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Abstract— Intracellular populations of genes, RNA and pro-
teins are often described by continuous-time, discrete-state
Markov processes, whose time-varying probability distributions
evolve according to the large or infinite dimensional linear ordi-
nary differential equation known as the chemical master equa-
tion (CME). Numerical integration and stochastic simulation of
the CME are often impossible or time consuming. We introduce
new methods to project the full CME onto a lower dimensional
space, while retaining the transient and equilibrium statistics of
the original process. First, we investigate three complementary
sets of coarse-graining rules: (i) The previously described
finite state projection approach; (ii) A modification of existing
coarse-graining approaches to reduce the system dimension
while capturing the the processes equilibrium distribution; and
(iii) New time-scale correction terms to recapture transient
dynamics of the original system. Next, we explore different
iterative algorithms that automatically adapt the projection
resolution to improve accuracy and efficiency of the CME
solution. We test these projection and refinement strategies
on several gene regulatory processes, and we comment on
the efficiency and accuracy of the coarse-graining rules and
refinement strategies.

I. INTRODUCTION

Systems of reacting chemicals in homogeneous environ-
ments can be described as Markov chains where each state
represents a discrete reactant population at a given time
[1]. For such a Markov chain, one can define a probability
density vector, which evolves according to the linear ordinary
differential equation known as the chemical master equation
(CME) [2]. Integrating the CME is often computationally
intractable due to its large dimension. One work-around
is to use Kinetic Monte Carlo (KMC) methods, such as
the stochastic simulation algorithm [3] to generate sample
trajectories for the stochastic process. In many systems
biology problems, a few such trajectories are sufficient to
elucidate the system’s behavior. However, with the increased
availability of single-cell and single-molecule data, it has
become possible to measure the distributions of molecular
populations [4], [5], [6], [7], [8]. With such data, it is
now possible to identify stochastic gene regulatory mod-
els from the variable distributions of experimental systems
[9], [10]. Such identification procedures require that CME
solutions be precise enough to capture all features of the
experimental data, yet fast enough to be solved for many

*To whom correspondence should be addressed.

different parameter combinations (� 105 in many parameter
searches). Unfortunately, KMC approaches converge slowly
to the CME–an n-fold improvement the precision requires
n2 times as many simulations. New approaches are needed.

To improve parameter identification studies, we need to (i)
increase the class of problems for which CME integration is
feasible and (ii) increase the efficiency of this integration. To
accomplish these objectives, several projection-based model
reductions have been proposed, including finite state projec-
tion approaches [11], [12], Krylov subspace methods [13],
and time-scale partitioning techniques [14], [15]. Reductions
of particular interest are the so-called sparse-gridding ap-
proaches [16], [12], in which dynamics of adjacent states
are interpolated from among their neighboring states.

The two key tasks of the sparse-grid CME reduction are
to choose (i) the shape of the interpolation function (i.e.,
assume how the exact solution relates to the coarse-mesh
approximate solution), and (ii) the coarseness of this actual
mesh. Both selections introduce a tradeoff between efficiency
and accuracy–choices that are broadly similar to those of
using a variable step size and approximation order when
numerically integrating differential equations. In this paper,
we introduce several novel interpolation shape functions and
adaptive grid-refinement strategies, and we compare them in
terms of their ability to reduce the dimension of the CME
while retaining integration accuracy.

The remainder of this paper is organized as follows: In
Section II, we introduce the general formulation of the CME,
and we discuss a few approaches to reduce its dimension,
such as the finite state projection approach (Sec. II-A) and
zeroth-order coarse-grid projections (Sec. II-B). Next, we
discuss new approaches to define (Sec. III) and adapt (Sec.
IV) the coarse grid while solving the CME. In Section V,
we describe a set of different test systems and evaluate the
different reduction approaches. Finally, in Section VI, we
summarize the performance of the different approaches and
their applicability to larger chemical systems, and comment
on the use of these tools to analyze gene regulatory systems.

II. METHODS

A system of N interacting chemicals in a well-mixed
environment can be described as a Markov chain where
each state, xi = [ξ1, . . . , ξN]

T
i ∈ X ∈ NN

≥0, represents
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specific integer populations of the N reactants. The reaction
propensity (or stochastic reaction rate) functions, wu(xi)dt,
are the probabilities that each of the u = (1 . . . U) reactions
will occur in the next infinitesimal time step dt. These
reactions are transitions from one state, xi, to another state,
xj = xi + vu, where vu is the stoichiometry of the uth

reaction. For such a Markov chain, the probability density
vector, P(t) = [p1(t), p2(t), . . .]T represents the probability
that x(t) = xi at time t for each i = {1, 2, . . .}. The
probability density vector, P(t), evolves according to the
linear ordinary differential equation, d

dtP(t) = A(t)P(t),
which is known as the chemical master equation (CME). As
discussed in the literature [11], [15], [12], the infinitesimal
generator, A = [Aij ], can be specified as:

Aji =

 −
∑
u wu(xi) if j = i,

wu(xi) if xj = xi + vu,
0 otherwise.

 (1)

Now that the CME is formulated, we turn to approaches to
reduce and solve it.

A. Finite State Projection

The CME dimension can be extremely large or infinite,
so approximations are needed. One such approximation, the
finite state projection (FSP) approach [11], [12], selects a
finite set of states, XJ ∈ X, and aggregates the vast majority
of remaining states, XJ′ , into one or more absorbing states.
The end result is a finite-dimensional master equation,

d

dt
PFSP(t) = AJ(t)PFSP(t); PFSP(0) = PJ(0), (2)

which can be integrated numerically.1 By keeping track of
the probability lost to each absorbing sink, it is possible to
compute the CME error and systematically expand the set XJ
until that error satisfies a pre-specified threshold. For simple
systems, such as two-species chemical reactions, efficient
algorithms exist to define and expand the XJ (see [18] for
a complete description). However, even after the application
of the FSP, the dimension of Eq. 2 can be extremely large,
such that numerical integration is prohibitively expensive.
For these cases, additional reductions are necessary.

B. Projection-Based Reductions of the ME

Even after application of the FSP, it is often useful to
reduce the dimension of the CME through an additional
projection operation [12]. In these projections, one assumes
that P(t) can be approximated by a linear transformation of
a lower dimensional vector,

P(t) ≈ ΦqΦ(t), (3)

where the matrix Φ ∈ RN×M defines the projection operator
(typically M � N ). This operator defines the dynamics of
the lower dimensional vector, qΦ(t):

d

dt
qΦ(t) = Φ−LAΦqΦ(t),

qΦ(0) = Φ−LP(0), (4)

1All integration of master equations in this work is done in Matlab using
Roger Sigje’s expokit [17].
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Fig. 1. Schematics of the one-species gridding approach and different
possible shape functions. A) One-D grid for a zeroth-order interpolation,
containing five elements M = 5. B) Zeroth order interpolation: one
interpolation point per element; probability is equally distributed at all points
in element (Eq. 6). C) Zeroth order, corrected interpolation: one interpolation
point per element; probability is distributed in each element according to
Eq. 12.

where Φ−L denotes the left inverse of Φ. This ODE can be
solved for qΦ(t) and used to approximate P(t).

The intention of the interpolation reduction method is
to reduce the complexity, yet retain accuracy, in the CME
solution. For this, we seek to minimize the tradeoff:

min
Φ
{|P(tf )−ΦqΦ(tf )|+ λ(Φ)} , (5)

where λ(Φ) penalizes computational complexity (or compute
time) associated with the M -dimensional ODE in Eq. 4.
Several different methods have been proposed to choose
Φ, including Krylov subspace methods [13] and time-scale
partitioning techniques [14], [15]. Here, we focus upon
sparse-gridding or interpolation-based projections [16], [12].

III. SPARSE-GRID REDUCTIONS OF THE CME

Our projection operations will section the population space
XJ into a number of disjoint rectangular elements similar to
a finite element approach (Fig. 1A). We restrict ourselves
to zeroth-order interpolations approaches that lump each
element into a single coarse-grained state. Higher order inter-
polations can be formulated in a similar manner, but are not
considered in this report. In what follows, we briefly describe
these interpolation functions and the resulting definition of
the projection operator Φ.

A. Zeroth-Order Interpolations

The grid in Fig. 1A defines a set of M disjoint rectangular
regions, {Ym}, which cover the entire state space, X. Each
region contains exactly Lm states. The coarse state qm(t)
approximates the total probability of the states contained
within Ym. In the simplest coarse grid, the probabilities of
states within a region are approximated as being equal:

pi(t) ≈ qm(t)/Lm, for xi ∈ Ym. (6)

This leads to a very simple definition of Φ = [φim]:

φim =

{
1/Lm if xi ∈ Ym

0 otherwise. (7)

The left inverse, Φ−L = [νmi] is simply:

νmi =

{
1 if xi ∈ Ym
0 otherwise. (8)

The zeroth order interpolation approach is convenient for
two reasons: First, it is very easy to specify the projection
operator Φ and to compute the reduced generator AΦ =
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Φ−LAΦ; Second, the reduced system for q(t) is itself a
Markov process and therefore retains many useful properties
associated with such systems, such as

∑
m q(t) = 1 and∑

m dq(t)/dt = 0 for all t. The two main disadvantages of
the interpolation are (i) all states xi ∈ Ym are not equally
probable as assumed in Eq. 6, and (ii) the time required to
traverse from one end of an element to the next is non-
instantaneous. To address these issues, we introduce two
simple corrections to the interpolation.

Corrections to the Zeroth-Order Interpolation Scheme.
Our first step to improve the accuracy of the zeroth-order

interpolation approach is to estimate how the probability
density varies along each element. In particular, we wish
to know the density at the borders between neighboring
elements, as these probabilities define the transitions from
one element to the next.

Consider the points in a single coarse element as illustrated
in Fig. 1C. Let e(m)

l refer to the lth specific state in the mth

element, and define f (m)
l as the probability of that specific

state. To estimate f
(m)
l , we approximate the propensity

functions, w±
m as being constant within each element (w±

m is
evaluated at the element center), where +/− denote reactions
that increase or decrease the population, respectively.

Transitions within each small element are assumed to
reach a quasi-steady equilibrium distribution much faster
compared to the full process, such that

w+
mf

(m)
l = w−

mf
(m)
l+1 , or (9)

f
(m)
l = rmf

(m)
l−1 = rl−1

m f
(m)
1 , (10)

where rm = w+
m/w

−
m. Since the total probability of the mth

element is qm(t), the geometric series sum yields

qm(t) =

Lm∑
l=1

f
(m)
l =

Lm∑
l=1

rl−1
m f

(m)
1 =

(
1− rLm

m

1− rm

)
f

(m)
1 ,

(11)
and the probability of each state can be solved for as:

f
(m)
l = qm(t)

(
1− rm
1− rLm

m

)
rl−1
m . (12)

In particular, the probability densities at the borders of each
element are now approximated as:[

f
(m)
1 (t)

f
(m)
Lm

(t)

]
= qm(t)

(
1− rm
1− rLm

m

)[
1

rLm−1
m

]
, (13)

and the propensity to go from one element to the next is:

ω+
mdt ≈ w+

mf
(m)
Lm

dt and

ω−
mdt ≈ w−

mf
(m)
1 dt. (14)

Next, we use the size of each element to rescale the
probability flow rate from the center of one element to the
center of the next. For distances, d±m = (Lm + Lm±1) /2,
between the mth and the (m ± 1)th centers, the coarse-
grained rate to transition from the mth to the (m + 1)th

or (m− 1)th elements become

ω̂±
m ≈ ω±

m/d
±
m. (15)

The end result of correcting for the distribution of proba-
bility along each element and the time it requires to traverse
each element, is that we have a reduced Markov process.
For example, in Fig. 1, where the original process contained
N = 15 states, the new one has only M = 5 states. Where
the propensity function of the original process were w+ and
w−, the new process has propensity functions ω̂+

m and ω̂−
m

as defined by Eqs. 13-15.
Extending the corrected zeroth order coarse graining ap-

proach to additional species can be achieved simply by
applying this approach to each species.

IV. ADAPTIVE GRID SELECTION METHODS

Given a grid, we can use the interpolation functions from
the previous section to project the CME down to a lower-
dimensional space and approximate its solution. But how
do we choose the correct grid? In this section we focus on
adaptive methods we have developed for grid selection. We
begin with an initial grid space in which each element has
constant size K for every chemical species. This grid used
to generate a reduced CME as described above, and the FSP
approach is applied to select the important coarse states from
the reduced system. Then, based upon the solution under the
current grid, we divide or combine neighboring elements,
being careful to ensure that all grid elements contain at least
one state. In the following subsections, we describe three
methods in detail: (i) passive refinement, (ii) probability-
based refinement, and (iii) two-grid error control refinement.
Each approach is described in the context of a one-species
Markov Chain. For multiple dimensions, the grid refinement
is done independently in each dimension.

A. Passive Refinement

In the passive grid-refinement strategy, we simply split
every mesh element in each iteration. For example, for initial
mesh lengths of Lm0

= 64 for m = 1, . . . ,M0, the mesh
lengths of the second iteration would be Lm1

= 32 for
m = 1, . . . ,M1(= 2M0), and so on. For each successive
grid definition, we can solve for the approximate probability
distributions

Pk(t) = Φkqk(t). (16)

This process is continued until the one-norm difference in
the probability distribution from one iteration to the next is
below a preset level of tolerance:

|Pk+1(t)−Pk(t)|1 ≤ tol, (17)

or until every grid element consists of exactly one state.

B. Probability Concentration

The second refinement algorithm uses upper and lower
thresholds on the approximated probabilities to refine the grid
selection. Suppose that for the current refinement iteration,
the solution of the reduced system is q(tf ), which has an
average value of q̄. Two refinement thresholds are specified:
∆max and ∆min. High probability elements, where

qm ≥ ∆max · q̄, (18)
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are subdivided into two disjoint elements. Adjacent low
probability elements, where

qm + qm+1 ≤ ∆min · q̄, (19)

are merged together. Otherwise, the grid is left unaltered. For
this approach, the refinement strategy is continued until no
further refinements are possible or until Eq. 17 is satisfied
between two successive iterations.

C. Two Grids

The “two grid” scheme is similar to a technique called
“step doubling,” which is often used for implementing error
control in higher order Runge-Kutta methods. The underlying
idea is as follows: Given a coarse grid, Gc, we define a finer
grid Gf in the same manner as in the Section IV-A. These
two grids are integrated separately to find qf and qc. The
two different solutions are then compared at the coarser level
of detail, Gc, which provides a vector of local errors:

Em = |qfm − qcm | , (20)

where each Em corresponds to the integration error of the
less accurate of the two approximate solutions, qc, at grid
point m.

If an entry of Em is below threshold ∆max, the cor-
responding mesh point is accepted, otherwise the element
is divided into two. As before, the refinement strategy is
continued until no further refinements are possible or until
Eq. 17 is satisfied between Gc and Gf .

V. EXAMPLES

To illustrate the methods above, we apply them to a few
simple gene regulatory network models. Specifically, we
consider a general network, where N different species can
activate or repress one another through nonlinear effects on
production rates. For each species n, the propensity function
for a production reaction is given as:

w+
n = k(0)

n + k(1)
n

∏N
s=1 (1 + bsnξ

ηsn
s )∏N

s=1 (1 + asnξ
ηsn
s )

, (21)

where ξs is the population of the sth species; k(0)
n and k(1)

n

are the basal and active production rates for species n; asn
and bsn are the rates at which species s represses or activates
species n; and ηsn is the order of that activation/repression
reaction. Furthermore, each species is assumed to decay as
a first order reaction

w−
n = γnξn. (22)

With the proper choice of parameters, this general form
encompasses many different models of stochastic gene regu-
lation from the literature. Here, we will discuss three models
in particular: (1) simple birth-death or Poisson process, (2)
the genetic toggle switch, and (3) the three-species repressi-
lator model.

A. Poisson Process

One of the simplest stochastic models of gene regulation
is that of the simple birth-death process. In this process
there is only a single species, and the production rate is
simply: w+

i = k. Although very simple, the Poisson process
is worth studying for two reasons. First, it matches the
behavior of a large number of constitutively expressed genes
in yeast [19]. Second, if the birth-death process begins with
an initial Poisson distribution with mean µ(0), then it remains
Poisson-distributed for all future times, and its mean evolves
according to:

dµ(t)

dt
= k − γµ(t). (23)

Since an exact solution is available, this system makes
an ideal testbed upon which to evaluate different CME
approximations.

To test our different methods, we first consider a 1-
species “reaction,” described by the Poisson process. The
degradation rate is set to γ = 1 and production rate is set to
k = 40, corresponding to steady state mean of 40 proteins.
The process starts at ξ(0) = 0 at t = 0. Fig. 2, plots the
computed distributions at times t = 0.5 (left) and t = 5
(right) (in arbitrary units of 1/γ). In Fig. 2, we consider
three different mesh sizes from coarse (top row) to fine
(bottom row). The different lines in the figures correspond to
the exact solution (black), approximate solutions using the
different zeroth-order interpolation schemes (red, blue, and
green), and the statistics of 10,000 stochastic simulations
(gray). In red circles, we plot the un-corrected zeroth-
order interpolations. In green triangles, we correct for the
shape of the distribution in each element (i.e., Eq. 14),
and in blue crosses, we also include the correction for the
transition time across each element (i.e., Eq. 15). As the
mesh becomes finer, all three interpolation approximations
converge to the exact solution (see Panel C). However, the
rate of convergence is not equivalent. For long times (t = 5,
right panels), the two approaches that correct for the shape
of the distribution do a good job of matching the quasi-
steady state distribution (Fig. 2B, right. Both green and
blue give a good approximation), but the uncorrected zeroth-
order approximation does more poorly (red circles give a
poor approximation). At short transient times (t = 0.5,
Fig. 2B, left), approximations that lack a correction for the
transit times (i.e., the green triangles) evolve faster than
the true system, but this issue is well-corrected by Eq.
15 (blue crosses). Considering its success in approximating
both transient and quasi-stationary distributions, we use the
corrected zeroth-order interpolation approach (blue crosses)
from this point forward.

B. Toggle Switch

The second model that we consider is the genetic toggle
switch [20], which consists of two genes, where each gene
is negatively regulated by the other. In the stochastic model
of the toggle switch, the production rates for each of the two
species are given by:
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Fig. 2. Distributions of ξ in the Poisson process at times t = 0.5
(left) and t = 5 (right). The initial conditions i ξ(0) = 0. Distributions
are computed using three different logarithmically distributed meshes with
lengths round({hi−1}) for i = {1, 2, ...}. (A) Coarse mesh, h = 2. (B)
Moderate mesh, h = 1.1. (C) Fine mesh, h = 1.01. In each plot, the exact
solution is shown with a solid black line; the zeroth-order mesh is shown in
red circles; the zeroth-order mesh with distribution shape correction is shown
with green triangles; and the zeroth-order mesh with distribution shape and
transit time corrections are shown with blue crosses. Distributions generated
from 10,000 stochastic simulations are shown in gray.

w+
n = k(0)

n + k(1)
n

1

(1 + asnξ
ηsn
s )

, (24)

for (n, s) = (1, 2) or (2, 1), where k
(0)
n is the basal

production rates and k
(1)
n is the active production rates for

each species n. For our simulations, we have chosen the
parameters:{

k
(0)
n = 1, k

(1)
n = 50, asn = 5, ηsn = 2, γ = 1

}
.

(25)
Fig. 3 shows the marginal distribution of species 1 at short

and long times of t = 1, 10 units of γ.2 Although no exact
solution exists is known for this system, we have previously
shown that the FSP approach provides an arbitrarily close
approximation to the exact solution [10]. With this, we can
now evaluate how close the approximate solution is to the
exact solution for different mesh refinement strategies.

For the 2-state toggle model and a 2-state Poisson model
(a simple extension of the process in Section V-A, where
each species undergoes an independent birth-death process),
we start with a coarse mesh in which every element is 64
states long. We then refine it according to the strategies
discussed in Section IV. Fig. 4 plots the 1-norm error in
the distribution at time, t = 10 versus the number of
states in the reduced Markov chain and for each of the
different mesh refinement strategies. Fig. 4A applies only
the mesh refinement strategies, whereas Fig. 4B applies first
the meshing strategy, followed by the finite state projection
approach. For both systems, the adaptive grid approaches
provide a significant improvement over the passive approach
(compare red and green lines to blue line). For example,
for the toggle model in Fig. 4A(right) the concentration-
based adaptive grid refinement strategy reduces the number

2The system and initial condition are chosen to be symmetric–the
marginal distributions of the two species are equal.
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sive refinement (Section IV-A, blue), probability concentration refinement
(Section IV-B, green), and two-grid refinement (IV-C, red). Gray horizontal
lines correspond to the error achieved from 103, 104, or 105 simulations.
(A) Without FSP reduction. (B) With FSP reduction.

of states by an order of magnitude while maintaining the
same level of accuracy. Applying the FSP reduction on top
of the grid refinement strategy yields another large reduction
in the system dimension, yet in most cases the adaptive
refinement strategies retain an advantage over the passive
approach. For comparison to simulation based approaches
such as the SSA, the gray horizontal dashed lines in Fig. 4
show 1-norm errors in the distributions achieved with 103,
104, or 105 samples.

C. Repressilator

The third system that we consider is a three species
repressilator [21], which consists of three chemical species
that regulate each other through repression in a sequential
feedback loop. It can be considered as a higher dimensional
version of the toggle switch, but can produce significantly
different behaviors. The production rates for each of the three
species is:

w+
1 = k(0) + k(1) 1

(1 + aξη2 )
,

w+
2 = k(0) + k(1) 1

(1 + aξη3 )
,

w+
3 = k(0) + k(1) 1

(1 + aξη1 )
, (26)

where{
k(0) = 0, k(1) = 25, a = 5, η = 6, γ = 1

}
. (27)

Using the final coarse graining method, we were able to
solve for the transient distribution dynamics starting at an
initial condition of x = [20, 0, 0]. Fig. 5A shows the resulting
marginal distributions at three points in time t ∈ {2, 5, 8},
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t = 8 (right). Distributions from 10,000 stochastic simulations are shown
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where each of the species has become the dominant species.
In the model, each individual cell would continue to oscillate
indefinitely, but different cells lose their synchronicity, and
the distributions (and therefore the average populations)
eventually converge to steady state as shown in Fig. 5B. In
this case, the CME could not be solved, and the marginal
distributions are compared to distributions assembled from
10,000 stochastic simulations. Clearly, the approximation
arrived at with the current approach is very close to the exact
solution to the CME.

VI. DISCUSSION

The dynamics of genes, RNA molecules and proteins in
single cells are often described by probability distributions
that evolve according to the set of ordinary differential
equations, known as the chemical master equation. In many
cases, the CME dimension is too large for it to be solved
efficiently, and reductions are necessary. In this paper, we
introduced new approaches to achieve such reductions. These
reductions are similar to finite element approaches, in that
we assume that the probability density of states within small
regions of the configuration space (i.e., elements) follow
simple distribution shapes. We presented two zeroth-order
interpolation schemes, which account for the variation of
probability over each element and for the amount of time
that is taken to transit from one element to the next. We also
suggested three possible approaches for refining the grid on
which the approximation is made.

Furthermore, combining the corrected zeroth-order inter-
polation shapes with the adaptive grid refinement strategies
allowed us to achieve noticeable reductions in the size of
the CME for a relatively small loss of accuracy. Considering
that the computational effort to integrate the CME scales
with O(M3), where M is the dimension of the CME [22],
this represents a potential computational savings of many
orders of magnitude. Such improvements will eventually
enable us to solve the CME for more complicated systems
and will enable faster CME solutions for use in parameter
identification studies.
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