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ABSTRACT Silicon photonics (SiPh) technology has facilitated the deployment of integrated pho-
tonics across different application domains, from ultra-fast communication in Datacom applications to
energy-efficient optical computation in emerging hardware accelerators for machine learning. More recently,
the integration of SiPh and phase change materials has created a unique opportunity to realize adaptable,
reconfigurable, and programmable photonic platforms. In particular, the nonvolatile programmability in
phase change materials has made them a promising candidate for implementing photonic memory cells and
architectures. Accordingly, photonic memory systems and even in-memory photonic computing paradigms
are on the rise, especially given their potential for improving data access in electronic and photonic
processors. However, there are still many challenges in the design and fabrication of phase-change photonic
integrated circuits, which need to be addressed. This article presents a comprehensive survey on the recent
advances and challenges for the integration of phase change materials with contemporary photonic devices
while focusing on the photonic memory application. In particular, we explore phase-change photonic
memory from the material level to the architecture level by presenting an overview of different material-level
characteristics of phase change materials with their optical, electrical, and thermal properties as well as
their integration into SiPh devices and photonic memory architectures and their application for in-memory
photonic computing. We also present a comparison with electronic memory and discuss open research
challenges that must be addressed to further advance phase-change photonic memory towards successful
integration into emerging computing systems.

INDEX TERMS Phase change materials, phase-change memory, in-memory photonic computing, photonic
integrated circuits, silicon photonics.

I. INTRODUCTION
With the rapid growth in the diversity and amount of data in
emerging data-oriented machine learning (ML) and artificial
intelligence (AI) applications, the need for memories with
higher cell densities, lower power consumption, higher scala-
bility, longer lifetime, and higher bandwidth has risen. As the
size and complexity of emerging applications increase, con-
ventional CMOS-based volatile memories, such as SRAMs
and DRAMs, are facing difficulties in meeting energy effi-
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ciency [1], scalability [2], [3], volume [4], speed, and band-
width requirements [5]. These shortcomings motivate the
consideration of alternative memory technologies in future
computing systems, such as phase-change memories. Com-
pared to other nonvolatile memories such as ReRAMs and
Flash memories, phase-change memories offer higher stabil-
ity, enhanced retention time, and higher switching speed [5],
[6], [7], [8], [9].

Phase change materials (PCMs) can switch between the
amorphous and crystalline states in the presence of an
external energy source. Their unique and tunable switching
dynamics upon exposure to an external energy source enable
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them to have two vastly different nonvolatile electrical and
optical properties depending on their state. In early 1971,
a research group from Bell Telephone Laboratories discov-
ered nonvolatile characteristics of PCMs by using As-Te-I
alloys in the very first phase-change-material-based devices,
since the material showed two significantly distinct conduc-
tivity levels depending on its thermodynamic phase [10].
Later in 1987, many companies such as Intel, IBM, and
HITACHI exploited these properties related to phase change
materials to manufacture re-writable data storage devices,
like CDs and DVDs [10].

Due to nonvolatile phase transitions between the two or
more states in PCMs, phase-change memories have recently
shown promise in new nonvolatile memory architectures
to replace traditional DRAMs [11]. Memory cells based
on PCMs may be written to and read from multiple times
with substantially reduced area consumption, improved band-
width, and higher scalability [2], [3]. The energy required to
control the state of phase-change memories can be provided
either via electrical current (through Joule heating) in elec-
trically driven phase-change memories (EPCMs), or using
optical signals (through optical absorption) like a laser
pulse in optically driven phase-change memories (OPCMs).
In EPCMs, data can be stored by changing the conductivity
level induced by the phase transition of the PCM, which in
turn depends on the amplitude and duration of the applied
electrical current. In contrast, in OPCMs, data is stored in
the optical transmission level induced by the phase transition
of the PCMs depending on the power and duration of laser
pulses. A single OPCM cell can have up to 32 transmission
levels, which is enough to store up to five bits per cell [12].
This leads to about two times enhancement in memory per-
formance, about four times lower read energy-per-bit and six
times lower write energy-per-bit compared to conventional
DRAMs [5], [12].

In addition to having more energy-efficient data storage,
reducing energy and latency for data movement on electrical
links has always been a challenging task in CMOS integrated
circuits. For instance, on amodern CMOS computing system,
0.1–0.2 pJ/bit is required to transfer data over a 1-mm-long
electrical interconnect used for on-chip communication, such
as in the case of a processing core accessing an L2 cache
bank. This number goes up to 1–4 pJ/bit over longer electrical
links, such as in the case when a core accesses remote L3
cache banks. In addition, it takes up to 30 pJ/bit for off-chip
communication when a core needs to access the CMOS main
memory (i.e., DRAMs) [13], [14], [15]. While the absolute
values of these energy costs may seem low, in fact, they are
significantly higher than the energy budget required for future
computing systems. This data movement overhead imposes
severe limitations on the scalability of CMOS integrated
circuits [13]. To address the aforementioned limitations, due
to their compatibility with CMOS integrated technology, sil-
icon photonic (SiPh) devices have been widely employed
in emerging integrated circuits to exploit photons instead

of electrons to transfer data [16]. In particular, state-of-the-
art SiPh links have been used to support on-chip and off-
chip communication with substantially lower energy con-
sumption and latency over longer distances, with a higher
bandwidth (e.g., ≈51.2 Tb/s compared to 112 Gb/s for state-
of-the-art electrical links) [17]) than conventional electrical
links. Thus, SiPh offers scalability with enhanced energy effi-
ciency and performance and compatibility with contemporary
CMOS fabrication technology, making it an attractive choice
to support data movement in future processing chips. For
example, the work in [5] suggests using SiPh links instead
of electrical links to facilitate the data movement to and from
OPCM cells to further minimize the latency and static power
consumption in future photonic memory systems [5].

Despite the benefits that OPCMs may offer, research sug-
gests that implementation of OPCM is challenging due to
its essential need for electro-optical and opto-electrical con-
versions to convert the electrical signals coming from a
memory controller to optical signals and vice versa. Con-
sequently, one cannot simply replace a DRAM cell with an
OPCM cell. Therefore, the entire memory architecture needs
to be redesigned to make it compatible with OPCM arrays.
In addition, OPCM cells are extremely sensitive to thermal
variations stemming from the static power consumption of
nearby photonic and electronic components. This can lead
to variations in optical transmission level, hence increasing
the write and read error rates [5]. A higher area consumption
compared to conventional DRAM main memories can be
considered as another challenge facing the implementation
of OPCMs.

In this paper, we present a comprehensive survey on
recent advances and challenges in the application of PCMs
from material-level to system-level in photonic memory and
in-memory computing systems. In addition, we discuss sim-
ulation methods and challenges facing the design of phase-
change memories and in-memory computing units based on
PCMs in detail. A few review papers on similar topics have
been published in recent years. The work in [18] presents
a survey on the application of PCMs for reconfigurable sil-
icon photonics. Starting from a brief overview of the opti-
cal properties of PCMs, this work focuses on the applica-
tion of PCMs in silicon-photonic switching networks and
modulators. In addition, it presents a brief survey of the
application of PCMs in photonic computing units. However,
the paper’s outlook and scope are limited to device-level
designs. Hence, the challenges of PCM-based memory and
in-memory computing systems have not been discussed. The
work in [19] and [20] also presents a survey on photonic
devices based on PCMs. However, these papers focus on
the thermodynamic and switching properties of PCMs and
their application in reconfigurable photonic devices, such as
active plasmonics, metamaterials, and color displays. They
do not discuss PCM-based photonic memory and in-memory
computing systems and related open challenges, as it is done
in this survey. The organization of this paper is as follows:
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FIGURE 1. (a) Set and reset procedures in phase-change memories.
(b) The most conventional Ge-Te-Sb alloys for nonvolatile photonic
memory applications [18]. Permission: https://creativecommons.org/
licenses/by/4.0/.

• Section II presents an overview and fundamentals of
PCMs and their working mechanisms for memory appli-
cations, along with their thermal, electrical, and optical
properties as well as their physical and thermodynamic
properties.

• Section III provides an overview of the applications
of PCMs in data storage cells for photonic memo-
ries and their different design approaches and read
and write policies. Moreover, we review recent phase-
change memory architectures and applications of PCMs
to implement in-memory computing units for compu-
tationally expensive applications, such as ML and AI
applications. Furthermore, this section describes the
simulation of a single photonic memory cell based on
GeSbTe alloys (GST) for photonicmemory applications.

• Section IV presents a bottom-up overview of the
design challenges of OPCMs and their architectures.
Challenges such as power and latency trade-offs, the
complexity of OPCM’s designs, and endurance will
be discussed in this section. Some of the state-of-the-
art applications of phase change materials for pro-
grammable photonics and photonic tensor cores will be
also discussed in this section.

• Section V concludes the paper and presents a summary
of different applications of PCMs reviewed in this paper.

II. PHASE CHANGE MATERIALS: AN OVERVIEW
In this section, we present an overview of PCMs, including
their thermal, optical, and electrical properties.

A. FUNDAMENTALS OF PHASE CHANGE MATERIALS
The molecular structure of a material can have a big impact
on its optical and electrical characteristics. Furthermore, even

the same material with a specific molecular structure at room
temperature, such as silicon (Si), can have variable opti-
cal and electrical characteristics depending on its crystallo-
graphic orientation. When heated with an external energy
source (i.e. electric field or optical signal), the temperature of
PCMs starts to increase by absorbing the energy of the heat
source. One important material parameter related to PCMs is
the melting temperature (Tl). The regions of the material after
exposure to the heat source that has a temperature above Tl
will bemelted and quenches (cools downwith the rates higher
than 109 K.S−1 [21]) in about 700 picoseconds [22]. The
quenched region will have an amorphous structure regardless
of the initial state of the material. This process is called reset
(see Fig. 1(a)) or amorphization. The temperature distribution
of the material with a given geometry can be obtained by
solving the unsteady-transient heat flow equation [22]. The
simulation approaches of PCM-based photonic devices will
be explained in detail in Section III-E.

PCMs can repeatedly change their phase from amor-
phous (crystalline) to crystalline (amorphous) states (see
Fig.1(a)). In addition, PCMs can be fully crystallized, fully
amorphous, or partially crystallized/amorphous (intermedi-
ate state) depending on the duration and power of the heat
source. Hence, different electrical and optical properties at
each state can be achieved. Typically, we desire to have a
low Tl because it will result in low power and fast reset
(amorphization) of the material. Another important material
parameter is the crystallization temperature (Tg). When the
material in the intermediate state absorbs energy through an
energy source, the regions of the material which have higher
temperatures than Tg and lower than Tl will recapture the
crystalline structure. This process is called set (see Fig. 1(a))
and can take hundreds of nanoseconds or higher [21]. High
Tg is desirable to improve the phase stability of the material,
which is crucial to enable reliable data retention in nonvolatile
memories [23].

The response time of nonvolatile memory cells plays an
important role in determining the average memory-access
latency in memory systems. The average memory-access
latency needs to be as low as possible. The reason for this
is that in highly parallel processors, most of the time is
consumed during the multiple access to the main memory per
cycle, and having high average memory-access latency can
act as a bottleneck for the speed of the whole system. Thus,
the lower average memory-access latency leads to a higher
speed of the whole processing system [24], [25]. The average
memory latency can vary from hundreds of picoseconds to
hundreds of nanoseconds depending on the architecture of the
cell types and the memory architecture. High read and write
latency of the memory cells lead to higher average memory
latency and lower read and write throughput of the memory
systems.

The average memory latency can be decreased by increas-
ing the number of bits stored in a single OPCM cell [5].
The very first materials that showed such a fast response,
as well as high optical contrast between the two phases to
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store logic 1 or logic 0, were GeTe and GeTeSnAu alloys
[26]. In addition, pseudo-binary alloys of GeTe-Sb2Te3 like
Ge1Sb4Te7, Ge1Sb2Te4, and Ge2Sb2Te5 (known as GST)
were used for photonic memory applications (see Fig. 1(b))
[26]. The state-of-the-art OPCMs require 25 nanoseconds to
be written and read [25]. In addition, PCMs must have a high
optical transmission contrast (when the optical transmission
level is being used to store the data) and a high resistance
contrast for different states (when conductivity or resistance
level is being used to store the data), long durability over time,
and a large capacity to be considered as a suitable candidate
for data storage applications. Among the aforementioned
materials, GST is the most popular material for photonic
nonvolatile data storage because of having distinctive opti-
cal transmission and resistance levels related to crystalline
and amorphous states. Conventional PCMs (e.g., GST) have
a fast transition speed and different distinctive optical and
electrical properties depending on their phase. PCMs tend to
maintain their state even when the external energy source is
turned off, making them a promising alternative for develop-
ing nonvolatile photonic memory cells due to their dynamic
and adjustable optical and electrical characteristics in each
state [10], [26], [27], [28], [29], [30].

B. THERMAL PROPERTIES
One of the most important parameters related to PCMs is
thermal conductivity which determines the rate of heat trans-
fer in the material. As the thermal conductivity increases,
the material is able to absorb and transfer the heat faster.
In the previous section, we discussed how the energy of a heat
source will be absorbed by the material where this energy
will then trigger the phase transition of the PCM. PCMs
have a relatively low thermal conductivity which means that
they are unable to quickly absorb the energy from a mate-
rial with low thermal conductivity. This makes the phase
transition to be slow in PCMs. As we enhance the thermal
conductivity of the material, lower energy will be needed to
induce the phase transition in the material because a higher
portion of the absorbed energy contributes to the temperature
variation of the material [31]. The work in [32] and [33]
reports experimental results on thermal conductivity for the
most conventional PCMs (GST) in amorphous and crystalline
states. We can see from Table 1 that for GST, the thermal
conductivity for amorphous and crystalline GST is about
0.19 and 0.57W/mK, respectively. This is relatively low com-
pared to conventional semiconductormaterials such as silicon
with thermal conductivity of 148W/mK at room temperature.
Table 1 shows the thermal properties of different materials
that can be used to obtain a single photonic memory cell for
data storage.

Another important thermal property related to PCMs is the
thermo-optic effect. So far, we have discussed how phase
transitions in PCMs can be induced by optical or electrical
signals. However, considering the physics of the devices, any
change in the temperature of thematerial can impose a change

in its optical properties, such as the material’s refractive
index and extinction coefficient via thermo-optic effect. The
refractive index is a parameter that determines the group
velocity of an electromagnetic wave in a medium. Also, the
extinction coefficient is a parameter which describes the loss
(absorption) of an electromagnetic wave in a medium. The
thermo-optic coefficient of a material quantifies the changes
in its optical properties in the presence of thermal variations.
The work in [36] proposed analytical models to monitor
the thermo-optic effect and changes in the refractive index
and extinction coefficient in GST caused by temperature
variations. The work in [36] suggests that the change in the
refractive index (n) of PCMs leads to an excessive phase shift
while the change in the imaginary part (κ) leads to additional
attenuation caused by material loss. Therefore the ratio of
the change in the real part of the refractive index to the
change in the imaginary part of the refractive index (1n/1k)
was used as a figure of merit for the proposed analytical
models in [36]. They captured the real and the imaginary part
of the thermo-optic coefficient of GST experimentally and
showed that the real and imaginary parts of the crystalline and
amorphous GST can change significantly under temperature
variations.

C. ELECTRICAL PROPERTIES
The current flow in PCMs has a different nature in compari-
son to semiconductors. Because of their molecular structure,
resistance in PCMs can be described by electrons hopping
between traps in the PCM’s lattice. Like any other molec-
ular structure, the current in a PCM can be modelled via
Poole-Frenkel transport of electrons through traps [10], [26].
Therefore, the current flow in a PCM depends on the distance
and the potential barrier among traps. Due to the crystallo-
graphic structure of PCMs in amorphous state, the potential
barrier between traps is higher. Thus, PCMs in the amorphous
state have much higher resistance than in the crystalline state.
By applying an electric field to a PCM, the potential barrier
between traps can be lowered, and so will the resistivity of
the PCM in the amorphous state. Experimental results show
that such resistivity decreases linearly with an increase in the
electric field [10]. Further increasing the applied electric field
will lead to a collapse of the local electric field between traps,
which leads to a negative resistance in thematerial and a sharp
drop in the resistivity without any phase change. In a negative
resistance state, switching off the voltage source will lead
to regaining the original resistance level of the material in
amorphous state in the absence of the electric field. Applying
a sufficiently high electric field (≈ 562 MV/m [37]) over a
specific time period (≈ 100 ns [37]) will lead to reaching
crystallization temperature (Tc) and a phase change from
amorphous to crystalline state.

A PCM in the crystalline state has higher conductivity
compared to amorphous state. This property is nonvolatile
and revertible, meaning that switching off the voltage source
will not change the resistivity of the PCM in the crystalline
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TABLE 1. Thermal properties of common phase change materials used in phase-change memory cells (a: amorphous and c: crystalline).

state. The same procedure can be exploited to change a
PCM’s state from amorphous to crystalline [10], [26], [27],
[28], [29], [30]. Depending on the electrical current’s ampli-
tude and duration, energy will be provided for a phase-change
memory cell through joule’s heating (Ohmic heating) to trig-
ger the phase transition to perform write or reset.

D. OPTICAL PROPERTIES
Understanding the optical properties in PCMs is of the
essence when it comes to their application in photonic inte-
grated circuits. Depending on their state, PCMs have various
optical characteristics. As a general rule and in comparison
to the amorphous state, PCMs in the crystalline state are
extremely absorbing due to their high extinction coefficient
and this is the main reason for the optical transmission con-
trast they exhibit. This property makes PCMs suitable for
implementing phase-change memories by storing logical bits
and decoding them into the optical transmission levels of
the material originating from phase transitions. PCMs can
also take intermediate states, which means that some portion
of them can be in the crystalline state while the remaining
portion is in the amorphous state.

PCM’s effective permittivity determines the electric polar-
izability. Electric polarizability describes the dipole moment
of the material when subjected to an electric field and
directly affects the material’s dielectric constant and refrac-
tive index [40]. The effective permittivity (εeff ) of a PCM
in an intermediate state, can be estimated using the Lorenz
mathematical model [22], [41]:

εeff (λ) − 1
εeff (λ) + 2

= Xf ×
εc(λ) − 1
εc(λ) + 2

+
(
1 − Xf

)
×

εa(λ) − 1
εa(λ) + 2

.

(1)

Here, Xf is the crystalline fraction and takes a number
between 0 and 1, illustrating the portion of the PCM which is
in the crystalline state. Moreover, the wavelength-dependent
dielectric permittivity function (ε(λ)) can be calculated as:

εa = n2a, (2)

εc = n2c, (3)

where nc and na are the complex refractive indices of the
PCM. Finally, using (1), the real and the imaginary part of
the effective refractive index—which determines the phase
delay and absorption of the light in a material—of a PCM in

an intermediate (mixed) state can be estimated as [22]:

neff =

√√
(ε1 + ε2)

2
+ ε1

2
, (4)

keff =

√√
(ε1 + ε2)

2
− ε1

2
. (5)

In (4) and (5), ε2 and ε1 are the real and imaginary part of
εeff (λ) in (1) [22].
The refractive index (n) and extinction coefficient of con-

ventional (κ) PCMs are depicted in Fig. 2. We can observe
that the materials in the crystalline state have a much higher
extinction coefficient compared to their amorphous state.
This means that materials in the crystalline state absorb more
optical power compared to the amorphous state and convert
it into heat to be used to trigger the phase transition. The
amount of absorbed optical power in the crystalline state is
significantly higher compared to the amorphous state because
of the imaginary part of the refractive index in the crystalline
state is higher compared to the amorphous state. The absorp-
tion coefficient—α (cm−1)—of PCMs can be calculated from
their extinction coefficient (κ) for any given wavelength
according to the following model [10]:

α =
4πκ

λ
. (6)

Note that when the extinction coefficient is higher, the
absorption coefficient of thematerial is also higher, and hence
laser pulses with lower power and duration are needed to
trigger the phase transition. From Fig. 2(c), we can observe
that GST has reasonably high absorption due to its high
extinction coefficient in the crystalline and amorphous state
for O-band (1260 nm–1360 nm) and C-band (1530 nm–
1565 nm), compared to other PCMs which make the phase
transitions efficient in terms of latency and energy consump-
tion. It is also shown in Fig. 2 that the extinction coefficient
in the amorphous state is lower than that in the crystalline
state which, compared to the crystalline state, results in more
transparency of PCMs in the amorphous state as well as lower
absorption in this state.

III. PHOTONIC MEMORY BASED ON PHASE CHANGE
MATERIALS
In this section, we review the state-of-the-art photonic mem-
ory storage cells as well as their advantages and challenges,
recent work on photonic memory architectures, and finally,
some recent efforts on using PCMs for photonic in-memory
computing.
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FIGURE 2. Refractive index profile of the most conventional phase change materials. n is the real part of the refractive index and k is the imaginary part
of the refractive index (extinction coefficient) [38], [39]. Permission: https://creativecommons.org/licenses/by/4.0/.

A. EPCMs AND OPCMs
In Section II-A, we showed that to trigger phase transitions
in a PCM, the material should absorb energy, which leads to
temperature variation in the PCM. The required energy for a
phase change can be provided by absorbing the energy from
an external heat source with a specific duration and power
level. For example, the required energy can be provided via
electrical current or optical laser pulses. Because of light
absorption in PCMs, optical signals can be used to trigger the
phase transition and optically control PCMs.

In electrically controlled PCMs [42], [43], [44], electrical
current or bias voltage can be used to trigger the phase
transition in the PCMs. By applying an electric field, the joule
heating in the PCM can trigger the phase transition. Depend-
ing on the amorphous/crystallized portion of the material, the
resistance and optical transmission in the PCM will change.
Eventually, the state of the PCM can be read via an optical
or electrical read signal. For hybrid cells, it is possible to set
the state of the phase-change memory cells using an optical
signal and read the state using an electrical signal, and vice-
versa [45], to reduce the energy consumption of the cells.
To take advantage of the interesting properties of PCMs to
implement phase-change memories, one should have a clear
insight into their electrical and optical properties.
The most conventional way to exploit a PCM for mem-

ory architectures is to control the cells with an electrical
field, known as electrically-driven phase-change memories
(EPCMs). The work in [46] proposed a method to archi-
tect EPCMs to address the scalability issue of conventional
DRAMs. Their baseline design showed higher energy con-
sumption and latency compared to conventional DRAMs.
However, they realized that using EPCMs instead of con-
ventional DRAMs could help further scale the architecture.
There are several other memory architecture designs based
on EPCMs [6], [47], [48]. Table 2 lists some advantages
and disadvantages of EPCM-based architectures compared to
conventional DRAMs based on some recent work in this area.
Compared to DRAMs, EPCMs can store a higher number of
bits per cell (up to 2 bits per cell [5]), leading to multilevel
cells (MLCs), and they are more scalable and stable under
thermal variations. However, they suffer from higher latency

TABLE 2. Advantages and disadvantages of EPCMs compared to DRAMs.

and energy consumption (e.g., ≈50 ns for reset and ≈60 ns
for read [5]), require additional circuitry such as charge pump
circuits, and have lower endurance because of aging of EPCM
cells (e.g., 1e8 writes compared to DRAMs that support
>1e16 writes [6], [9], [46], [48], [49].

Despite several advantages of EPCMs, such as enhanced
MLC capacity with up to 2 bits per cell [5], [6], they suffer
from high power consumption and latency. This limits the
employment of EPCMs in emerging nonvolatile data storage
architectures. To overcome these limitations, optically driven
phase-change memories (OPCMs) have been recently intro-
duced that use electromagnetic waves instead of electrons to
control the state of phase-change memory cells. OPCMs will
be discussed in detail in Section III-B. Here, we give a com-
parison of OPCMs against EPCMs. Most of the limitations
related to EPCMs can be addressed by exploiting OPCMs
in the optical domain. Table 3 highlights the comparison
between OPCMs and EPCMs. Compared to EPCMs, OPCMs
offer lower latency and power consumption (e.g., 60 to 130 pJ
with 25 ns for read and write [12]), higher MLC capacity
(up to 5 bits per cell [12]), and higher bandwidth (e.g.,
1 GHz [53]) with a lifetime of 1e6–1e8 writes per cell [54].
However, such benefits come at the cost of using a complex
electro-optic unit, re-design of read and write policies, accu-
mulated optical loss and crosstalk upon scaling, need for sili-
con photonic links, and sensitivity to thermal variations. Due
to the novel nature of OPCMS, the research related to exploit-
ing OPCMs for scalable nonvolatile photonic memory archi-
tectures is constantly evolving [5], [12], [18], [36], [53], [55].

B. OPCM STORAGE CELLS
In this section, we first discuss the compatibility of sili-
con nitride and silicon platforms with PCMs as well as the
benefits each platform offer when integrating with PCMs.
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FIGURE 3. (a) Schematic of a photonic-memory cell using Si3N4 waveguide and GST. Write and erase can be performed by applying optical
signals. (b) Transmission change for the amorphous and crystalline state. [57], [58]. Permission: https://creativecommons.org/licenses/by/4.0/.

TABLE 3. Advantages and disadvantages of OPCMs compared to EPCMs.

Moreover, we present a comprehensive review of different
designs to implement single-bit and multi-bit OPCM cells
and a comprehensive review of plasmonics-based OPCM
cell’s performance.

When it comes to integrating PCMs with state-of-the-art
photonic integrated devices and circuits, the substrate mate-
rial is very important as it will directly impact the system
performance in terms of speed, energy efficiency, and foot-
print. Over the past few years, Si3N4 has been the preferred
substrate to be integrated with PCMs due to its lower thermal
conductivity (≈43 W.m−1.K−1 [59]) compared to silicon
(≈148 W.m−1.K−1 [59]). Accordingly, the minimum energy
required to trigger a nonvolatile amorphization is lower when
using Si3N4 (e.g., 42 pJ) compared to silicon-based GST
(e.g., 388.4 pJ) [59]. This makes the Si3N4 platform much
more energy efficient compared to silicon platforms for PCM
integration. However, silicon could offer other advantages
over Si3N4 such as a smaller footprint, enhanced mode con-
finement, higher speed, and better integration with CMOS
integrated circuits.

The work in [59] presented a detailed experimental anal-
ysis of the performance of silicon and silicon-nitride-based
OPCMs. It was shown that integrating GST on top of a
Si3N4 waveguide leads to a propagation loss of 0.079–
2.470 dB/µm, which is higher than silicon-based GST cells at
0.059–1.445 dB/µm in the C-band. The reason for the lower
propagation loss in silicon-based OPCMs can be explained
via refractive index contrast between silicon and GST. The
refractive index contrast between silicon and GST is smaller
than the refractive index contrast between silicon nitride and
GST. This leads to lower scattering loss and reflections, and

hence better matching of the optical mode in the underlying
waveguide and GST. Therefore, a lower propagation loss is
observed. The large refractive index contrast between silicon
and the upper cladding of the waveguide (the air was consid-
ered as upper cladding in [59]) is another reason for the lower
propagation loss of silicon-based OPCMs compared to those
based on silicon nitride. The large contrast in the refractive
index of silicon and air leads to better confinement of optical
modes in silicon-based waveguide. Therefore, waveguides
with smaller widths (e.g., 500 nm compared to 1.3 µm for
silicon nitride [59]) will be needed so that the confined light
in the waveguide can interact with GST. This reduces the
evanescent coupling of the light to the GST, resulting in a
lower propagation loss in silicon-based OPCMs compared to
those based on silicon nitride [59].

In [59], it was shown that using silicon platforms can lead
to a more compact footprint, higher energy consumption,
and reduced amorphization time. Silicon compatibility with
CMOS foundries makes it the preferred platform for Tele-
com, Datacom, data processing, and in-memory computing
applications. On the other hand, silicon nitride is the preferred
platform for photonic memories due to its lower thermal con-
ductivity and hence higher energy efficiency. Higher thermal
conductivity of silicon results in higher power dissipation to
achieve the needed transmission contrast due to the presence
of PCM, and this leads to the lower energy efficiency of
silicon platforms compared to silicon nitride.

State-of-the-art reconfigurable SiPh integrated circuits
operate based on the thermo-optic or free-carrier-dispersion
effect of silicon. Such devices suffer from multiple limita-
tions such as a large footprint (e.g., >100 µm) and high
power consumption (e.g., >1 mW) [60]. This is one of the
main motivations for using PCMs in SiPh integrated circuits.
Regarding the choice of PCMs, among the different options
we introduced in the previous section, GST is the most popu-
lar one to be integrated with silicon-on-insulator (SOI) and
silicon nitride photonic devices. The reason for this is the
high optical contrast between two amorphous and crystalline
states in GST and the stability of crystallographic phases
over time compared to other options [60]. Apart from GST,
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FIGURE 4. Different designs for photonic memory storage cells: a) Using
partially etched MRRs. (b),(c) Simulated optical modes using COMSOL
Multiphysics for a waveguide with GST on top in amorphous and
crystalline state, respectively. (d),(e),(f) Fabricated storage cells with
MRRs, MZIs, and beam splitters, respectively [62]. Permission:
https://creativecommons.org/licenses/by/4.0/.

Ge-Sb-Se-Te alloys (GSST) are another type of PCMs with
great promise to be integrated with photonic devices. GSST
offers enhanced thermal conductivity (see Table 1) and lower
optical power loss compared to GST. Optical loss is a param-
eter that lower the optical signal amplitude from the input
to the output of a photonic device. Optical power loss is
one of the main factors that limits the scalability of silicon
photonic integrated circuits. GSST also shows better lifetime
and thermal stability compared to GST [61].

Considering integrating GST with silicon nitride platforms
to implement OPCM cells, the work in [53] proposed a
design based on integrating a GST thin film with a length
of 5 µm and a thickness of 10 nm with a silicon nitride ridge
waveguide (see Fig. 3). This design is able to store a logic
bit ‘‘0’’ or ‘‘1’’ depending on the state of the GST on top
of the Si3N4 ridge waveguide. When the amorphous GST
turned into the crystalline state upon exposure to an optical
signal, the transmission of the GST changes by about 21%,
which corresponds to logic bit ‘‘0’’ (erase procedure). This
is achieved by applying intense laser pulses for a duration of
100 ns with a total energy of 533 pJ. Since the crystalline
GST absorbs almost 80% of the input power, 430 pJ energy
is needed to trigger the phase transition from crystalline to
amorphous state. The reason for a lower energy requirement
to change from the crystalline to amorphous state is the
higher absorption coefficient (or higher extinction coefficient
as shown in Figs. 2(c) and 2(d)) of GST in the crystalline
state compared to that in the amorphous state. It was also
demonstrated in [53] that the optical transmission contrast
can be increased by increasing the length of the GST. The
PCM-based photonic memory cell that was proposed in [53]
is able to store only a single bit (either a ‘‘0’’ or a ‘‘1’’).
This puts additional limitations on the scalability and power
consumption of photonic memory arrays build using such a
cell to store more than one bit per cell based on this design.
Leveraging the single storage cell proposed in [53], multiple
optical storage cell structures can be designed using passive

silicon photonic devices, such as those based on beam split-
ters, Mach–Zehnder interferometers (MZIs), and microring
resonators (MRRs). Some of these example designs for a
single optical storage cell are depicted in Fig. 4.

The work in [62] performed a detailed analysis of the per-
formance of different photonic cells demonstrated in Fig. 4
with different geometries for broadband photonic applica-
tions. In this work, performance optimization of the cells was
performed by altering the PCM cell geometry. It was shown
for the race-track MRRs in Fig. 4(a) that different optical
parameters, such as quality (Q)-factor, extinction ratio, and
resonant wavelength, can be used to read the GST state
because of the significant contrast between their values for the
amorphous and crystalline state. For instance, it was shown
that there can exist a significant difference in the Q-factor
when the phase of the PCM (GST was used in [62]) changes
from the amorphous to crystalline state. In addition, it was
shown that the contrast between Q-factor of a single cell
increases as the width of the GST cell increases. Using a
single-cell OPCM, the work in [63] showcased how a single
MRR-based OPCM cell can be scaled to 256 cells by cascad-
ing them to obtain an OPCM-based architecture with 512-bit
capacity. The proposed architecture was also experimentally
tested to store a small digital image. In this design, each
OPCM cell is able to store only two bits. An optical pulse
was used with a total energy of 890 pJ for amorphization
of the GST in each cell, which makes this design extremely
power-hungry as well as having high write latency. In addi-
tion, using this design in a photonic memory architecture
leads to constraints on parallelism because of the lower MLC
capacity (i.e., two bits per cell).

PCMs like GST show better optical transmission contrast
in certain wavelength bands. This can be observed by consid-
ering the refractive index and extinction coefficient in PCMs
depicted for different wavelengths in Fig. 2. As a result,
having an OPCM cell design that can operate in a broad
wavelength range is important. This is also helpful because
of its effect on the scalability and energy efficiency of the
OPCMs. Having OPCMs working with a broader wavelength
range enables using a larger number of bit-lines to address,
read, and write cells [5]. But realizing OPCMs working
with a broader wavelength range is challenging because of
PCMs’ refractive index profile. Taking GST as an example,
from Fig. 2(c), we can see that the change in the refractive
index and extinction coefficient is significant under a wide
wavelength range (e.g., 800–1600 nm in Fig. 2(c)). This will
prevent having stable transmission levels over a wide range
of wavelengths and can lead to a reduction in OPCMs’ MLC
capacity and variation in the transmission level of the cell over
time.

The work in [61] showed that by using a PCM based on
GSST (Ge2Sb2Se4Te1) one can achieve a 2-bit nonvolatile
photonic storage cell to work with a broader wavelength
range (1–18.5 µm) and with enhanced crystallization ability.
GSST can be also exploited to tackle problems related to the
variations in the optical properties of GST caused by thermal
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FIGURE 5. (a) Fabricated photonic memory storage cell. (b) Programming
and erasing scheme of the cell in C-band and L-band. (c) Change in
crystalline area of the cell and therefore transmission against the pulse
energy. (d) Finite element modelling (FEM) simulation of the sample to
solve the heat transfer equations in GST based on the input energy of the
pulse. The dark regions have amorphous state [12]. Permission:
https://creativecommons.org/licenses/by/4.0/.

variations in photonic applications [36] because of having
a lower thermo-optic coefficient and being less susceptible
to thermal variations, which results in having higher thermal
stability. In [64], it was shown how using GSST instead of
GST in MZI- and directional couplers (DC)-based photonic
switches can enhance the insertion loss and crosstalk noise.
For a single switching element using GSST, an insertion loss
of 0.04–0.4 dB and crosstalk of −32 dB were obtained [64].

The attenuation coefficient is a parameter that can be used
to analyze the switching dynamics of PCMs. The attenu-
ation coefficient can be defined as the amount of optical
power being absorbed by a PCM per unit length. The work
in [65] developed analytical models to model the attenua-
tion coefficient due to absorption of GST in the amorphous
and crystalline state. Having such a model helps analyze
and optimize the switching dynamics of GST for photonic
switching networks and data storage applications. Leveraging
such models, [65] aimed at optimizing different parameters
such as thickness, width, and length of GST cells for fast and
energy-efficient multilevel switching of optical data storage
units and photonic switching networks. It was shown that as
the width of the GST sample increases, the absorbed power
in GST will increase and the input optical power will be
attenuated evanescently along the length of GST.

As discussed before, PCMs can take amorphous state,
crystallised state, or amorphous/crystalline (intermediate)
state. Recall that by controlling the crystallization fraction of
a PCM used in a phase-change memory cell, we can realize
multilevel photonic memory data storage cells [11], [12].
Such a behavior is shown in Fig. 5 where the crystalline
fraction of the PCM can be controlled through the input
optical signal energy. From Fig. 5, we can see that for the
given 2-µm-long GST sample, 180 pJ is needed to induce
a 60% change in the crystallization fraction. Note that the
initial state of the GST sample in this work was the crystalline

state. The crystallization fraction of PCMs can be controlled
by pulse amplitude modulation (PAM) or pulse width modu-
lation (PWM).

The work in [12] experimentally realized up to a 5-bit
OPCM cell by controlling the crystallization fraction which
leads to obtaining up to 32 different transmission levels. A
50-ns laser pulse was used with variable amplitude (depend-
ing on the number of the bits) to program the cell as well as
a 50-ns high amplitude laser pulse followed by a 200-ns low
amplitude laser pulse to erase the cell. We can observe from
Fig. 5 that programming the cell—which implies the phase
transition of crystalline to amorphous—takes multiple pulses
with the same duration but different power. In addition, [12]
proposed a novel double-step pulse controlling for phase-
change memory cells as well as a detailed analysis of pulse
parameters on the multilevel cell dynamics.

Plasmonic devices are a category of photonic devices
which deal with the interaction of free electrons (metals) and
an electromagnetic wave, like light. Upon interaction with
incident light, the free electrons in the metals start oscillating.
The oscillation of electrons, which is called the plasmonic
effect, can be modeled via the Drude model and it is called
surface plasmon [66]. The latency and energy efficiency
of a single phase-change memory cell can even be further
enhanced by improving the PCM-based photonic memory
cell’s design. The work in [67] presented a novel method
to enhance the switching capability of a GST cell in terms
of latency and energy efficiency for photonic memories.
In particular, it was shown that integrating the GST cell with
two sub-micron nanoantennas ( made with silver) can sig-
nificantly enhance the light-matter interaction between SiN
waveguide and GST through the plasmonic effect. Therefore,
this leads to write/erase speed of 2–20 ns and write/erase
energies of 2–15 pJ, which is about 2 orders of magnitude
improved compared to contemporarymultilevel GST cells for
photonic memories.

As another example of exploiting the plasmonic effect
to enhance the light-matter interaction in OPCM cells, the
work in [68] proposed an all-optical OPCM cell using the
plasmonic effect. It was shown that by integrating silver
nanostructures with GST, the performance of an MRR-based
OPCM cell in terms of insertion loss, optical transmis-
sion contrast, and area consumption can be significantly
improved. Thus, higher number of bits can be stored in a
single OPCM cell with lower area consumption and latency,
which makes the memory more scalable and energy efficient.
The schematic of the design is shown in Fig. 6. As it can be
seen from the figure, the design consists of an MRR-based
OPCM in which the GST is surrounded with silver nanos-
tructures that lead to enhancement in the GST-light inter-
action through the plasmonic effect. Three different designs
based on silver/GST fabrication were investigated. In the first
design, the silver/GST structure was fabricated on top of the
silicon-nitride waveguide and is called the non-embedded
design (see Fig. 6 (b)). The second design includes fabricating
the silver/GST structure halfway inside the silicon-nitride
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FIGURE 6. (a) Plasmonically enhanced all-optical MRR-based OPCM.
(b) The silver/GST structure fabricated above a silicon-nitride waveguide.
(c) The silver/GST structure fabricated halfway in a silicon-nitride
waveguide. (d) The silver/GST structure fabricated in a silicon-nitride
waveguide [68]. Permission: https://www.mdpi.com/openaccess.

waveguide and is called the half-embedded design (see Fig. 6
(c)). In the last design, the silver/GST structure was fab-
ricated inside the silicon-nitride waveguide and is called
the full-embedded design (see Fig. 6 (d)). The experiments
in [68] showed 13.7% optical contrast between the amor-
phous and crystalline state when the silver/GST structure
is fabricated above the silicon-nitride waveguide (the non-
embedded design). This was significantly higher than the
other two cases: 9.6% for the half-embedded and 6.1% for
the full-embedded design. In addition, for the non-embedded
case, a maximum insertion loss of 2.3 dB and a minimum
insertion loss of 1 dB per cell was reported for the GST in
the amorphous and crystalline state, respectively. The overall
insertion loss was higher for the other two design cases.
Finally, [68] showed that their design can gain from a more
compact footprint per OPCM cell with dimensions of 50 ×

90 nm2, which is significantly smaller compared to traditional
OPCM cells.

C. OPCM ARCHITECTURES
As the size and complexity of data-driven applications
increase, memories with a higher cell density, lower power
consumption, and higher bandwidth are required to carry
out computationally intensive operations. The work in [69]
focused on simply replacing the electrical links with silicon
photonic links without redesigning the memory architecture
to enhance the latency of EPCMs. The approach requires
multiple electro-optical (E-O) and opto-electrical (O-E) con-
versions to convert the electrical signals to optical signals
and vice versa. As the number of O-E and E-O conversions
increases, the energy efficiency in the memory architecture
will decrease. Note that EPCM cells are being used in mem-
ory architectures because of their benefits in terms of scala-
bility and thermal stability [46].

OPCMs can alleviate the scalability, power consumption,
and bandwidth limitations of conventional memories, such as
DRAMs. However, it is inefficient to simply exchange the
EPCMs with OPCMs in the same architecture because the
electrical signals coming from the memory controller cannot
be directly employed to write, read, or program the OPCMs.

Therefore, to adapt the OPCMs to state-of-the-art memory
architectures, a complete redesign of the memory will be
required to maintain the benefits of OPCMs. In particular,
SiPh links integrated with photonic components [13], [70],
[71], [72], [73] should be used to convert and communicate
the data from electronic units (e.g., memory controller) to
the OPCM-based main memory. This area is still evolving
and researchers are trying to design energy-efficient and low-
latency OPCM-based architectures for emerging computing
systems.

The work in [5] presented a novel OPCM-based mem-
ory architecture called ‘‘COSMOS.’’ In this work, to make
the electronic part of the memory (i.e., the memory control
unit) compatible with an array of OPCM cells to replace the
DRAM, an electro-opto-electrical (E-O-E) unit is required.
This unit has an essential role in converting the electrical sig-
nals from the memory control unit—such as row and column
addresses, Read, Write, and Erase commands—to optical
signals. The converted optical signals will be then transmitted
through silicon photonic links to access the OPCM cells
in the architecture. Fig. 7 shows the block diagram of the
memory architecture designed in [5]. Each OPCM cell in the
architecture can store 5-bit data using the design in [12]. The
OPCM data storage cell in this design has a structure similar
to the one proposed in [74], where silicon photonic MRRs
are used to access the cells and different wavelengths address
the cells in different row and column addresses. In [5],
a detailed analysis was performed on the impact of different
parameters related to OPCM cells, including the number of
bits per cell (MLC capacity), number of silicon photonic
links, and OPCM capacity on the overall performance of
the memory.

The work in [5] showed that the execution time for a
memory with 4-bit OPCM cells and 64 silicon photonic links
is much lower compared to a memory with 2-bit EPCM
cells and 64 electrical links, as well as higher read and write
throughput and lower average latency. Regarding the effect
of the MLC capacity, it was shown that as the MLC capacity
of a single OPCM cell increases, the average memory (read
and write) latency decreases by about 33%. This is because
of the enhanced parallelism that an OPCM cell with a higher
MLC capacity can offer. The energy-per-bit for read andwrite
in [5] was reported to be, respectively, 243 and 44.5 pJ/bit for
the EPCM, and to be 40.68 and 11.6 pJ/bit for the OPCM,
showing a significant enhancement in the energy efficiency
of the memory. The number of silicon photonic links and
the average lifetime of the OPCM were explored in [5].
It was found that increasing the number of silicon photonic
links from 64 to 256 can enhance the execution time of the
memory by about 5 seconds. However, this comes at a cost
of higher loss and crosstalk noise related to silicon photonic
links. Increasing the MLC capacity from two to eight bits
can also decrease the average lifetime from 16 years to six
years. Finally, a detailed analysis was presented in [5] on the
area consumption of OPCMs. The work reported a significant
improvement in the area consumption of a 2 GB 3D stacked
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FIGURE 7. COSMOS Architecture [5].

8-bit OPCM (67.1 mm2) compared to the equivalent DDR4
counterpart (224 mm2).

D. PHASE CHANGE MATERIALS FOR PHOTONIC
IN-MEMORY COMPUTING
With the increased complexity of deep learning algorithms
and AI applications, there is a critical need for improving
digital multiplier units in AI hardware accelerators. Indeed,
matrix-vector multiplication, which is the core of every
machine learning and deep learning model, is known to be
the most time and energy-consuming operation in AI appli-
cations running on AI accelerators [75], [76]. Accordingly,
the performance of electronic AI accelerators degrades as
the complexity and the size of the models they run con-
tinue to grow. Emerging integrated photonic computing plat-
forms have shown a great promise to perform multiplication
and accumulation (MAC) operations with significantly lower
latency and power consumption [75], [77], [78]. Because
of using photons instead of electrons for data movement
and computation, compared to conventional AI accelerators,
photonic AI accelerators offer higher bandwidth and paral-
lelism in the computation in addition to lower latency due to
performing computations at light speed.

Several optical neural networks based on silicon photonic
integrated circuits have been proposed, including coherent
networks using MZIs [78], [79], [80], [81] and noncoher-
ent networks using MRR banks [77], [82], [83], [84], [85],
[86], [87], hence enhancing the hardware implementation of
multiplication units with higher speed and lower computation
energy consumption compared to electronic counterparts.
Despite being beneficial compared to electronic accelerators,
photonic AI accelerators suffer from inherent limitations,
including optical loss and crosstalk noise [75], large footprint
(≈1000 µm for a deep neural network with two hidden lay-
ers), and sensitivity to thermal and process variations, which
result in deterioration of the system’s overall performance
(e.g., drop in inferencing accuracy) as the network scales
up [88], [89], [90], and [91].

PCMs can be integrated with photonic AI accelerators to
address some of the limitations of photonic accelerators, such
as large footprint and accumulated optical losses. Some of the
state-of-the-art applications of PCMs in the implementation
of photonic tensor cores will be discussed in Section IV.

In addition to using PCMs for photonic computing, recent
work has shown that phase-changememories can be also used
as part of in-memory computing units [92], [93], [94], [95].
Photonic computing units based on PCMs are beneficial due
to lower static power consumption and smaller footprint [96].
The reason for this is the elimination of the bulky phase
shifters in the photonic computing units (e.g. MZIs), and
replacing them with smaller PCM cells that can be driven
with an optical signal and without additional applied biasing
to maintain the PCM state [97]. However, in data-driven
applications, most of the power in the system is consumed not
in the computing units but during the data transfer between
processing units and the main memory due to the separation
of the memory unit and processing units in Von Neumann
architectures [24], [98]. This challenge still remains and it
deteriorates the system’s overall performance as the size and
complexity of applications increase. This is one of the main
motivations for using OPCMs for both computation and data
storage, and this paradigm is called photonic in-memory
computing [99].

Thework in [100] and [101] showed that a singlemultilevel
GST cell, which can be used as a phase-change memory,
is able to perform a simple scalar multiplication. The design
principles for implementing a simple PCM-based photonic
multiplier are shown in Fig. 8. Based on the proposed design,
a single scalar-scalarmultiplication can be performed through
the transmission level of the GST cell. The transmission level
of the GST cell can be changed by changing the crystalline
area of the GST similar to what we have seen in multilevel
photonic memory cells [12]. Manipulation of the crystalline
area of the GST in this design can be done through the
modulation of the input optical signal’s power and duration.
Depending on the crystalline area of the GST cell, its trans-
mission level, which represents the intended scalar value,
varies. The GST’s transmission level can act as a scalar that
is multiplied by the input optical signal and propagates to
the output of the cell. Note that the input optical signal to
read the data from a cell must have lower energy than the
programming signal that is used to set the cell to prevent a
change in the transmission level of the GST.

The work in [102] presented a design for an in-memory
photonic computing unit based on SOI platform integrating
PCMs (i.e., GST). The schematic of this design is depicted in
Fig. 9 (b). It was shown that by using slot-ridge waveguides
one may increase the dynamic range of the weights to be
used for in-memory computation. The main difference of
the design in [102] with the one demonstrated in [100] is
the enhancement made in the interaction between the mode
confined in the underlying waveguide and the PCM cell.
It was shown that this design is capable of storing more
multilevel weights, hence an increase in the energy efficiency
of the in-memory photonic computing unit.

From Figs. 9(d) and 9(f), it can be seen that the interaction
between the electric field of the confined mode in the waveg-
uide and the GST is significantly enhanced for the slot-ridge
waveguide, compared to the conventional ridge waveguide

VOLUME 11, 2023 11791



A. Shafiee et al.: Survey on Optical Phase-Change Memory: The Promise and Challenges

FIGURE 8. a) Scheme of reading and programming pulse of the GST as
well as its geometry. b) Write pulse amorphousize some portion of the
crystalline GST, leading to higher transmission levels. c) A simple scalar
multiplication. d) Readout scheme with a Pin pulse which is unable to
induce phase transition in GST because of its lower energy and duration
compared to the write pulse. e) Sample of the fabricated device to
perform a simple matrix-vector multiplication [100]. Permission:
https://creativecommons.org/licenses/by/4.0/.

integrated with GST proposed in [100]. In addition, the opti-
cal transmission change in the slot-ridge design is increased
significantly compared to the ridge design because of the
enhanced interaction of the electric field and GST (see
Figs. 9(a) and 9(b)). The change in the optical transmission
level is an important parameter due to its crucial role in
determining the MLC capacity of the OPCM cell. A higher
dynamic range of the change in the optical transmission level
of a single cell allows designers to store a higher number
of bits per OPCM cell. The dynamic range of the optical
transmission level in slot-ridge design can be even further
enhanced by increasing the width of the slot. The desig-
nated design based on slot-ridge waveguides was tested by
implementing a three-layer perceptron to perform a recogni-
tion task on MNIST handwritten digit dataset. An accuracy
of 90.7% was achieved which was 2.6% higher than the
conventional-ridge-waveguide design.

OPCM cells based on MRRs can also be used as a promis-
ing alternative for ridge-waveguide-based OPCM cells to
implement photonic in-memory computing units. The work
in [103] proposed a design in which GST was integrated
into MRRs to implement an in-memory computing unit for
spiking neural networks. By this design, the need for off-chip
DRAM access to load the weights related to the implemented
trained deep neural network using photonic tensor cores was
eliminated. The configurability challenge for this design was
also addressed by adding a bent waveguide to each synapse.
The added bent waveguide can be used as the write port on the
MRR-based phase-change memory cells for each synapse.
In addition, the width of the write port was much smaller
than the one related to MRRs. The reasoning behind such
a design is to achieve an asymmetric design to have max-

FIGURE 9. Design comparison of an in-memory photonic computing unit
based on phase-change materials (GST): (a) The design presented
in [100]. (b) The design presented in [102]. (c) Electric field profile for
GST-ridge waveguide design when GST is in the amorphous state.
(d) Electric field profile for GST-slot ridge waveguide design when GST is
in the amorphous state. (e) Electric field profile for GST-ridge waveguide
design when GST is in the crystalline state. (f) Electric field profile for
GST-slot ridge waveguide design when GST is in the crystalline state.
Permission: https://creativecommons.org/licenses/by/4.0/.

imum light confinement in MRRs and less confinement in
the write port to avoid any interference pattern. Using this
writing scheme on the MRR-based OPCM cells made the
design reconfigurable. This is becasue of the low error in the
transmission in the presence of the write bent waveguide (i.e.,
≈0.5% for a separation of 300 nm between the write bent
waveguide and the ring), in addition to high coupling between
the bent waveguide and the ring (i.e., ≈70% for the same
separation). This made efficient writing on the MRR-based
OPCM cell possible. The design in [103] was tested in the
implementation of a PCM-based in-memory photonic com-
puting unit trained on the MNIST dataset. The inferencing
accuracy of 97.84% was achieved, which was really close to
the inferencing accuracy of the ideal spiking neural networks
at 98.34%.

Broadcast and weight is a protocol which was intro-
duced initially in [77] to implement neuromorphic pho-
tonic processors. The broadcast-and-weight protocol uses
wavelength-division multiplexing (WDM) to carry out com-
putation in the photonic domain by using reconfigurable,
continuous-valued filters called MRR banks to weigh the
optical signals. Considering the design in [100], the work
in [104] proposed Starlight, featuring a GST cell to
exploit in-memory computing to enhance the parallelism
in computation and using MRR-bank architectures in the
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noncoherent photonic neural network that can be updated
by using mode-wavelength division multiplexing. Starlight
design showed lower power consumption and crosstalk noise
compared to conventional broadcast-and-weight architec-
tures [77], [82]. In particular, Starlight design showed an
insertion loss of 0.05–0.1 dB and crosstalk noise of −50
to −30 dB for resonant and non-resonant state. The struc-
ture of a single dot-product engine that is used in Starlight
is shown in Fig. 10. We can see that each kernel weight
element can be translated into an optical transmission level
of the GST using a write laser pulse to achieve a specific
crystallization area. Programming the GST cells based on the
kernel weights in Starlight was performed offline after the
training of the network, as a one-time procedure. In addition,
Starlight design showed that using hybrid mode-wavelength
division multiplexing eliminates the need for high number of
wavelengths to perform acceleration in addition to increased
parallelism in the photonic in-memory computation using
GST cells.

The Starlight architecture is illustrated in Fig. 11. We can
see that by using multiple modes and GST-based in-memory
computing units to perform matrix-vector multiplication,
the number of wavelengths—and hence the number of the
laser sources—can be decreased and this leads to enhanced
parallelism in computation. In addition, this design strat-
egy makes Starlight much more energy-efficient compared
to conventional broadcast-and-weight architectures to carry
out AI acceleration tasks [77]. In terms of power and area
overhead of Starlight architecture, it was shown that using
four TE modes and four wavelengths per mode (4 × 4×4
photonic acceleration unit) leads to a chip area of less than
0.4 mm2 and consumes 0.078 W of power, which is lower
than conventional noncoherent broadcast-and-weight archi-
tectures, such as DEAP [105] with a power consumption of
1.404 W. Eventually a 4 × 4×4 Starlight design was tested
on Iris classification dataset and it achieved the inferencing
accuracy of 96%, which was consistent with the accuracy that
was obtained during the training process.

Although embedding photonic tensor cores with PCM-
based in-memory computing cells shows a promising
prospect for photonic in-memory computing paradigm, two
key bottlenecks of restricted bit-width and write endurance of
the PCM-based photonic computing cells limit their perfor-
mance. The size of the in-memory photonic computing units
grows with the increase in the size of the designated data-
driven applications. This necessitates numerousweight writes
on cells inside the computing unit. Therefore, reduction of
the lifetime and the MAC unit’s accuracy is inevitable. Aging
of the cells over the long run leads to the degradation of
obtainable transmission ranges, and consequently, the accu-
racy can drop severely. The work in [54] showed that with
only 30% aged cells in a photonic tensor core, the accuracy of
the multiplication decreases by 35%. To alleviate this critical
issue, an aging-aware optimization methodology for PCM-
based in-memory photonic tensor cores, called ‘‘Elight,’’
was presented in [54]. The work in [54] also described a

FIGURE 10. Starlight dot product engine using MRRs and integrated
GST [104]. Permission: https://creativecommons.org/licenses/by/4.0/.

write-aware training process for AI applications that reduces
the number of write operations (by roughly 20 times), which
is the primary cause of aging. In addition, a post-training opti-
mization procedure is provided to further reduce the number
of writing operations.

E. SIMULATION OF OPCMs
A simulation algorithm is of essence to start from the device
and material level to system level to simulate the OPCM
cells and optimize them according to the given design goals.
In this part of our survey, we briefly discuss the simulation
procedure of PCM-based photonic devices. The simulation
of a PCM itself is nontrivial because of the need for multido-
main simulations, including molecular, optical (electrical),
and thermodynamic (heat) simulations. In addition, most of
the research efforts that were presented so far are dealing
with a single-cell analysis. As an example, the work in [22]
indicated that for a top-illuminated sample of GST with the
thickness of 80 nm and length of 20 µm, a laser pulse with
a power of 3–5 mW and duration of 50–600 ns is required to
obtain a fully crystalline state. The work in [56] also showed
that to obtain 18% change in the transmission of a 10-nm-
thick and 2-µm-long GST, about 650 pJ energy with a laser
pulse with a power of 2.3 mW is needed. This implies that
the laser pulse duration should be roughly 282.60 ns for a
single write cycle. In the same work, it was shown that as
the thickness of the GST cell increases, due to its higher
optical absorption, lower energies will be needed at the input
to trigger the same transition for a single write cycle. Suppose
that we use 256 of such cells in an OPCM-based architecture
to replace DRAMs [5]; this implies that significant optical
power will be needed to address and control these cells. The
required optical power can be decreased at a cost of increased
write latency.

The work in [22] proposed such a platform and a simula-
tion algorithm written in MATLAB, which is available pub-
licly [106]. Nevertheless, the proposed simulation platform
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FIGURE 11. Starlight AI accelerator architecture. a) The architecture of the tiles in the processor. b) Architecture of each tile using
multiple photonic accelerator units. c) Architecture of each photonic accelerator unit using hybrid mode- and wavelength-division
multiplexing to perform acceleration in parallel. d) Architecture of each photonic acceleration unit using a single mode and multiple
wavelengths to perform the matrix-vector multiplication [104]. Permission: https://creativecommons.org/licenses/by/4.0/.

has two major drawbacks: 1) it is 2D, and 2) the device is top
illuminated instead of using a Si3N4-based ridge waveguide,
similar to what is proposed in [11], [53], and [100]. The sim-
ulated results were verified using experimental results. The
simulation steps performed in [22] are depicted in Fig. 12.
As it can be seen from Fig. 12, the simulation starts with
illuminating the GST sample with a laser pulse with specific
duration and power. The input optical pulse will be partially
absorbed by the sample and converted to heat, leading to tem-
perature fluctuations in the sample. The heat transfer equation
must be solved using numerical approaches, such as finite-
element modeling (FEM), to obtain the temperature distribu-
tion at each time step. Based on the temperature distribution,
nucleation and growth rates can be calculated. By using
Cellular Automata–Nucleation and Growth model [22], the
amorphous and crystalline regions can be modelled and their
fractional distribution can be calculated. Eventually, from
Lorenz and Fresnel equations, the transmission and reflection
of the light can be calculated.

An overview of the results presented in [22] is shown
in Fig. 13. Considering Fig. 13(b), the GST sample used

in the simulations and experiments is top-illuminated via a
laser pulse. For a constant laser duration, as the laser power
increases, the diameter of the crystalline area increases.
This causes an increase in the crystalline fraction of the
sample, and hence a change in the optical reflectivity and
transmissivity of the GST sample. As another experiment, the
work in [22] suggested that the reflectivity and crystalline
fraction of the GST sample increase with increasing the
laser pulse duration and keeping its power constant (5.7 mW
in [22]). The aforementioned trend was expected because for
a constant laser pulse and increased duration, the amount of
absorbed energy over time increases, leading to triggering
phase transition from amorphous to crystalline state in the
GST.

The simulation of GST-based photonic memory cells can
also be done with computer-aided design (CAD) simulation
tools, like COMSOLMultiphysics. The simulation should be
performed for each time step. The phase transition model
of GST can be modelled through a highly optimized Cel-
lular Automata–Nucleation and Growth model, as it was
noted in [107], [108], [109], and [110]. Unfortunately, there
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FIGURE 12. GST simulation steps demonstrated in [22]. Permission: https://creativecommons.org/licenses/by/4.0/.

FIGURE 13. An overview of results presented in [22]. a) Schematic of the
experimental testing unit used to verify the results. b) Verification of the
simulation results by experimental results. Mean diameters of crystallised
regions at different input laser powers. The dashed green line indicates
the FWHM of the laser beam. c) Simulation results using a 5.4 mW laser
pulse with different duration. d) Comparison of simulation and
experimental results, The colorful grains are GST in crystalline state and
the blue region is the GST in amorphous state. Permission:
https://creativecommons.org/licenses/by/4.0/.

is no CAD simulation tool that can perform the Cellular
Automata–Nucleation and Growth simulation due to its com-
plexity and novel nature. Thus, it should be hard-coded and
integrated into other multiphysics tools, such as COMSOL
Multiphysics, similar to what was proposed in [56]. The work
in [56] used the RF tool of COMSOLMultiphysics integrated
to its HEATTRANSFER tool to obtain the temperature distri-
bution at each time step for a given geometry. Then, the output
temperature distribution can be used by a hard-coded Cellular
Automata–Nucleation and Growth code to obtain growth and

nucleation rates precisely. This procedure can be repeated
until the simulation time is finished. The simulation time to
reach the convergence can vary from a couple of minutes to
hours depending on the simulation parameters, such as the
mesh accuracy, thickness, width, and length of the cell and
duration of the laser pulse.

IV. OPEN CHALLENGES AND OPPORTUNITIES
In this section, we discuss some open device- and
system-level challenges and requirements that should be con-
sidered when designing phase-change memories and PCM-
based devices and architectures.

A. POWER-LATENCY TRADE-OFF
The energy that is needed for setting or resetting OPCM cells
depends on the PCM’s geometry and the pulse peak power
and its duration. As a PCM sample becomes bulkier and
thicker, the absorption enhances, thus phase change can be
triggered faster. However, a PCM sample cannot be thinner
than 2 nm, because for an extremely thin PCM, the PCM loses
its dynamic phase-change properties [10]. The energy of an
optical pulse can be approximated by multiplying the pulse
duration with its peak power. As the peak power reduces,
the pulse duration must increase to provide enough energy
to trigger a single set or reset routine via phase transition
of the PCM. Typically, using optical pulses with low peak
power and low duration is desired for PCM-based memory
architectures. With an increase in the pulse duration and the
number of OPCM cells, the average latency of the entire
system will increase, and this leads to the deterioration of the
memory throughput.

Increasing the peak power will cause additional heating
to the nearby devices, affecting the performance of nearby
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TABLE 4. Different features of NVM technology [5], [12], [49], [53], [111],
[112]. (F: feature size of the lithography).

photonic devices due to the thermo-optic effect and ther-
mal crosstalk. Increasing the peak power also results in an
increase in the total power consumption of the memory sys-
tem, making the system power inefficient. Therefore, opti-
mizing the geometry of a single cell as well as that of a
memory array architecture is of great importance. In addi-
tion to the optimized geometry, using a hybrid OPCM cell
can help reduce the programming energy. The work in [45]
suggested that using a single layer graphene (SLG) heater in
the structure of the OPCM can lead to a significant 20-fold
reduction (8.7 ± 1.7 aJnm3) in the OPCM cell programming
energy density, compared to the state-of-the-art OPCM cell
designs. The phase switching of the GST in the OPCM cell
presented in [45] was triggered electrically by the application
of a bias voltage using two gold contacts.

Because of the nonvolatile nature of PCMs, OPCM arrays
offer zero static power to maintain the transmission level of
the PCM cells when being used as a photonic main memory
or in-memory photonic computing unit [104]. Nevertheless,
to the best of our knowledge, the power-latency trade-off
in OPCM-based memory systems has not been discussed in
any prior work. Yet, the outlook of this paradigm can be
predicted by comparing state-of-the-art NVMs (e.g., EPCMs)
with DRAMs, as similar challenges may exist when using
OPCMs as the main memory or in-memory computing unit.
Using OPCMs for memory systems can increase the power
overhead and latency of the system. Thework in [5] suggested
using SiPh links for communication between the memory
controller and OPCM-based memory. However, using a SiPh
link for such short-distance communication is energy ineffi-
cient, and requiresmultiple electro-optical and opto-electrical
conversions per cycle [5]. This will lead to added latency and
power consumption because of the limits of laser sources’
wall-plug efficiency and the overhead of electro-optical/opto-
electrical converters (see Fig. 7). Table 4 shows some of the
key features related to the state-of-the-art NVMs. We can see
from the table that in many aspects, like write energy and
latency, write endurance and read latency, the performance
of state-of-the-art EPCMs is even worse than ReRAMs and
DRAMS. However, they offer better data retention, higher
scalability, and MLC [12], [49], [111], [112]. The afore-
mentioned limitations related to EPCMs are the main moti-
vation for using OPCMs in future memory and computing
systems. Based on the information in Table 4, any future
OPCM-based memory architecture must have enhanced
latency, endurance, and energy efficiency compared to those
based on EPCMs.

B. ENDURANCE
The results presented in [5] show that as we increase the
MLC capacity of a single OPCM cell, the average lifetime
of the single OPCM cell, and hence the whole memory,
decreases significantly. The writing procedure is the most
critical procedure that affects the lifetime of OPCM cells.
This is the main reason that in many implementations, a train
of pulses is being used to write on a single OPCM cell. There
is a trade-off between the average lifetime and MLC capacity
of a cell. As we increase the MLC capacity, the OPCMs can
be more scalable with a higher capacity, but this comes at
a cost of reduced endurance. Optimization approaches were
proposed to reduce the write procedures when a GST cell is
being used as an in-memory computing unit. In particular,
the work in [54] showed such optimization by performing
a write-aware training to reduce the number of unnecessary
writes when updating the weights during the training. The
samework also showed a post-training optimization approach
based on block-matching-based training and column-based
reordering to reduce the number of redundant writes—with a
negligible effect on the model’s output accuracy—to increase
the endurance of PCM-based photonic tensor cores [54].

C. AGING AND TRANSMISSION AND RESISTANCE DRIFT
Utilizing the MLC property of phase-change memories
requires the different states in the PCMs to be well separated
over time. Variation of the phase change material’s state over
time leads to instability in resistance and transmission. This
phenomenon is called optical- and resistance-level drift and
it is originated from thermal instability and optical band-gap
widening of PCMs over time. The optical band-gap widening
happens in PCMs in an amorphous state because of structural
relaxation [113], [114] over time. This leads to a change
in the optical transmission level in OPCM cells over time
because of the physical nature of the drift in PCMs in the
amorphous state. The instability in the state of the material
level deteriorates even more over time because of aging of the
cell. There are some work that tried to alleviate the resistance
drift of the PCMs originating from the instability of the states.
For example, the work in [115] proposed some physical-level
strategies to decrease the resistance drift and increase the
thermal stability of multilevel phase-change memory cells.
The work in [115] related the resistance drift of the PCMs
to the band-gap energy and sheet resistance of the mate-
rial [116]. It was shown that this limitation can be alleviated
via engineering the band gap, sheet resistance, and dielectric
constant of the deposited phase change materials.

D. LOSS AND CROSSTALK NOISE
In some existing work for implementing OPCM cells,
MRRs and waveguide crossings are exploited to construct,
read, and write single photonic memory cell in a crossbar
architecture [5], [53], [62]. Such devices suffer from coherent
and noncoherent optical crosstalk noise, leading to misread-
ing the memory in the read procedure, as well as changing
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the transmission level when using higher MLC capacity for a
single cell. Insertion loss can also lower a signal’s amplitude
used for reading multiple OPCM cells in an array of cells.
These issues become even more critical when scaling mem-
ory arrays because of the accumulation in insertion loss and
crosstalk noise power, leading to an increase in the number
of misreads. Design optimization approaches must be used to
deal with this issue to make OPCM-based memory architec-
tures more scalable and resilient to optical loss and crosstalk
noise [117], [118], [119], [120], [121].

Despite a wide range of applications of GST in construct-
ing OPCM cells, this material shows a high insertion loss in
photonic memory applications [61], especially when it is in
the crystalline state due to its high extinction coefficient (see
Fig. 2(c)). This limits the scalability of the architectures based
on GST. One possible solution to address this issue is to use
a new class of PCMs, called GSST. GSST, which has been
studied for PCM-based photonic applications, shows superior
performance in terms of thermal stability—through doping
Se atoms and excess Ge atoms, which leads to an increase
of the Tg [42], [122], [123]—and lower material loss contrast
compared to GST (because of lower 1κ) [34], [122], [123].
The work in [21] suggested that different figures of merits
(FOMs) of FOM1 = 1n/1κa and FOM2 = 1n/1κc can
be used to quantify the performance of OPCMs. For memory
purposes, a drastic change in the refractive index (1n) upon
the phase change in the OPCM cell is required. However,
a large extinction coefficient change (κ) in the amorphous
and crystalline state imposes excessive insertion loss to the
OPCM cell due to material absorption (see II-D). The work
in [21] showed that for GST, FOM1 = 109.72, which is lower
than that for GSST with FOM1 = 116.73 at 1550 nm. This
comparison can be interpreted as a higher refractive index
and lower material loss that GSST in amorphous state offers
compared to GST in the same state at 1550 nm. The same
comparison can be made for crystalline state using FOM2.
We can see from [21] that for GSST, FOM2 = 4.17, which
again is higher than GST with FOM2 = 2.52 at 1550 nm.
Therefore, GSST applications to construct OPCMs can be
expanded to obtain photonic memory arrays and computing
units to alleviate the thermal instability and high material loss
penalty in GST.

E. THERMAL SENSITIVITY
Thermal sensitivity is another major limitation to be consid-
ered, which can lead to transmission drift in a single cell.
In [36], an analysis was carried out to model the thermo-optic
coefficient in a PCM. An increase in the optical power dissi-
pation in nearby optical components can be experienced by
OPCM cells in the form of thermal variations (i.e., thermal
crosstalk). Thermal variations may not trigger the phase tran-
sition but they can change the refractive index of the PCM
in a particular state, leading to an increase in the number of
misreads in OPCMs. The work in [36] presented analytical
models for thermo-optic coefficient of GST. The presented
models can be used to further optimize the performance of

GST-based OPCM cells [34], [36]. In addition, the work
in [124] presented an experimental study on the impact
of temperature variation and transmission drift in OPCMs
employed for in-memory computing units. The presented
model in [124] can be used to optimize the performance of
deep neural networks when they are being implemented using
OPCM in-memory computing units.

F. FLICKER NOISE AND UNCERTAINTY OF THE INITIAL
STATE
We learned that EPCMs can be good candidates to carry
out analog in-memory computation for deep learning and
AI applications. However, they suffer from flicker noise as
random electron traps can be identified in the PCM’s lattice.
Flicker noise for EPCMs is even higher when the PCM used
in the phase-change memory structure is in the amorphous
state [125]. In addition to flicker noise, the PCMs used in
the same phase-change memory cells respond differently to
the same programming pulse. This issue will lead to inac-
curacy and dispersion of OPCMs and EPCMs when being
used as an in-memory computing unit. The work in [125]
demonstrated that the aforementioned issues can be allevi-
ated by using an optimized iterative programming approach.
They showed that by using this programming technique, the
conductance spread is under 14% and the relative drift is
under 15%, with the relative noise being less than 9% for 90%
of the cells.

G. COMPLEXITY AND FOOTPRINT OVERHEAD
We observed in [5] that we cannot simply replace the EPCMs
with OPCMs in a memory architecture. Simply replacing the
EPCMs with OPCMs will lead to thermal, read and write
latency, and energy issues because of the incompatibility of
OPCMswith integratedmemory architectures. Consequently,
additional photonic I/O and circuitry, such as E-O-E units,
will be needed to convert the memory controller commands
into optical signals. Moreover, a large number of silicon
photonic links is required to replace the electrical links to
convey the information from the memory controller to the
OPCMs and vice versa. This requires using a vast number of
active devices, such as electro-optical modulators, high-speed
integrated photodetectors [126], and additional control units
to optically address the OPCM cells. This makes the memory
architecture more susceptible to optical loss and crosstalk
noise, increases the power consumption and footprint, and
diminishes the memory bandwidth [127]. In addition, the
design of the E-O-E unit should be optimized to minimize
the access time to the memory to read and write the cells.
Furthermore, to deal with the device- and material-level limi-
tations, the OPCM cells should be optimized to have minimal
power consumption and latency.

H. FABRICATION-PROCESS VARIATIONS
Fabrication-process variations is a known issue in silicon pho-
tonic integrated circuits, which necessitate additional efforts
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to design devices that are resilient to variations [97], [128],
[129], [130], [131]. In the state-of-the-art designs for OPCM
cells, the thickness of the PCMwas considered extremely thin
(i.e., ≈10 nm), and hence a slight variation in the thickness
of the PCM sample leads to changes in the power absorp-
tion, transmission levels, and stored data. This limitation
can increase the number of misreads and the bit-error rate
(BER) in OPCM-based memory systems [5]. The effect on
the latency and power consumption can be minor, but it will
be accumulated as we scale the memory architecture. There-
fore, OPCM cells should be designed and optimized to be
resilient to fabrication imperfections. Mathematical models
can be used to model the attenuation coefficient against the
sample geometrical parameters and variations, like thickness
and length of the OPCM cells, in which the GST is fabricated
on top of a Si3N4 ridge waveguide [132]. The attenuation
coefficient can be used as a figure of merit to design an
OPCM cell for data storage and photonic computing which
is resilient to fabrication-process variations.

I. SCALABILITY
Scalability is of importance when it comes to photonic data
storage technologies. As the dimension of a single OPCM
cell decreases, its properties also change according to its size
reduction. Research shows that as the phase changematerial’s
film thickness decreases, Tg, optical band gap, incubation
time, resistivity, refractive index, and extinction coefficient
for most wavelengths increases [10], [133], [134], [135],
[136], [137]. It was also shown that the crystallization speed
would increase as the thickness of the PCM decreases. Over-
all, the thickness of a PCM in OPCMs cannot be smaller than
2 nm becasue the material will lose its dynamic properties
stemming from phase transition.

J. SECURITY
Security is another challenge that stems from the aging
issue in phase-change memories. Nonvolatile phase-change
memory cells offer a limited capacity of write procedures.
With an increase in the number of writes over time, the
memory cell ages, and hence it is prone to write attacks [138].
The data which has been written on phase-change memory
cells will remain even after power-off. The reason for this is
because of using the physical state of the material to store
the data. This will increase the threat of data accessibility
by a malicious agent. In addition to the aforementioned
threats, a bus snooping attack is another possible security
threat in phase-change memories where a third agent can
access the data which is being communicated over a chip.
Different mapping and encryption approaches can be utilized
to overcome this challenge in memory architectures based on
phase-change memories.

K. PHASE CHANGE MATERIALS FOR PHOTONIC
NETWORKS
In addition to the application of PCMs for implementing pho-
tonic memory architectures and photonic in-memory com-
puting units, PCMs can also be integrated into conventional

photonic devices to realize programmable photonic devices
for photonic networks. For example, PCMs like Sb2Se3 can
be integrated into passive SiPh directional couplers (DCs) to
realize a tunable photonic switching cell [38], [60]. By con-
trolling the phase state of Sb2Se3, the portion of an optical
signal that can be coupled from one waveguide to another
in the DC can be controlled. Lower loss and crosstalk can
be offered by integrating Sb2Se3 into SiPh DCs compared to
GST and Sb2Se3 [19]. This was the main motivation for using
Sb2Se3 in [38].
MZIs are critical photonic devices that can be used in

a variety of applications, such as silicon photonic switch-
ing networks [150], [151], [152] and electro-optic modu-
lators [153] for optical communication platforms. A single
MZI can be constructed by connecting two DCs and two
straight waveguides. Therefore, to realize MZIs with low loss
and crosstalk noise, DCs should have optimal design and
performance. The work in [38] demonstrated that tunable
DCs with a low insertion loss (<1.5 dB) and crosstalk noise
(−20 to −40 dB) can be designed to construct MZIs using
Sb2Se3. In addition, it was shown that such a design has a fast
switching time (50 ns for GST and 78 ns for Sb2Se3) when
using the DC as a photonic switching element.

The work in [141] and [142] proposed a design utilizing
PCMs (Sb2Se3) to implement phase shifters to realize spe-
cific optical phase delays. PCMs can be also used to tune the
performance of MRRs in optical switching networks based
onMRRs [154]. The undesired resonance shift inMRRs (e.g.,
due to thermal or process variations [128]) is known as one of
the main constraints in using MRRs for wavelength-selective
photonic switching elements. The work in [154] showed that
GST can be used to tune the resonant wavelength in race-track
MRRs to eliminate the need for power-hungry frequency
response adjustments, using, for example, thermal tuning.
This makes the photonic switching elements much more
power efficient and more resilient to thermal and fabrication-
process variations. PCM-based switching elements can also
be used to implement 2.5D SiPh interposer networks. For
example, the work in [155] showed that 2.5D interposer-
based photonic networks can utilize phase changematerials to
achieve reconfigurable bandwidth and power efficient com-
munication in 2.5D chiplet systems. Although the application
of PCMs in photonic devices is promising, more research
is required to further enhance the performance of PCMs
considering photonic network requirements.

L. PHASE CHANGE MATERIALS FOR PHOTONIC
COMPUTING
PCMs can be also used to construct photonic computing units
to accelerate the performance of AI accelerator platforms.
An array of MZIs with integrated phase shifters can be
used to perform matrix-vector multiplication at light speed
using a single wavelength to implement coherent photonic
neural networks for high-speed optical AI accelerators [139],
[156]. The DCs designed in [38] can be also used to con-
struct MZIs with low insertion loss and crosstalk noise
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TABLE 5. Summery of different applications of PCMs in integrated photonics. (PIC: photonic integrated circuits).

for coherent photonic neural networks [75]. In addition,
considering the design in Fig. 8, the proposed PCM-based
cell can be extended to perform matrix-vector multiplication
in the optical domain. Compared to conventional photonic
accelerators (e.g., those based on MZI arrays [75], [156]
or MRR banks [77]), the benefits of this design are lower
loss and accumulated crosstalk noise, elimination of bulky
metallic contacts required for the phase shifters, and compact
footprint.

Considering a single GST cell for photonic in-memory
computing, photonic tensor cores can be designed based on
wavelength-division multiplexing by using an array of MRRs
integrated with phase-change memories to perform compu-
tationally expensive matrix-vector multiplication with zero
static power and high speed [145], to outperform graphic
processing units (GPUs). As another example, an architec-
ture based on PCMs for photonic tensor cores was proposed
in [146] and [147]. The difference of this design compared
to [145] is that the PCM used in cells can be controlled via
optical laser pulses. The design presented in [146] and [147]
was able to operate at the speed of two tera-MAC operations
per second, i.e., two trillion (1012) MAC operations per sec-
ond. Despite their novel approach to implement an integrated
PCM-based photonic tensor core processing unit, the pro-
posed design lacks a second unit for reference computation.
The work in [148] addressed this problem by integrating a
second GST cell on each photonic computing element to
perform reference computation at the same time. Research
in this area is still in progress to enhance the performance
of the PCM-based photonic tensor cores to alleviate the scal-
ability limitations originating from aging of the cells [157]
and coherent crosstalk and insertion loss, and to store kernel
weights and efficiently reconfigure noncoherent AI accelera-
tors [84], [85], [86], [87].

V. CONCLUSION
Different from existing survey papers on photonic memo-
ries, this paper surveyed the fundamentals of PCMs from
the material level to the system level for contemporary
PCM-based photonic memories. A complete overview of
the optical, thermal, and electrical properties of PCMs
was presented. In addition, we reviewed the application of
PCMs in the implementation of photonic memories and the
benefits they bring to emerging many-core computing sys-
tems. Some applications of PCMs in-memory architectures
and for in-memory computing units were presented as well
as optimization approaches to alleviate the limitations related
to the endurance caused by a high number of writes on
photonic processing units, like PCM-based photonic tensor
cores. Furthermore, we showed a simulation procedure for
PCM-based photonic devices using commercial tools. Open
challenges and opportunities in the design and fabrication
of phase-change-material-based photonic devices were dis-
cussed, which can be used to further advance emerging pho-
tonic computing and communication system architectures.
Table 5 summarizes the different applications discussed in
this survey, from storage to non-storage photonic devices.
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