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Abstract—Coherent integrated photonic neural networks
(IPNNs) are increasingly being explored for rapidly growing arti-
ficial intelligence applications. However, the principal roadblocks
in the scalability of IPNNs are their large area footprint and high
tuning power consumption during both training and inferencing.
In deep neural networks (DNNs), software techniques to prune
redundant weights are often utilized to reduce resource (e.g.,
memory, computation, and power) overheads. However, due to
the complex nature in which the software weights are mapped
to the building blocks of IPNNs, prior efforts to apply existing
pruning approaches to IPNNs have been ineffective. We present
CHAMP and LTPrune, two novel hardware-aware pruning
techniques for IPNNs. Using a case study of three IPNNs with
different footprints, we show that both these methods can prune
more than 99% of the phase angles (which are similar to the
weight parameters in DNNs). We also analyze the performance
of the pruned IPNNs under phase uncertainties and present a
comparative analysis of the two methods to enable advanced
hardware-software-assisted design-optimization techniques for
IPNNs. To expedite pruning, we also propose HybridPrune,
where CHAMP and LTPrune are used in conjunction to obtain
similar network sparsity as standalone-LTPrune but with up to
78.3% fewer retraining epochs.

I. INTRODUCTION

Deep neural networks (DNNs) have seen remarkable ad-
vances and are being widely deployed for speech and action
recognition, image classification, and natural-language pro-
cessing. The primary computational primitive while querying
such advanced DNNs is the time- and energy-intensive matrix
multiplication operation. Leveraging the inherently parallel na-
ture and high-speed of optical-domain computation, coherent
integrated photonic neural networks (IPNNs), which operate
with a single wavelength, can reduce the computational com-
plexity of matrix multiplication from O(N2) to O(1) [1].
Using singular value decomposition (SVD), several IPNNs
have been recently proposed [2].

The weight matrix corresponding to a linear multiplier in
the fully-connected layer of a multi-layer perceptron can be
factorized into two unitary matrices and one diagonal matrix
using singular value decomposition. Several approaches for
representing the unitary matrices using an array of Mach-
Zehnder interferometers (MZIs) have been proposed in prior
work [3] [4]. Similarly, a diagonal matrix can be realized
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using a single layer of MZIs. Essentially, MZIs are the
building blocks of IPNNs, and each MZI consists of two
phase shifters (with phase angles φ and θ in Fig. 1(d)) and
two 50:50 beam-splitters. The phase angles in an array of
MZIs can be tuned to realize different unitary transformations;
during backpropagation in IPNN training, the phase angles are
iteratively updated using an optimizer (e.g., stochastic gradient
descent) to minimize the loss function.

While IPNNs can perform high-speed matrix multiplication,
they suffer from high static power consumption in the thermo-
optic PhS in the MZIs. The power consumption in such PhS
is directly proportional to the tuned phase angle [5]. In fact,
even in power-efficient PhS, up to 25 mW tuning power can
be dissipated for a phase shift of π [6]. Additionally, PhS
with high phase angles are more susceptible to inevitable
uncertainties phase uncertainties due to fabrication process
variations and thermal crosstalk. In prior work [7], we have
shown that such uncertainties can result in up to a 70%
reduction in the inferencing accuracy. In addition to the high
tuning power consumption, the large area footprint of MZIs
is a crucial roadblock in the scalability of IPNNs. High-
performance MZIs proposed in recent work (e.g., [8]) have
a footprint of 300 µm. Such footprint is exceedingly high
compared to electronic circuits, where sub-5 nm transistors
are now commonly used. Clearly, an IPNN will have a higher
area footprint compared to an electronic DNN that is trained
on the same workload (and, therefore, has similar architectural
complexity).

A potential solution to both the aforementioned problems
can be to prune redundant PhS from the MZI arrays in
the IPNN. Such PhS can either be removed from the array
or power-gated to reduce the tuning power consumption.
Additionally, PhS account for a significant portion (up to
90%) of the area footprint in an MZI [8]). Pruning PhS
can thereby considerably reduce the area footprint of IPNNs,
particularly for edge devices where the IPNN application
workload is known and remains fixed. Moreover, a sparse
IPNN (where most of the PhS have a zero phase angle) can
be defined by fewer parameters (e.g., tuned phase angles).
Therefore, incremental retraining of such pruned IPNNs has a
lower memory overhead. This is particularly crucial for edge
applications (e.g., automotive ICs), where the phase angles
may need to be updated in-field when the application workload
changes. Prior attempts at pruning IPNNs have primarily
focused on a software-based approach. In such methods, a
DNN is first trained in software and pruned using magnitude-
based techniques (e.g., [9]). The DNN weights in the sparse
network are then mapped to tuned phase angles in the IPNN.
However, as we show in Section II.D, due to the complex
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Fig. 1: Schematic of a linear layer in MLP-based coherent IPNNs. Right: detailed view of an MZI.

bidirectional many-to-one mapping between the DNN weights
and the IPNN phase angles, a sparse weight matrix may not
always lead to sparse phase angles. Moreover, simply pruning
the phase angles post-training leads to a significant accuracy
loss due to the unretrainability of the IPNN [10].

To enable efficient pruning in IPNNs, we propose two
novel hardware-aware pruning techniques. The first method,
CHAMP, uses photonic-training, where we perform backprop-
agation on the phase angles rather than the edge weights of
the fully connected layers; consequently, we have increased
control over the phase angles and obtain higher sparsity with
lower accuracy loss. The second method, LTPrune, builds upon
CHAMP and leverages the lottery ticket hypothesis to identify
sparse subnetworks in IPNNs. Using two example IPNNs of
different footprints, we show that CHAMP and LTPrune can
both prune more than 99% of the phase angles (89% in the
smaller IPNN) with an accuracy loss of less than 5%. We also
propose HybridPrune for high-speed in-field IPNN pruning –
this method can achieve a similar sparsity as LTPrune with
up to 78.3% lower run-time necessary to retrain the pruned
network.

The main contributions of this paper are as follows:
• Highlighting the challenges associated with conventional

hardware-unaware software DNN pruning when applied
to IPNNs;

• CHAMP, a hardware-aware magnitude pruning technique
for coherent IPNNs;

• LTPrune, a hardware-aware pruning technique based on
the lottery ticket hypothesis to obtain power- and energy-
efficient IPNNs;

• Comparing the sparsity of the pruned models obtained
using CHAMP and LTPrune on IPNNs with different
footprints;

• Analyzing the trade-off between the sparsity of the PhS in
a pruned IPNN and its sensitivity to random uncertainties
in phase angles when the pruned PhS are power-gated or
removed;

• HybridPrune, an in-field pruning technique to ob-
tain sparse general-purpose IPNNs with few retraining
epochs.

The rest of the paper is organized as follows. Section II
presents the fundamentals of IPNNs and motivates the need
for pruning IPNNs to improve the power-efficiency and reduce
the area overhead. Furthermore, we highlight the challenges
in pruning IPNNs using existing hardware-unaware DNN

pruning approaches. In Section III, we propose CHAMP and
LTPrune, two novel hardware-aware IPNN pruning techniques.
We present simulation results using three example IPNNs in
Section IV. In Section V, we present a hybrid pruning approach
that achieves a high PhS sparsity with few retraining epochs
by combining CHAMP and LTPrune. We draw conclusions in
Section VI.

II. BACKGROUND AND RELATED PRIOR WORK

A. Mach-Zehnder Interferometers (MZIs)

MZIs are used to determine the relative phase difference
between collimated optical signals [4], [11]. Fig. 1 shows the
MZI structure considered in our work. Each MZI consists of
two tunable PhS (φ and θ in Fig. 1) – these are used to
apply configurable phase shifts and obtain varying degrees
of interference between the input optical signals. They can
be implemented using thermal microheaters [12], where the
refractive index of the underlying waveguide changes with
temperature (i.e., thermo-optic effect), altering the phase of
the optical signal traversing the waveguide. Each phase shifter
in the MZI is followed by a passive 50:50 2×2 beam splitter
(BeS). Each BeS can be designed using directional couplers,
where a fraction (defined by transmittance) of the optical
signal at an input port is transmitted to an output port, and the
remaining (defined by the reflectance) is coupled to the other
output port with a phase shift of π

2 . For symmetric 50:50 BeS,
both transmittance and reflectance coefficients are 1√

2
. As a

result, the transfer matrix for an MZI with two PhS and two
50:50 BeS (see Fig. 1) can be modeled as [11]:

TMZI(θ, φ) = UBeS · UPhS(θ) · UBeS · UPhS(φ)

=

(
T11 T12
T21 T22

)
=

(
eiφ

2 (eiθ − 1) i
2 (eiθ + 1)

ieiφ

2 (eiθ + 1) − 1
2 (eiθ − 1)

)
, (1)

where UBeS (UPhS) is the BeS (PhS) transfer matrix.

B. MZI-based Coherent IPNNs

A multi-layer perceptron (MLP)-based DNN consists of
several consecutive layers of interconnected neurons. Post
feature-extraction, the input features (X1, . . . , XN1

) are fed
into a series of fully connected layers, followed by a final
LogSoftMax activation layer to obtain the probability of each
output class (Y1, . . . , YN2 ). Each connection between the neu-
rons is assigned a weight that represents its synaptic plasticity
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and each neuron is tasked with a multiply-and-accumulate
(MAC) operation followed by passing the resultant output
through a non-linear activation function (fNAU ). By intro-
ducing non-linearity in the network, the activation functions
(e.g., sigmoid, tanh, and Rectified Linear Unit) enable the
DNNs to learn complex non-linear relationships [2]. During
each training iteration, the weight of each connection in a
DNN is incrementally updated to minimize the loss function
that quantifies the difference between the expected and the
obtained DNN output.

Consider an N2 × N1 weight matrix Lm representing the
edge weights connecting a layer with N1 neurons with a layer
with N2 neurons. Using singular value decomposition (SVD)
and considering Fig. 1, we have Lm = UΣV H , where U and
V are unitary matrices with dimensions N2×N2 and N1×N1,
respectively. Moreover, V H denotes the Hermitian transpose
of Vm, and Σ is a diagonal matrix consisting of the eigenvalues
of Lm.

Reck et al [3] first demonstrated that any unitary trans-
formation between optical channels can be realized using a
triangular mesh of MZIs. However, Clements et al proposed
an alternative arrangement of MZIs (see Fig. 1) to implement
unitary transformations with half the physical footprint of the
Reck design and a lower optical loss [4]. Therefore, for a
given weight matrix Wm = UmΣmV

H
m , this paper assumes

the Clements design to represent the unitary matrices Um and
V Hm . The diagonal matrix Σm can be realized using an array
of MZIs to attenuate each channel separately without mixing
by terminating one input and one output of each MZI (Σ in
Fig. 1). As MZIs can only attenuate optical signals, a global
optical amplification is necessary on each output to represent
arbitrary diagonal matrices [13]. This scaling factor is realized
using the optical gain unit (OGU) G (see Fig. 1) that includes
semiconductor optical amplifiers [14].

C. Motivation for Pruning IPNNs

With the increasing applications of DNNs to complex prob-
lems, software-based magnitude pruning approaches are being
increasingly explored to minimize the resources necessary for
the storage and training of large-scale DNNs. In particular,
such approaches are crucial for edge applications, where the
network parameters (weights in the case of DNNs) may need
to be updated in-field when the application workload changes.

The phase shifters in IPNNs with MZI arrays consume a
significant portion of the network area and power. In particular,
the size of the constituent thermo-optic PhS in an MZI
determines the size of the device (see Fig. 1). For example,
the state-of-the-art 2×2 MZI proposed in [8] is ≈ 300 µm
long, in which each PS has a length of 135 µm (i.e., ≈ 90%
of the length of the MZI considering the two PhS). Moreover,
as discussed in Section II-A, the required phase shift in a
PS (∆φ) is directly proportional to its length (L) and tuning
power consumption (P ): ∆φ ∝ L·P . Even power-efficient PhS
can consume up to ≈ 25 mW tuning power for a phase shift
of π [6]. As a result, low accuracy-loss pruning approaches
are essential in IPNNs to identify prunable PhS, thereby
reducing the footprint of the network and the tuning power
consumption during inferencing. Note that the phase angles
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Fig. 2: An example of the bidirectional many-to-one asso-
ciation (BMA) between the elements of the weight matrix
and the MZI array for a 5×5 unitary matrix. The numbers
in each cell of the unitary matrix denote the MZIs that affect
the corresponding matrix element.

are adjusted dynamically during software training. However,
we only consider the static tuning power dissipated in the PhS
during inferencing to maintain the trained phase angles in the
hardware platform. Additionally, as lower phase shifts require
lower ∆T (∆φ ∝ ∆T ), mutual thermal crosstalk between
PhS can be minimized by pruning. The problem of explicitly
reducing thermal crosstalk is beyond the scope of this paper.

Note that recent work has shown that, as an alternative to
pruning the redundant PhS, high-radix matrix multiplications
can be mapped to multiple cascaded small-radix photonic
tensor cores [15]. Simulation results have shown that using
such tensorized decomposition, the number of MZIs in an
IPNN can be reduced by up to 79×. While this approach can
lead to a considerable reduction in the footprint, such networks
cannot be easily reconfigured to perform a different matrix
multiplication (e.g., where the dimensions of the synaptic
interconnections change). However, the redundant components
can be power-gated (and not removed) during pruning; conse-
quently, the MZI arrays can be easily reconfigured when the
application workload changes.

D. Challenges in Pruning IPNNs

Hardware-unaware software pruning methods in DNNs aim
at obtaining a sparse weight matrix [9]. A binary mask Mk is
maintained for each DNN layer Lk. An element of the mask,
say Mk

i,j , is 0 (1) iff the corresponding weight Lki,j is zero
(non-zero). In each pruning iteration, a fraction of the non-
zero weights—typically those with a smaller magnitude—in
each layer is clamped to zero, and the corresponding mask
elements are updated. During backpropagation in retraining,
the gradient of each weight is multiplied with its respective
mask element, ensuring that the zero weights are not updated.

Unfortunately, conventional software pruning approaches
fail to achieve high sparsity in IPNNs. This can be attributed to
the bidirectional many-to-one association (BMA) between the
elements of the weight matrix of the linear layers in the IPNN
and the phase angles in the MZI arrays. Each weight matrix
element is mapped to multiple PhS and, conversely, each PhS
in an MZI array affects multiple weight matrix elements [16]
[17]. Fig. 2 shows an example of this BMA for a 5×5 unitary
matrix and its corresponding mapped MZI array. Observe
also that the bidirectional dependence is largely asymmetric
in nature—certain MZIs (e.g., MZI# 8) affect several matrix
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Fig. 4: Histogram comparing the sparsity of the PhS in the
mapped MZI arrays for 3000 randomly generated weight
matrices of different dimensions (1000 of each dimension)
with sparsity sw, where 80%≤ sw ≤100%. The inset shows a
similar plot for 95%≤ sw ≤100%.

elements (20 in this case), whereas others (e.g., MZI# 1)
affect fewer elements (10 in this case). Similarly, some weight
matrix elements depend on fewer phase angles than others.
As a result of the asymmetric BMA, a sparse weight matrix
(obtained using software pruning approaches) may not always
be mapped to a sparse MZI array (where many PhS have zero
tuned phase angle) and vice versa. In Fig. 3, we compare the
weight matrix sparsity of 10000 randomly generated 16×16
unitary matrices with the phase sparsity of their corresponding
mapped MZI arrays. The inset shows a magnified view of the
unitary matrices with matrix sparsity >90%. Observe that for
many sparse weight matrices, the corresponding MZI arrays
have sparsity below 20%.In fact, in some cases, the MZI array
sparsity can be as low as 0%. Indeed, this discrepancy between
the weight matrix sparsity and the phase sparsity is observed
for unitary matrices of all dimensions, as we show in Fig.
4. We also observe that this discrepancy is more pronounced
for larger unitary matrices (compare the red and green bars
in Fig. 4). Therefore, it is expected that the effectiveness of
software pruning will reduce as the size and complexity of
IPNNs scale. In order to minimize the tuning power and area
overhead of IPNNs, pruning approaches should be hardware-

aware and should directly target the tuned phase angles.
In [10], the authors showed that no more than 30% of the

phase angles can be pruned post-training without a significant
accuracy loss (≈10%) in IPNNs. To address this, [10] pro-
posed a pruning-friendly non-SVD-based C-IPNN architecture
that leverages block-circulant matrix representation and per-
forms matrix-vector multiplication using optical fast Fourier
transform (FFT). However, even this alternative architecture
could achieve a sparsity of only up to 45%. Unlike in IPNNs,
hardware-unaware software pruning is applicable to noncoher-
ent IPNNs. In [18], pruned noncoherent IPNNs demonstrate
a classification accuracy of up to 93.49% on the MNIST
dataset. Using layer-wise pruning and weight clustering, the
noncoherent photonic accelerator proposed in [19] obtains a
sparsity of up to 50%.

III. HARDWARE-AWARE PRUNING APPROACHES FOR
IPNNS

As discussed above, efficient pruning approaches for IPNNs,
that can minimize the associated tuning power and area
overhead must be photonic hardware-aware and should target
the tuned phase angles (not the software weights). However,
to minimize the accuracy loss while pruning, we should
ideally prune only the benign PhS—these are the phase angles
that affect the weights with lower saliency. Prior work has
shown that, in conventional DNNs, the saliency of a weight
and its magnitude are correlated [9]. Therefore, magnitude-
based approaches, where the low-magnitude weights in each
layer are pruned, are able to achieve high sparsity with a
low accuracy loss in electronic DNNs. However, due to the
non-linear dependence between the phase angles and weights
in IPNNs, weights with large magnitude (and hence, high
saliency) can be mapped to smaller phase angles. As a result,
pruning smaller phase angles based on their magnitude can
lead to degraded accuracy. Recall also that, due to the BMA
between the phase angles and the weight matrix elements, it is
unlikely that a single phase shifter will exclusively affect low-
saliency weights. However, our simulation results show that
magnitude-pruning, if applied in a hardware-aware fashion,
where we target the phase angles themselves, can still lead to
a high sparsity, especially in easy-to-prune over-parameterized
IPNNs. We propose this hardware-aware magnitude pruning as
a baseline approach, CHAMP. Next, we present an improved
pruning technique, LTPrune, where we use the lottery ticket
hypothesis to prune a significant fraction of phase angles with
negligible accuracy loss. LTPrune is particularly efficient for
compact and difficult-to-prune IPNNs.

A. CHAMP: Coherent Hardware-Aware Magnitude Pruning
of IPNNs

In conventional hardware-unaware pruning techniques, the
weights in each layer are sorted based on their magnitude and
a fraction of the weights with small magnitude are pruned.
To recover the lost inferencing accuracy due to pruning,
the network is then retrained while clamping the pruned
phase angles to zero. During this step, the phase sparsity is
maintained by zeroing out the gradients corresponding to the
pruned phase angles. However, based on our discussion in
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Section II.D, the software approach may not necessarily lead
to sparse phase angles. Given that the advantages associated
with pruning (e.g., lower tuning power and area overhead) are
dependent on the sparsity of the phase angles (and not that
of the weight matrix elements), hardware-unaware techniques
are largely inefficient [10].

The main difference between existing hardware-unaware
magnitude pruning techniques and CHAMP lies in the training
approach. As discussed earlier, conventionally to obtain the
tuned phase angles in an IPNN, a DNN is first trained in
software and the trained weights are then mapped to the phase
angles using singular value decomposition-based approaches
(e.g., [4]). Observe that, in this training flow, we only have
control over the weight matrix elements and not the phase
angles. This is because the phase angles are deterministically
obtained from the trained weight matrices. Consequently, this
flow is unlikely to obtain sparse PhS. On the other hand, in
CHAMP, we propose a photonic training approach. In each
training epoch, we calculate the gradients of the loss with
respect to the phase angles themselves and iteratively tune
them based on this gradient and the learning rate. This gives us
increased control over the phase angles and allows us to obtain
sparse PhS (instead of sparse weight matrices). We apply
CHAMP on an IPNN trained using this photonic approach –
in each pruning round, the phase angles below a threshold
are pruned while the remaining phase angles are retrained
to recover the inferencing accuracy. This threshold can be
determined in different ways; however, a common approach
is to consider a fraction, say α of the standard deviation of
the phase angles in the layer. This takes into consideration
the distribution of the phase angles, and we have used this
approach for thresholding for our simulation results. We have
considered two different variants of CHAMP – in the one-
shot (OS) approach, all the phase angles below a threshold
(corresponding to some α) are pruned at once after which
retraining (a.k.a. fine-tuning) is performed. Alternatively, in the
iterative (IT) variant, we perform pruning over several steps
by gradually increasing α. Each pruning step is followed by
a round of retraining to recover the inferencing accuracy.

OS CHAMP is typically faster than the IT variant as it

involves a single pruning step and fewer retraining epochs.
However, due to the lack of extensive retraining, the maximum
sparsity that can be achieved without a significant accuracy
loss is also lower than that of IT CHAMP. Therefore, we
propose a hybrid approach where OS CHAMP is first used
to quickly ramp up the sparsity. This is followed by IT
CHAMP, where the sparsity is gradually increased further,
with intermittent retraining. Fig. 5 presents a flowchart of
the CHAMP approach. In addition to generating the input
model for the IT variant, OS CHAMP also provides a starting
point for α for the subsequent iterative flow. The inputs to the
OS flow include the trained IPNN, the minimum acceptable
inferencing accuracy accOSmin, and K different values of α’s
(αOSk , k = 0, 1, . . . , K − 1). Note that the K different OS
runs are mutually independent and can, therefore, be launched
in parallel. Also, we consider the same initialization and the
same model architecture for the K runs. After the K OS
CHAMP-pruned models are obtained, we identify the “best-
performing” model – this is the one that has the maximum
phase sparsity while having an inferencing accuracy greater
than accOSmin. The inputs to the IT CHAMP flow include this
best-performing model along with the initial α (αIT0 ), the
increment in α in each iteration (∆α), and the minimum
acceptable inferencing accuracy (accITmin). Note that, for our
simulations, we have considered equal increments in the α in
each iteration: αITi = αITi−1+∆α, where i denotes the iteration
number. However, we can also use non-uniform step sizes,
especially if we find that the sparsity or inferencing accuracy
requirements are not satisfied. For example, if the accuracy
remains low even after retraining, we may reduce the rate by
which α is incremented.

B. LTPrune: Pruning IPNNs using LTH

Efforts on improving the efficiency of neural networks
have largely focused on the inferencing step. This is because
training such networks is a one-time operation and the as-
sociated costs are amortized over high-volume production.
However, with the advent of general-purpose accelerators,
which are often incrementally retrained in-field, there has
been considerable interest in minimizing the training time. It
has been shown that training a magnitude-pruned model from
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scratch is considerably difficult and achieves lower accuracy
compared to the unpruned model [9].

The lottery ticket hypothesis (LTH) postulates that for any
neural network, there exists a sparse subnetwork that, when
trained from scratch, can achieve similar accuracy as that
of the unpruned network in a significantly lower number of
training epochs [20]. For any given network, such easy-to-train
sub-networks (a.k.a. winning tickets) can be obtained using a
modified magnitude pruning approach. In each pruning itera-
tion, after the weights with a magnitude below a threshold are
clamped to zero, the remaining weights are reset back to their
initial values (before the onset of training). Following this,
the network is retrained to recover the inferencing accuracy
while ensuring that the pruned weights remain zero. In LTH-
based pruning, the obtained sparse sub-network depends on
the architecture of the original network, the dataset on which
the network is trained, and the initial values of the weights.

In this paper, we propose LTPrune, a novel technique
where LTH-based pruning is extended to IPNNs. Note that,
LTPrune is different from the conventional LTH-based pruning
proposed in [20]. Given the BMA between the weights and the
phase angles in IPNNs, LTPrune is hardware-aware and targets
the phase angles and not the weights by leveraging photonic
training (similar to CHAMP). Fig. 6 presents a flowchart for
LTPrune. Given the network architecture (number of layers,
neuron count in each layer, etc.), we initialize the phase angles
and store their values in a database. In each of the Rmax
pruning rounds, we check whether the IPNN has acceptable
sparsity and accuracy. To increase the sparsity, we first retrain
the IPNN to obtain a sufficiently high inferencing accuracy.
In our simulations, retraining is performed till we obtain an
inferencing accuracy within 5% of the nominal accuracy. Post
retraining, a fraction of phase angles are pruned and the
remaining are reset to their initial values. We consider two
ways to identify the phase angles to be pruned: in layer-wise
LTPrune, the bottom k-percentile of the phase angles (with
the lowest magnitudes) in each layer are pruned, whereas, in
global LTPrune, the bottom k-percentile of the phase angles in
the entire IPNN are pruned. Note that, while global LTPrune
can lead to different sparsity in each IPNN layer, the layer-
wise approach ensures uniform sparsity levels across all layers.
In Section IV.A, we will show that this uniform distribution
of the pruned PhS across all the layers allows us to obtain

TABLE I: Description of the IPNNs considered in our simula-
tion results. FC(x,y): Fully connected layer with x inputs and y
outputs, SP: Softplus activation, LSM: LogSoftMax activation.

Model Architecture
Network-1 FC(16,16)-SP-FC(16,16)-SP-FC(16,10)-LSM

Network-2 FC(64,256)-SP-FC(256,100)-SP-
FC(100,10)-LSM

Network-3
FC(64,256)-SP-FC(256,256)-SP-

FC(256,128)-SP-FC(128,128)-SP-
FC(128,100)-SP-FC(100,10)-LSM

a higher overall sparsity level. On the other hand, in global
LTPrune, a majority of the pruned PhS are from a few layers,
and this leads to a lower overall sparsity (compared to layer-
wise LTPrune) for the same accuracy loss. Once the phase
angles are pruned, the binary masks associated with the phase
angles are updated – the mask elements corresponding to
the pruned (unpruned) phase angles are updated to 0 (1).
Consequently, during retraining in the next round, when the
gradients computed from backpropagation are multiplied with
these binary masks, the pruned phase angles are not updated.
This iterative process continues for Rmax rounds or till we
reach the target sparsity.

Recall that, due to the BMA between the phase angles and
the weights of the linear layers in the IPNNs, pruning a single
phase angle can affect several weight matrix elements, some
of which may have high saliency. Therefore, post pruning, we
often observe a significant loss in the inferencing accuracy.
The hyperparameters for retraining, which are inputs to the
LTPrune flow, may need to be adjusted in each round to ensure
that acceptable accuracy is achieved. In the next section, we
will demonstrate that LTPrune can efficiently identify highly
sparse sub-networks in IPNNs and can outperform CHAMP,
especially for difficult-to-prune compact IPNNs.

IV. SIMULATION RESULTS

We consider three fully-connected feedforward IPNNs with
different footprints (see Table I) to demonstrate the perfor-
mance of CHAMP and LTPrune. Network-1 and Network-
2 are trained on the MNIST dataset while Network-3 is
trained on the CIFAR-10 dataset. Network-1 has a smaller
footprint with an input layer with 16 neurons, two hidden
layers consisting of 16 neurons each, and an output layer with
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10 neurons (corresponding to the 10 classes in the MNIST
dataset). Note that, in addition to the MZIs in the OIUs, N
standalone MZIs are necessary before the V HN×N and after the
UN×N multipliers to realize the weights in an N ×N fully-
connected layer. The inferencing accuracy drops significantly
when the PhS in these MZIs are pruned; therefore, we do
not consider them as prunable PhS in our simulations. In
total, Network-1 has 1380 prunable PhS. Each 28×28=784
dimensional MNIST image is compressed to 16-dimensional
compressed feature vectors by considering the 4×4 region
at the center of its shifted fast Fourier transform. For the
larger Network-2 (with 155,214 prunable PhS), we use a 64-
dimensional complex feature vector by considering the 8×8
region at the center of the frequency spectrum. Consequently,
Network-2 consists of a 64-neuron input layer, followed by
two hidden layers with 256 and 100 neurons, and an output
layer with 10 neurons. We convert the images in the CIFAR-10
dataset to gray-scale and compress them to a 64-dimensional
feature vector using shifted fast Fourier transform. Network-
3 (with 351,822 prunable PhS) consists of a 64-neuron input
layer, followed by five hidden layers with 256, 256, 128, 128,
and 100 neurons, and an output layer with 10 neurons.

A. Sparsity of Pruned IPNNs

Fig. 7(a)-(c) shows the simulation results when the one-
shot and iterative CHAMP methods are applied to Network-
1, Network-2, and Network-3. In each case, the pruning
threshold, which is the magnitude below which all phase
angles are pruned, is given by α · σlayer. Here, α is a user-
defined constant, and σlayer denotes the standard deviation
of the non-zero phase angles in each layer. We consider both
the one-shot and the iterative pruning approaches – this is
because, for the smaller Network-1, the one-shot approach
performs better than the iterative approach for some cases
(e.g., for α = 0.2 in Fig. 7(a)). For the larger Network-2,
while iterative CHAMP outperforms the one-shot approach in
terms of sparsity, we use the one-shot approach to ramp up
the initial values of α quickly. The best-performing one-shot
model (yellow rectangle corresponding to α = 2.5 in Fig. 7(b))
is used as an input model for the iterative CHAMP. Similarly,
for Network-3, the best-performing one-shot model (α = 3.0
in Fig. 7(c)) has a sparsity of 77.3% and is used as the input
model for the iterative flow.

For all these cases, the pruning threshold in each layer
increases with increasing α; consequently, the sparsity of the
PhS increases, and the mean phase angle—averaged over the
1380 PhS in Network-1, the 155,214 PhS in Network-2, and
the 351,822 PhS in Network-3, to which the weight parameters
are mapped— decreases. Note, however, that in the one-shot
case, the accuracy drops steeply with increasing α. In fact, for
an allowable accuracy loss of 5%, one-shot CHAMP leads to a
maximum sparsity of 31.1% in Network-1, 85.7% in Network-
2, and 77.3% in Network-3. On the other hand, with iterative
CHAMP, the accuracy loss is less than 5% up to α =1 (for
Network-1), α =6 (for Network-2), and α =5.6 for Network-
3. Consequently, for a 5% accuracy loss, 55% PhS in Network-
1, 99.48% PhS in Network-2, and 91.3% PhS in Network-3
can be pruned. We obtain a significantly higher sparsity using

iterative CHAMP as the models are pruned and retrained over
several epochs gradually, compared to the drastic pruning and
few fine-tuning epochs in the one-shot case. Note also that
using the same approach and with the same allowable accuracy
loss, the sparsity obtained in Network-2 is higher than that in
Network-1. This can be attributed to the fact that while both
the networks are trained for the same task, Network-2 has a
significantly higher number of PhS, and is therefore highly
over-parameterized. However, despite the larger PhS count in
Network-3, the maximum sparsity achieved is lower than that
of Network-2. This is indeed expected, as the CIFAR-10 task
is more complex than MNIST, and, hence, necessitates more
parameters for learning. We also observe that while, in most
cases, the mean phase angle decreases with increasing PhS
sparsity, the reverse occurs from α = 1.0 to α = 1.2 in Fig.
7(a). This is due to the fine-tuning step where some of the few
remaining non-zero phase angles may increase in magnitude to
account for the additional pruning. However, our simulations
show that such scenarios are, indeed, quite rare and even when
they occur, the increase in the mean phase angle is negligible.

Fig. 8(a)-(c) show the fine-tuned inferencing accuracy, spar-
sity of the PhS, mean phase angle, when layer-wise and global
LTPrune are applied to the three networks. The performance
of LTPrune depends on how the pruning rate, k, is scheduled
over the different pruning rounds. For the smaller Network-
1, we found that a high PhS sparsity at a low accuracy loss
is achieved when we start with a low k for the first few
rounds, followed by aggressive pruning (high k) in the final
few rounds. The top and bottom subfigures in Fig. 8(a)-(c)
show the simulation results when we apply layer-wise LTPrune
and global LTPrune, respectively. For Network-1, we use
k =10% for the first ten rounds and k =25% for the remaining
rounds. However, for Network-2, we obtained the best pruning
performance by using a moderate k =25% for the first five
rounds, followed by a high k =50% in the next four rounds,
and then a low k =10% for the remaining rounds. Clearly,
the optimal schedule of the pruning rate k can vary based on
the network architecture and the dataset. For Network-3, we
use k =30% for the first three rounds, k =25% for the next
five rounds, followed by k =10% for the remaining rounds. A
trial-and-error-based approach is, therefore, necessary to find
the optimal k schedule for a given IPNN.

We observe that for both layer-wise and global LTPrune
(across all networks), the inferencing accuracy is only ≈10%
in the first round. This is because the accuracy in each round
is recorded before the training in that round (see Fig. 6). After
the training in the first round, the accuracy improves in all four
cases. As pruning progresses, the mean phase angle decreases,
and the sparsity of the phase angles increases, as expected.
Recall that the tuning power consumption in the PhS is directly
proportional to the phase angle; therefore, a reduction in the
mean phase angle signifies a proportional reduction in the
tuning power. We find that with global LTPrune, we reach
the maximum achievable sparsity in a few pruning rounds
(eight for Network-1, five for Network-2, and ten for Network-
3). Beyond this point, the inferencing accuracy drops steeply.
Using global LTPrune, we obtain a maximum sparsity of 57%
for Network-1, 68% for Network-2, and 73% for Network-3.
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Fig. 7: Fine-tuned inferencing accuracy, sparsity of PhS, and
mean phase angle for one-shot and iterative CHAMP when
applied to (a) Network-1, (b) Network-2, and (c) Network-
3 for different values of α. The black-dashed lines show
a 5% accuracy loss and the yellow rectangles highlight the
best-performing models (maximum sparsity with accuracy loss
<5%) in each case.

In contrast, with layer-wise LTPrune, the inferencing accuracy
remains within 5% of the nominal accuracy for 16 pruning
rounds for all three networks. Using this approach, we can
prune up to 89% of the PhS in Network-1, 99% of the PhS in
Network-2, and 93% of the PhS in Network-3.

Fig. 9 shows the results of iterative CHAMP and layer-wise
LTPrune, when applied to Network-3 where we only use the
inferencing accuracy of 10k images (separate from the test
dataset) for validation. The best-performing models obtained
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Fig. 8: Fine-tuned inferencing accuracy, sparsity of PhS, and
mean phase angle for layer-wise and global LTPrune when
applied to (a) Network-1, (b) Network-2, (c) Network-3.

using iterative CHAMP and layer-wise LTPrune demonstrate
inferencing accuracies of 80.12% and 79.73%, respectively, for
the remaining 10k test images. These correspond to a less than
7% drop in the inferencing accuracy compared to that of the
unpruned model (86.67%). Therefore, CHAMP and LTPrune
are able to obtain sparse IPNNs that offer high test accuracy,
even when we use a separate validation dataset.

The global LTPrune performs worse compared to the layer-
wise pruning as it is biased towards layers with smaller phase
angles, i.e., it is possible that most phase angles in such layers
are pruned away in the initial rounds. This is highlighted
in Fig. 10 where we show the sparsity of phase angles in
the three (one input and two hidden) layers of layer-wise
and global LTPruned models, for Network-1 and Network-
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Fig. 9: Fine-tuned inferencing accuracy, sparsity of PhS,
and mean phase angle for iterative CHAMP and layer-wise
LTPrune on Network-3 where we only use the inferencing
accuracy of 10k images (out of the 20k total test dataset) for
validation. The test accuracies for the best-performing models
(yellow rectangles) are 80.12% and 79.73%, respectively. The
validation accuracies are 82.34% and 81.14%, respectively.

2. For Network-1, the global model with the best trade-off
between accuracy and sparsity (eight rounds of pruning, 88.9%
accuracy, and 57.6% mean sparsity), the percentage of pruned
(i.e., zero) θ phase angles is considerably higher than φ. In the
global model with maximum sparsity (11 rounds of pruning
and 81.2% mean sparsity), up to 98.8% of θ phase angles are
pruned. This holds for the LTPruned models for Network-2 as
well – 99.93% of the θ phase angles are pruned in the global
model with maximum sparsity. Extreme sparsity in certain
layers can potentially hinder training and lead to exploding
loss. In contrast, layer-wise pruning (see Fig. 11(a)) ensures
that the sparsity of phase angles is uniform across the different
layers. This leads to a lesser likelihood of exploding loss (and
consequently, exploding gradient) of layer-wise LTPrune, even
at higher levels of sparsity.

Next, we present a comparative study of the performance
of CHAMP and LTPrune when applied to Network-1 and
Network-2. Fig. 11(a)-(b) compares the histogram distributions
of the phase angles of the best-performing models obtained
using iterative CHAMP and layer-wise LTPrune with that
of the unpruned IPNN. Observe that LTPrune outperforms
CHAMP by a significant margin for Network-1, we obtain
a sparsity of 55% using CHAMP compared to a sparsity of
89% using LTPrune. However, their performance for the larger
Network-2 is similar. In fact, CHAMP offers a slightly higher
sparsity (99.48%) compared to that of the best-performing
LTPrune model (99.02%). This indicates that while LTPrune
outperforms CHAMP when applied to difficult-to-prune com-
pact networks, their effectiveness is similar while pruning
highly overparameterized IPNNs. Recall also that, in LTPrune,
all the unpruned phase angles are reset to their initial values
and retrained from scratch after every pruning round; conse-
quently, each round of LTPrune necessitates a higher number
of retraining epochs. Therefore, taking the higher retraining
time associated with LTPrune, it is recommended that for
large over-parameterized IPNNs, we should preferentially use
CHAMP. In contrast, for compact IPNNs, where retraining is
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Fig. 10: Phase-angle sparsity (φ and θ) in the three layers (L0,
L1, and L2) of different LTPruned models for (a) Network-1
and (b) Network-2. The x-axis shows the variant of LTPrune
used with the number of rounds in parentheses. The magenta-
dashed lines indicate the mean sparsity over all the layers.

faster, we can use LTPrune for higher sparsity.
Fig. 11(c)-(d) presents compares the accuracy and sparsity

of pruned IPNNs (Network-1 and Network-2, respectively)
obtained using different methods. Here, we only consider
those models where the accuracy loss (from the respective
unpruned models) is less than 5%. The magenta data points
in each figure denote the unpruned models. From Fig. 11(c),
it is clear that for Network-1, only layer-wise LTPrune can
offer a sparsity greater than 60%. When very low accuracy
loss (<1%) is acceptable after pruning, CHAMP can be
considered, which achieves a maximum sparsity of 22% under
this constraint. Similarly, for Network-2 (Fig. 11(d)), layer-
wise LTPrune offers the maximum sparsity of 96.91% for a
<1% accuracy loss. Observe also that contrary to Network-1,
in the case of Network-2, both iterative CHAMP and layer-
wise LTPrune offer a high sparsity for a <5% accuracy loss.

B. Characterizing Pruned IPNNs under Uncertainties

In [21] and [22], we have shown that the IPNN infer-
encing accuracy is sensitive to several imperfections such as
uncertainties in the MZIs, insertion loss, and low-precision
drivers. In particular, expected levels of uncertainties in the
phase angles due to fabrication process variations and thermal
crosstalk have a catastrophic impact on performance. As an
IPNN is gradually pruned, we essentially discard the redundant
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Fig. 11: (a)-(b) Histogram distribution of the phase angles in Network-1 and Network-2 with CHAMP and LTPrune pruning
(inset shows the same plot with a logarithmic scale on the y-axis). (c)-(d) Comparison between the accuracy loss and sparsity
of PhS in pruned Network-1 and Network-2 models obtained using different methods. (e)-(f) Accuracy of the unpruned,
best-performing one-shot (OS)-CHAMP, best performing iterative (IT)-CHAMP, best-performing layer-wise LTP, and best-
performing global LTP models under random phase uncertainties when the pruned PhS are (e) power-gated and (f) removed.

phase angles. Consequently, the non-zero phase angles in
the obtained sparse IPNN have a high saliency, and small
uncertainties in these components can lead to a large accu-
racy loss. To demonstrate this, we consider the larger IPNN
(Network-2) and inject uncertainties in the phase angles of
the unpruned IPNN and those of the best-performing models
obtained from one-shot CHAMP, iterative CHAMP, layer-
wise LTPrune, and global LTPrune. We perform 1000 Monte
Carlo (MC) iterations; in each iteration, the uncertainties
are sampled from a zero-mean Gaussian distribution with a
standard deviation of σPS · π. Fig. 11(e)-(f) shows the mean
inferencing accuracy—over 1000 MC iterations—for the five
models for different values of σPS .

Note that the redundant PhS identified during pruning can be
handled in two ways: (1) they can be power-gated (turned-off)
and left in the network (Fig. 11(e)), or 2) they can be altogether
removed from the IPNN (Fig. 11(f)). We observe that in the
first case (power-gated PhS), compared to the unpruned model,
the pruned networks are slightly more susceptible to phase
uncertainties because even small uncertainties in otherwise
zero phase angles lead to a large relative deviation in the
MZI operation. For all models, the accuracy drops steeply
with σPhS . In contrast, removing pruned PhS reduces the
number of uncertainty-susceptible components and leads to
significantly higher accuracy (up to 78.3%) under uncertain-
ties. Additionally, removing the redundant PhS leads to a lower
area overhead, and lower optical loss (due to reduced network

depth). Therefore, in situations where physical modifications
in the IPNN are feasible, the pruned PhS should be removed.
Alternatively, for general-purpose photonic accelerators, which
may need to be retrained when the application workload
changes, hardware modifications are infeasible. In such cases,
it must be ensured that the phase uncertainties are minimized.

V. HYBRIDPRUNE: IN-FIELD PRUNING USING A
CHAMP-LTPRUNE HYBRID APPROACH

While layer-wise LTPrune offers a high sparsity, it neces-
sitates a large number of retraining epochs to recover the
inferencing accuracy in the pruned IPNNs. This is because, in
each LTPrune iteration, in addition to all the pruned weights
being clamped to zero, the unpruned weights in each layer
are reset back to their initial (pre-training) values. As a result,
the correlation between the features and the labels is learned
slowly (compared to conventional training). Note that this is
in contrast to prior observations in DNNs where LTPruned
networks have been shown to be more easily trainable. This
can potentially be attributed to the BMA between the phase
angles and the weights in IPNNs; LTPrune in IPNNs gen-
erates sparse phase angles and not easily trainable sparse
subnetworks with few non-zero weights. The large training
time and computational overhead associated with LTPrune are
typically not a concern for application-specific IPNNs; pruning
such networks is a one-time operation and the associated
costs will be amortized by the reduction in tuning power
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Fig. 12: Comparison of the fine-tuned inferencing accuracy,
sparsity of PhS, and mean phase angle when Network-1
is pruned using layer-wise LTPrune (solid lines) and the
CHAMP-LTPrune hybrid approach (dashed lines, shaded re-
gion). The X-axis shows the number of retraining epochs
necessary to fine-tune the inferencing accuracy. Simulation
results show that with the hybrid approach, up to 86.3%
sparsity can be obtained with only 52 retraining epochs. While
layer-wise LTPrune offers a slightly higher sparsity of 88.9%,
it necessitates significantly more (≈ 240) retraining epochs.

and area overhead in high-volume production. However, for
general-purpose IPNNs, which can be reused for multiple
application workloads, pruning needs to be repeated in-field
based on the respective tuned phase angles of each application.
Consequently, pruning approaches for general-purpose IPNNs
must be fast and have a low computational overhead.

Note that, contrary to LTPrune, the unpruned weights in
each iteration in CHAMP are not reset back to their initial
values. Consequently, retraining in CHAMP requires fewer
epochs compared to that in LTPrune. For example, in our
simulations, iterative CHAMP required a maximum of 10
retraining epochs across all iterations. On the other hand,
layer-wise LTPrune required at least 15 retraining epochs
across the different rounds. Clearly, while LTPrune is likely
to offer a higher phase sparsity, CHAMP is the faster of the
two. Therefore, this tradeoff between the performance and the
run time needs to be explored while determining the optimal
pruning approach for a given IPNN. It is expected that for
larger (over-parameterized) IPNNs, that are typically easy to
prune, CHAMP and LTPrune will offer similar PhS sparsity.
In fact in our simulations results for Network-2, the maximum
sparsity obtained using CHAMP (99.48%) is marginally higher
than that obtained using LTPrune (99.02%). Therefore, in such
IPNNs, it is recommended to use CHAMP to perform fast in-
field pruning. However, for small IPNNs, the sparsity obtained
using LTPrune is higher than that from CHAMP; consequently,
analyzing the erstwhile tradeoff between sparsity and pruning
run time becomes crucial. For example, while CHAMP can
prune only up to 55% of the PhS in Network-1, we obtain a
sparsity of up to 89% using LTPrune.

To enable efficient in-field pruning of small (difficult-to-
prune) IPNNs, we propose HybridPrune, a novel approach
that leverages both CHAMP and LTPrune. In HybridPrune, we
first ramp up the PhS sparsity using iterative CHAMP. Note
that, as we are using CHAMP, each iteration here typically
requires only a few retraining epochs. Iterative CHAMP is
repeated till the finetuned inferencing accuracy falls below

5% of the nominal accuracy. The best-performing CHAMP
model, with maximum PhS sparsity and a <5% accuracy loss,
is then used as an input for layer-wise layer-wise LTPrune. We
run LTPrune for multiple rounds, till the inferencing accuracy
falls below 5% of the nominal accuracy. While each LTPrune
round will necessitate several retraining epochs, the number
of such rounds will be limited given that the input model to
LTPrune had a high initial sparsity (obtained using CHAMP).
Note also that, based on the IPNN architecture and the tuned
phase angles, we may need to perform more than one run of
CHAMP and LTPrune each. In other words, instead of the
CHAMP-LTPrune sequence mentioned above, we may need
to perform CHAMP-LTPrune-CHAMP-LTPrune or another
similar sequence. Essentially, the idea is that CHAMP should
be used for a quick ramp-up in the sparsity of easy-to-prune
networks, whereas the time-intensive LTPrune should be used
for the difficult-to-prune cases. Therefore, as the prunability
of the intermediate IPNN changes during pruning, we can
determine whether to use CHAMP or LTPrune. The number
of retraining epochs can be further reduced by keeping track
of the inferencing accuracy in each iteration/round; using
this information, the retraining in each iteration/round can be
stopped once a threshold inferencing accuracy is obtained.

Fig. 12 compares the inferencing accuracy, PhS sparsity,
and the mean phase angle for different numbers of retraining
epochs when Network-1 is pruned using the HybridPrune and
layer-wise LTPrune. In HybridPrune, we first perform iterative
CHAMP with α = 0.2 for six iterations. In each iteration,
the retraining is done till an inferencing accuracy within 5%
of the nominal accuracy (93.86%) is obtained. Based on this
policy, we obtain a PhS sparsity of 67.27% with only 25
retraining epochs distributed over the six pruning iterations.
This model is then used as an input to the LTPrune phase of
HybridPrune where we perform three rounds of pruning with
k = 25%. Using layer-wise LTPrune, we obtain a sparsity
of up to 86.34% with only 27 additional retraining epochs
spread over the three rounds. In total, HybridPrune requires
only 52 retraining epochs to achieve a sparsity of 86.34%. This
translates to a 78.3% reduction in the run time compared to the
standalone layer-wise LTPrune that necessitates 240 retraining
epochs to obtain a sparsity of 88.9%.

In Section IV.B, we show that the pruned PhS can either
be power-gated or removed from the IPNN. In both these
cases, the tuning power consumption is reduced in the pruned
network; however, the area overhead is reduced only when
the PhS are removed. Also, recall from simulation results
in Fig. 11(e)-(f) that the reliability of the pruned IPNNs
under random phase uncertainties improves when the pruned
PhS are removed, whereas it remains similar to the nominal
IPNN when the PhS are power-gated. For the general-purpose
IPNNs, which should be trainable for different application
workloads, the pruned PhS can not be removed. Consequently,
HybridPrune for such IPNNs does not lead to a reduced area
or improved reliability under uncertainties. In spite of these
drawbacks, HybridPrune is a promising in-field alternative to
the standalone CHAMP and LTPrune due to the reduction in
the retraining time, especially for difficult-to-prune IPNNs.
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VI. CONCLUSION

Due to the bidirectional many-to-one mapping between the
software weights and the phase angles in IPNNs, conventional
DNN pruning techniques, when applied to IPNNs, prove to
be inefficient. We propose CHAMP and LTPrune, two novel
hardware-aware pruning techniques for IPNNs, and show that,
for large IPNNs, we can achieve more than 99% sparsity with
an accuracy loss of less than 5% using these methods. We
have also shown that for smaller IPNNs, CHAMP can be
used to obtain a moderate sparsity (up to 22%) and ultra-
low accuracy loss (<1%) and LTPrune can achieve ultra-high
sparsity (up to 89%) with an acceptable accuracy loss (<5%).
Using these approaches, we can improve the power efficiency
(by up to 98.2%) and enhance the robustness of IPNNs under
uncertainties in the phase angles. While LTPrune offers the
maximum sparsity, it necessitates several retraining epochs to
recover the inferencing accuracy. To address this, we propose
HybridPrune where we combine CHAMP and LTPrune to
obtain highly sparse IPNNs with up to 78% fewer retraining
epochs compared to standalone layer-wise LTPrune.
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