toggle Switch



Examples:

• Transcription and Translation 

• Feedback for Noise Suppression

• Stochastic Focussing / Stochastic Damping

• Stochastic Switches

• Stochastic Resonance

• Lambda Phage

• Bacterial heat shock




OFF ON

Y

The y gene switches between ON and OFF states.  
Y strongly inhibits activation. 
High Y concentrations also increase deactivation.

Stochasticity enables sustained oscillations.



Examples:

• Transcription and Translation 

• Feedback for Noise Suppression

• Stochastic Focussing / Stochastic Damping

• Stochastic Switches

• Stochastic Resonance

• Lambda Phage

• Bacterial heat shock




A toy model of phage lambda

OR3 OR2 OR1

cro

cI

PRM PR

• We consider only the core of the lambda switch.	


• Two proteins,     and      .	


• These activate and repress the       and         promoters 
according to the model of Shea and Ackers, 1985.

cI cro
PR PRM
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The Phage Lambda  
Lysis-Lysogeny Decision

Arkin, Ross, McAdams, 1998.	

Full Model

Lytic 	

fate

★ Cro reaches a high level before CI is 
produced in much quantity.	


★ Cro represses transcription of CI.

Lysogenic 
fate

!
★ CI increases a little earlier.	


★ CI represses transcription of Cro.	


★ CI is free to increase even further.
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Relevance of Simplified Model

Computations done using Gillespie’s SSA.

Arkin, Ross, McAdams, 1998.	

Full Model

Simplified model
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Our simplified model captures the important 
qualitative trends of the cro/cI switch.



Applying the FSP to  
the Phage Lambda Switch

cro

cI

Unlikely	

States
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Applying the FSP to  
the Phage Lambda Switch

cro

cI
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0   20   40   60

0.01	
!!
0.005	
!!

0

Probability 

Population of cro

60  40   20   0
Population of cI 0   20   40   60

0.01	
!!
0.005	
!!

0

Probability 

Population of cro

60  40   20   0
Population of cI

Efficiency and Accuracy of FSP Results

Method # Simulations Time (s) ||Error||
1

FSP – a 163 ≤ 5.3 × 10−3

SSA 104 484 ≈ 0.25

SSA 25 × 106
> 12 days ≈ 5 × 10−3

aThe FSP algorithm is run only once.

Guaranteed

No 
Guarantees

FSP SSA	

10,000 runs
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Additional information  
available with the FSP solution

• In many cases the FSP is faster and more accurate the 
Monte Carlo methods.	


• Higher precision allows greater flexibility.	

★ Direct Computation of Switch Rates.
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Lysogenic 	

Population

cro

cI

Using the FSP to  
Compute Switch Rates

ε(t)
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cro

cI

Using the FSP to  
Compute Switch Rates

ε(t)
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Using the FSP to  
Compute Switch Rates

0.01	

!
!

0.005	

!
!
0

Probability D
ensity

Population of cro

60  40   20   0
Population of cI 0    20    40    60

Method Time (s) Relative Error Guarantee?

FSP 25.5 s < 0.08 % yes
104 SSA runs 440.0 s ≈ 0.90 % no

141



Additional information  
available with the FSP solution

• In many cases the FSP is faster and more accurate the 
Monte Carlo methods. 	


• Higher precision allows greater flexibility.	

★ Direct Computation of Switch Rates.	

★ Simultaneous consideration of many different initial 

conditions.
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• The FSP is an approximate map of distributions from one time to 
another.	


• This map is valid for any initial distribution.	


★ Once computed, this map is cheap to apply again and again.	


★ The map automatically provides error bounds for any initial 
condition!

Comparing different initial conditions.
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P(t0) FSP P̃(t0 + τ)



Comparing different initial conditions. 
(Increase in       )

cI0 = 0

cro0 = 0

cI0 = 0

Increasing the initial amount of        yields a 
slight decrease in the lysogeny rate.

0   20   40   60

0.01	
!!
0.005	
!!

0

Probability 

Population of cro

60  40   20   0
Population of cI0   20   40   60

0.01	
!!
0.005	
!!

0

Probability 

Population of cro

60  40   20   0
Population of cI
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cro0 = 5

cro



cI0 = 5

cro0 = 0cro0 = 0

cI0 = 0

Increasing the initial amount of     yields a 
significant increase in lysogeny rate.

cI

0   20   40   60

0.01	
!!
0.005	
!!

0

Probability 

Population of cro

60  40   20   0
Population of cI 0   20   40   60

0.01	
!!
0.005	
!!

0

Probability 

Population of cro

60  40   20   0
Population of cI

Comparing different initial conditions. 
(Increase in     )cI
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Simultaneous comparison of an 
array of initial condition.)

146

Method Time (s) # I.C.’s ||Error||
1

Guarantee?

FSP 66.9 s 2000 < 1 × 10−4 yes

104 SSA runs 440.0 s 1 ≈ 0.09 no

1013 SSA runs ≈ 14,000 years! 2000 ≈ 1 × 10−4 no

10
0	

!
!

50	


Percent in 
Lysogeny State

15     10      5       

INITIAL 	


Population of cI
0        5

        1
0        1

555 54

52%
78

99%

INITIAL	


Population of cro



Additional information  
available with the FSP solution

• In many cases the FSP is both faster and more accurate 
than other available methods.	


• Higher precision allows greater flexibility.	

★ Direct Computation of Switch Rates.	

★ Simultaneous consideration of many different initial 

conditions.	

★ Sensitivity to parameter changes.
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Parametric Sensitivity of  
Probability Distributions.

SEN
SIT

IV
IT

Y
 of 

Probability D
ensity

Population of cro

60  40   20   0
Population of cI

0    20    40    60

0.005	
!!
0	
!!

-0.005

★ Sensitivity analysis requires a huge degree of accuracy.	


★ Monte Carlo methods would require hundreds of millions of runs!!

Sensitivity to a small increase in cell Volume.

FSP

SEN
SIT

IV
IT

Y
 of 

Probability D
ensity

Population of cro

60  40   20   0
Population of cI

0    20    40    60

3	
!!
0	
!!
-3

SSA	

10,000 runs
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Examples:

• Transcription and Translation 

• Feedback for Noise Suppression

• Stochastic Focussing / Stochastic Damping

• Stochastic Switches

• Stochastic Resonance

• Lambda Phage

• Bacterial heat shock



S1

k1

−→

←−

k2

S2

Toy Heat Shock Model in E. coli

σ32
σ32    RNAP

σ32

    RNAP

s1
s2

s3

3 forms for       : 	
σ32
σ32 σ32-RNAPσ32-DnaK

S2

k3

−→ S3

Fast

Slow

El Samad et al, PNAS, vol. 102, No. 8, 2005 
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Toy Heat Shock Model 
in E. coli (cont.)
Five Different FSP Solution 

Schemes:	


1. Full FSP

Population of free 
Po

pu
la

tio
n 

of
 

4459 ODEs
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Five Different FSP Solution 
Schemes:	


1. Full FSP	

2. Slow manifold (FSP-SM)

Population of free 
Po

pu
la

tio
n 

of
 

343 ODEs

Po
pu

la
tio

n 
of
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Toy Heat Shock Model 
in E. coli (cont.)



Five Different FSP Solution 
Schemes:	


1. Full FSP	

2. Slow manifold (FSP-SM)	

3. Interpolated (FSP-I)

Population of free 
Po

pu
la

tio
n 

of
 

539 ODEs
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Toy Heat Shock Model in 
E. coli (cont.)



Five Different FSP Solution 
Schemes:	


1. Full FSP	

2. Slow manifold (FSP-SM)	

3. Interpolated (FSP-I)	

4. Hybrid (FSP-SM/I)

Population of free 
Po

pu
la

tio
n 

of
 

Po
pu

la
tio

n 
of

 

49 ODEs
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Toy Heat Shock Model in 
E. coli (cont.)



Five Different FSP Solution 
Schemes:	


1. Full FSP	

2. Slow manifold (FSP-SM)	

3. Interpolated (FSP-I)	

4. Hybrid (FSP-SM/I)	

5. Multiple time interval 

(FSP-MTI) 0 100 200 300
Population of 

Pr
ob

ab
ili

ty
 %

0

70 sets of 195 or fewer ODEs.
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Toy Heat Shock Model in 
E. coli (cont.)



Efficiency and accuracy of 
the reduced FSP methods
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The Reduced FSP approaches can be much faster and 
more accurate than alternative approaches!

157

Efficiency and accuracy of 
the reduced FSP methods



The (Chemical) Master Equation

• The CME Description

• Example: Transcription as a Birth-Death Process.

• Kinetic Monte Carlo Approaches

• Finite State Projection Approaches

• Moment Computations See notes online



Moment Computations

159

For the first moment E[Xi], multiply the CME by xi

and sum over all (x1, . . . , xN) � NN

For the second moment E[XiXj], multiply the CME by xixj

and sum over all (x1, . . . , xN) � NN

Let w(x) = [w1(x), . . . , wM(x)]T

In matrix notation:

dE[X]

dt
= SE[w(X)]

dE[XXT ]

dt
= SE[w(X)XT ] + E[w(X)XT ]TST + S{diagE[w(X)]}ST



Moment Computations

• Affine Propensity 

• Moment Closures



These are linear ordinary di�erential equations and can be easily solved!

Affine Propensity

161

Suppose the propensity function is a�ne:

w(x) = Wx + w0, (W is N �N , w0 is N � 1)

Then E[w(X)] = WE[X]+w0, and E[w(X)XT ] = WE[XXT ]+w0E[XT ].

This gives us the moment equations:

d

dt
E[X] = SWE[X] + Sw0 First Moment

d

dt
E[XXT ] = SWE[XXT ] + E[XXT ]WTST + S diag(WE[X] + w0)S

T

+ Sw0E[XT ] + E[X]wT
0ST Second Moment



Define the covariance matrix ⌃ = E[(X � E[X])(X � E(X)]

T
].

We can also compute mean and covariance equations:

d

dt
E[X] = SWE[X] + Sw

0

First Moment

d

dt
⌃ = SW⌃+⌃WTST

+ S diag(WE[X] + w
0

)ST
Covariance

Affine Propensity (cont.)

162

Steady-state Case
The steady-state moments and covariances can be obtained by solving

linear algebraic equations:

Let

¯X = lim

t!1
E[X(t)] and

¯

⌃ = lim

t!1
⌃(t). Then

SW ¯X = �Sw
0

SW ¯

⌃+

¯

⌃WTST
+ S diag(W ¯X + w

0

)ST
= 0



Affine Propensity (cont.)

163

Define A = SW , and B = S
�

diag(WX̄ + w0).
The steady-state covariances equation

SW �̄ + �̄WTST + S diag(WX̄ + w0)S
T = 0

becomes

A�̄ + �̄AT + BBT = 0 Lyapunov Equation

The Lyapunov equation characterizes the steady-state covariance of a
output of the linear dynamical system

ẏ = Ay + B�

where � is a unit intensity white Gaussian noise!

More precisely, the solution of the vector SDE:

dy = Ay dt + B dWt

where Wt is Brownian motion. This is also called Ornstein-Uhlenbeck

process.



Moment Computations

• Affine Propensity 

• Moment Closures 



Moment Closures

• When Second and Higher order terms exist in the propensity functions, 
each moment depends upon higher moments.!
‣ For example, if                               , then!
!
!

• The first moment depends upon the second; the second upon the third; 
and so on…!

• “Moment closures” are approximations that attempt to remove this 
infinite dependency structure.
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w(X) = uTXXTv

dE[X]

dt
= SuTE[XXT ]v



d
dt

"
{µi}
{�ij}

#

=

"
f
1

({µi}, {�ij}) + u
1

({µi}, {�ij}, {�ijk}, . . .)
f
2

({µi}, {�ij}) + u
2

({µi}, {�ij}, {�ijk}, . . .)

#

,

d
dt

"
{µi}
{�ij}

#

=

"
f
1

({µi}, {�ij}) + û
1

({µi}, {�ij})
f
2

({µi}, {�ij}) + û
2

({µi}, {�ij})

#

,

where the choice of û
1

and û
2

depends upon the chosen moment closure.

Moment Closures
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Gaussian Moment Closure

• For Gaussian distributions, the closure is simple: !
!

• which yields:!
!
!

• Higher moments are easy to derive with a moment generating 
function:
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Many other closures are possible:

• If one assumes that the distributions are Log-Normal, a different 
closure is used:

168

• One of the most common closures is the Linear Noise 
Approximation.


• In this, all moments are written in terms of themselves and lower 
moments:

‣ the mean is set equal to the deterministic process.

‣ the second moments are assumed to be Gaussian, and 

depend upon the mean and themselves:

d
dt

"
{µi}
{�ij}

#

=

"
f1({µi})

f2({µi}, {�ij})

#



!

Integrating Single-Cell Experiments and 
Stochastic Analyses to Predict Gene 

Expression Dynamics!

Brian Munsky                                    
Chemical and Biological Engineering


Colorado State University
!
munsky@engr.colostate.edu
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A 5 minute break, and when we return...

mailto:munsky@engr.colostate.edu?subject=


1. Information from single-cell fluctuation 

2. Analyzing stochastic dynamics in gene regulation 

3. Case studies: 
a) Predicting kinase-activated gene regulation dynamics in 

Saccharomyces cerevisiae (budding yeast). 
b) Predicting multi-generation stochastic behavior of the Pap epigenetic 

switch in E. coli 
c) Predictable design of synthetic circuits in E. coli  
d) sRNA regulation in Yersinia Pestis and Yersinia Pseudotuberculosis 
e) Examining multiscale spatiotemporal mRNA fluctuations in human 

THP1 cells  
4. Concluding remarks

Outline
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Information from fluctuation 

Several different species may 
express a gene at the same average 
level.

Single-cell measurements may 
reveal hidden differences in the 
species.

Species X Species Y Species Z

Each species has a distinctive 
“fluctuation fingerprint”.

Munsky et al, Science 2012 171



Fluctuations may indicate gene regulation mechanisms

Munsky et al, Science 2012 172

off# on#

k12#

k21#

km#

gN#kON

kOff

• Consider the bursting gene 
expression model:



Variability versus parameters.

Expression ‘Noise’ versus parameters


Fa
no

 F
ac

to
r

kOn

g

kOff/gµ = f
on

k
m

g
m

fon =
kON

kON + kOFF

�2

µ
= 1 +

(1� fon) km
kON + kOFF + gm

Munsky et al, Science 2012 173

Fluctuations may indicate gene regulation mechanisms

off# on#

k12#

k21#

km#

gN#kON

kOff

• Consider the bursting gene 
expression model:

!
!
!
!

• Compute the expression mean 
and variability as functions of all 
parameters. 



• Consider the bursting gene 
expression model:

!
!
!
!

• Compute the expression mean 
and variability as functions of all 
parameters. 

• Tuning kOff or kOn can increase 
expression, but:

• Tuning kOff increases 
variability.

Variability versus parameters.

Expression ‘Noise’ versus parameters


Fa
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 F
ac

to
r

kOn

g

kOff/g
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Fluctuations may indicate gene regulation mechanisms
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gN#kON

kOff



• Consider the bursting gene 
expression model:

!
!
!
!

• Compute the expression mean 
and variability as functions of all 
parameters. 

• Tuning kOff or kOn can increase 
expression, but:

• Tuning kOff increases 
variability.

• Tuning kOn decreases 
variability.

Variability versus parameters.

Expression ‘Noise’ versus parameters


Fa
no

 F
ac

to
r

kOn

g

kOff/g

Munsky et al, Science 2012 175

Fluctuations may indicate gene regulation mechanisms
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Outline

1. Information from single-cell fluctuation 

2. Analyzing stochastic dynamics in gene regulation
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The Full System

x4x1 x2 x3

x5 x6 x7 x8

x9 x10 x11 x12

Full Master Equation
[

ṖJ

ṖJ′

]

=

[

AJ AJJ′

AJ′J AJ′

] [

PJ(t)
PJ′(t)

]

Dimension =                  = Infinite         #(J) + #(J ′)

The FSP Theorem 
(Munsky, JCP ‘06)

∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(t)
PJ′

]

−

[

PFSP
J

(t)
0

]
∣

∣

∣

∣

∣

∣

∣

∣

1

= ε(t)

PJ(t) ≥ P
FSP
J (t) and

[

ṖFSP
J

ε̇

]

=

[

AJ 0

−1T AJ 0

] [

PFSP
J

(t)
ε(t)

]

The Projected System (FSP)

x1 x2 x3

x5 x6 x7

Dimension =           = 7         

FSP Master Equation

#(J) + 1

ε(t)

The finite state projection approach

177Download software and tutorial available at: http://cnls.lanl.gov/~munsky
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Inferring parameters from single-cell measurements.

High cell counts (>105  cells) --> Kullback Leibler Divergence.*

Although single-cell reactions may be Stochastic, their statistics 
follow a Deterministic set of ODE’s (i.e., the CME).

Low cell counts (<103  cells) --> maximum likelihood.*

Fitting metrics:

We can fit and potentially predict these statistics.

*Equivalent up to a constant that depends upon sample sizes. 178

2 Experimental 
replicates
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Outline

1. Information from single-cell fluctuation 

2. Analyzing stochastic dynamics in gene regulation 

3. Case studies: 
a. Predicting kinase-activated gene regulation dynamics in 

Saccharomyces cerevisiae (budding yeast). 
b. Predicting multi-generation stochastic behavior of the Pap 

epigenetic switch in E. coli 
c. Predictable design of synthetic circuits in E. coli  
d. sRNA regulation in Yersinia Pestis and Yersinia 

Pseudotuberculosis
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Signal-activated gene regulation 

0-20 minutes after 0.2M NaCl shock 
(Neuert, Munsky, et al, 2013)

Osmotic-Adaptation, Activation 
and Localization of Hog1p, (Saito, 
Posas, Genetics, 2012)

(Osmotic shock response in yeast)

• 0.2M NaCl is added at t=0. 


• Hog1 (red) activates in 1-2 min.


• ... and remains active for ~12 min.



• 0.2M NaCl is added at t=0. 


• Hog1 (red) activates in 1-2 min.


• ... and remains active for ~12 min.


• Stl1 mRNA appear at 4 min.


• ... and are gone by 25 min.

Signal-activated gene regulation 
(Osmotic shock response in yeast)

0-20 minutes after 0.2M NaCl shock 
(Neuert, Munsky, et al, 2013)



• 0.2M NaCl is added at t=0. 


• Hog1 (red) activates in 1-2 min.


• ... and remains active for ~12 min.


• Stl1 mRNA appear at 4 min.


• ... and are gone by 25 min.


• Stl1-GFP appear at ~30 min.

0-60 minutes after 0.2M NaCl shock 
(Neuert, Munsky, et al, 2013)

Signal-activated gene regulation 
(Osmotic shock response in yeast)



Stress STL1

0 80
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STL1 mRNA

Our goal is to identify the mechanisms 
and parameters of STL1
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Signal-activated gene regulation 
(Osmotic shock response in yeast)



0 min 1 min 2 min 4 min 6 min

8 min 10 min 15 min 20 min 25 min

30 min 35 min 40 min 45 min 50 min

At. 0.4M NaCl: 1) Hog1 localizes immediately (<2 min)
2) Hog1 remains active for 20 min.
3) Transcription starts in 2 min.
4) Cells activate at different times (bimodality at 8 min).
5) mRNA levels reach maximum at 20 min.
6) Most mRNA are cleared by 35 min.
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Features of the data
(Osmotic shock response in yeast)



The Hog1 kinase (      ) activates STL1, but how?

Possible model structures:

Is it the first of a 
cascade of activation 
events?

...the last activation 
event?

Does it repress a 
deactivation event?

Are there multiple 
effects?

How many states are 
needed?
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Each structure defines a hidden Markov Model

State-transition rates may vary in 
time, with experimental 
conditions, and/or with genetic 
mutations. kij = kij(Hog1) = kij(t)

HIDDEN: N ={2,3,...} possible gene states

OBSERVABLE:
Integer number 
of mRNA

S(1,0) S(2,0)
...

S(N,0)
k12(t) k23(t)

kN,N�1(t)

kN�1,N (t)

k32(t)k21(t)

S(1,1) S(2,1)

...
S(N,1)

S(1,2) S(2,2)

...
S(N,2)... ... ...

�

2�

�

2�

�

2�

kr1(t) kr2(t) krN (t)

kr1(t) kr2(t) krN (t)
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Evaluating model structures of varying complexity
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We fit different 2-, 3-, 4- and 5- state model structures to wild-type data 
at 0.4M osmotic shock. 

More states (and parameters) yield better fits,...
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We fit different 2-, 3-, 4- and 5- state model structures to wild-type data 
at 0.4M osmotic shock. 

More states (and parameters) yield better fits,...

Evaluating model structures of varying complexity

but they also give rise to 
greater uncertainty.

too 
simple

too 
complex



Inaccurate predictions.Overly-simple models  
cannot match the data.
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Evaluating model structures of varying complexity
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Cross-validation 
analysis provides an 
excellent a priori 
estimate of predictive 
power.

Imprecise predictions.Overly-complex models are 
poorly constrained. 

too 
simple
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Munsky Slide: 

The model can capture and predict WT mRNA 
dynamics for STL1, CTT1 and HSP12

0.4M NaCl 
Stress

0.2M NaCl 
Stress

STL1

HSP12

CTT1

STL1

HSP12

CTT1
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Munsky Slide: 

The model can capture and predict WT mRNA 
dynamics for STL1, CTT1 and HSP12

0.4M NaCl 
Stress

0.2M NaCl 
Stress

STL1

HSP12

CTT1

STL1

HSP12

CTT1
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Munsky Slide: 

The model can capture and predict WT mRNA 
dynamics for STL1, CTT1 and HSP12

It also captures STL1 mRNA dynamics in Wild Type, Hot1 
over expression and Arp8 or Gcn5 deletion strains 

0.4M NaCl 
Stress

Mutations: 
WT 

5x Hot1 
-Arp8 
-Gcn5

STL1

What about new combinations of 
different genes and mutant strains? 193
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Munsky Slide: 

Fitting and Predicting the Probability of ON Cells 

Three Different Genes
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Munsky Slide: 

Fitting and Predicting the Mean Expression Level
Three Different Genes
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Final Model Structure:
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Outline

1. Information from single-cell fluctuation 

2. Analyzing stochastic dynamics in gene regulation 

3. Case studies: 
a. Predicting kinase-activated gene regulation dynamics in 

Saccharomyces cerevisiae (budding yeast). 
b. Predicting multi-generation stochastic behavior of the Pap 

epigenetic switch in E. coli 
c. Predictable design of synthetic circuits in E. coli  
d. sRNA regulation in Yersinia Pestis and Yersinia 

Pseudotuberculosis
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• Pyelonephritis-Associated Pili are hair-like 
structures that enable some E. coli bind 
host cells and establish infection.


• Pap express distinct ON and OFF states.


• The pap operon contains 6 sites that 
interact with global regulators DAM and 
LRP and local regulator PapI.


• Gene activation and DNA methylation pass 
epigenetic information from mother to 
daughter cell and stabilize the ON and OFF 
states.

Predicting rare epigenetic switches in E. coli.
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• LRP binding affinities events were fit to 
previously measured EMSA (in vitro) data in 
various methylation patterns and at various 
PapI concentrations.

• Remaining parameters were fit to in vivo flow cytometry 
measurements under varying LRP, DAM or PapI titrations

Distal Sites 4-5-6

0 0.5 1 1.5 2 2.5
0

50

100

 

 

Expt., 0nM PapI

Expt., 100nM PapI

Mod., 0nM PapI

Mod., 100nM PapI

%
Lr

p
B

ou
nd

Lrp (nM)

0 5 10 15 20 25
0

50

100

 

 

Expt., 0nM PapI

Expt., 5nM PapI

Mod., 0nM PapI

Mod., 5nM PapI

%
Lr

p
B

ou
nd

Lrp (nM)
Proximal Sites 1-2-3

0 5 10 15 20 25
0

50

100

 

 

0 0.5 1 1.5 2 2.5
0

50

100

 

 

Expt., 0nM PapI

Expt., 100nM PapI

Mod., 0nM PapI

Mod., 100nM PapI

Distal Sites 4-5-6

0 0.5 1 1.5 2 2.5
0

50

100

 

 

Expt., 0nM PapI

Expt., 100nM PapI

Mod., 0nM PapI

Mod., 100nM PapI

%
Lr

p
B

ou
nd

Lrp (nM)

0 5 10 15 20 25
0

50

100

 

 

Expt., 0nM PapI

Expt., 5nM PapI

Mod., 0nM PapI

Mod., 5nM PapI

%
Lr

p
B

ou
nd

Lrp (nM)
Proximal Sites 1-2-3

0 5 10 15 20 25
0

50

100

 

 

0 0.5 1 1.5 2 2.5
0

50

100

 

 

Expt., 0nM PapI

Expt., 100nM PapI

Mod., 0nM PapI

Mod., 100nM PapI

LRP concentration (nM)

PapI= 0 PapI =1.3 PapI =2.3

PapI = 3.3 PapI = 17 PapI = 33

Total Florescence (AU)

P
ro

b
a
b

ili
ty

0

0.02

0.04

0 500

0 500
0

0.02

0.04

0 500 0 500

PapI= 0.33

PapI= 0 PapI =1.3 PapI =2.3

PapI = 3.3 PapI = 17 PapI = 33

Total Florescence (AU)

P
ro

b
a
b

ili
ty

0

0.02

0.04

0 500

0 500
0

0.02

0.04

0 500 0 500

PapI= 0.33

0 100 200 300
0

0.5

1

1.5

2
x 10

4

#
Sw

it
ch

ed
pe

r
10

6

Lrp

Lrp (nM)
0 50 100 150

0

1

2

3

4
x 10

4

Dam

Dam (nM)

#
Sw

it
ch

ed
pe

r
10

6

PapI

0 10 20 30 40
0

0.05

0.1

0.15

PapI (nM)

S
w

itc
h
 P

ro
b

a
b

ili
ty• Switch rates are accurately 

predicted in all conditions and 
for several genetic mutations.

Predicting rare epigenetic switches in E. coli.



Outline

1. Information from single-cell fluctuation 

2. Analyzing stochastic dynamics in gene regulation 

3. Case studies: 
a. Predicting kinase-activated gene regulation dynamics in 

Saccharomyces cerevisiae (budding yeast). 
b. Predicting multi-generation stochastic behavior of the Pap 

epigenetic switch in E. coli 
c. Predictable design of synthetic circuits in E. coli  
d. sRNA regulation in Yersinia Pestis and Yersinia 

Pseudotuberculosis
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Designing predictable parts for synthetic biology

• Synthetic biology requires genetic building blocks, which...

1. can be characterized independently of final context, and

2. behave in a predictable manner when assembled.

araC

;

AraC

Ara
;

LacI

Iptg

Constitutive genes

lacI

;

LacI

Iptg
PBAD

PTAC

POR1

Promoters

PTAC

cI

;

CI

;

Gfp

Regulated genes

gfp

;

Gfp

Can we account for noise and predict responses when when 
we mix-and-match these parts?

Synthetic building blocks

Lou, et al, Nature Biotechnology, 2012

Low copy 
Plasmid 

pSC101*
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Parameterization of reactions

Production Propensity Function:

k =

 
k0 +

k1
1 + �N⌘

Rep

!
Nplas

Basal rate

Active rate

1/kD 

(Dissociation)

Free

Repressor


concentration

Plasmid copy number

Cooperativity factor

Degradation Propensity Function:

� = �1N
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Lou, et al, Nature Biotechnology, 2012
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Lou, et al, Nature Biotechnology, 2012
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Eliminating part-junction interference for synthetic design.

Transcribed sequences between promotors and 
output genes may disrupt modular behavior.

‘Natural’ Promoters

‘Buffered’ Promoters

Ribozyme buffers remove these sequences to 
restore plug-and-play modularity.
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Analyzing sRNA regulation in Yersinia Pestis and Yersinia Pseudotuberculosis 

210

• Small RNA (sRNA) are too short for so 
many probes.


• Nonspecifically bound probes dominate 
the fluorescence signal, and new 
labeling approaches are required.


• NEW complementary quenchers silence 
non-specifically bound probes, and 
allow localization and counting of 
smaller RNA molecules.

Shepherd, et al, Analytical Chemistry, 2013

YSR35 small RNA in Yersinia 
Pseudotuberculosis in the 

absence (A) or presence (B) of 
quenchers



Shepherd, et al, Analytical Chemistry, 2013

Analyzing sRNA regulation in Yersinia Pestis and Yersinia Pseudotuberculosis 
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• We measured two temperature sensitive 
sRNA in YPE and YPSE.


• Both are fit by the bursting gene expression 
model, but does temperature affect the 
frequency or amplitude of bursts?


• Testing both hypotheses, we found that 
YSP8 and YSR35 dynamics match burst 
frequency modulation.

YSP8 sRNA in Yersinia Pestis

YSR35 sRNA in Y. Pseudotuberculosis 

off# on#

k12#

k21#

km#

gN#kON

kOff
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Outline

1. Information from single-cell fluctuation 

2. Analyzing stochastic dynamics in gene regulation 

3. Case studies: 
a. Predicting kinase-activated gene regulation dynamics in 

Saccharomyces cerevisiae (budding yeast).  
b. Predicting multi-generation stochastic behavior of the Pap 

epigenetic switch in E. coli 
c. Predictable design of synthetic circuits in E. coli 
d. sRNA regulation in Yersinia Pestis and Yersinia 

Pseudotuberculosis  
4. Concluding remarks
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Summary and Conclusions

• Fluctuations of single cells are stochastic:!
‣ can complicate modeling and disrupt the design of synthetic systems. !

• Statistics of single-cell fluctuations are deterministic:  !
‣ Cells may exhibit distinct repeatable ‘fluctuation fingerprints’, which 

can be measured with single-cell and single-molecule approaches.!
‣ Fluctuation statistics may reveal subtle mechanisms and parameters 

of gene regulation.!
‣ Fluctuation statistics can be predicted with high accuracy.!

• Uncertainty Quantification can reveal when models are too simple, too 
complex, or just right.!

• We have identified predictive quantitative models of transcriptional 
regulation for many natural and synthetic genes in several organisms.!

• Prediction is a first step toward design, optimization and control in 
systems and synthetic biology.
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