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Abstract—Silicon-photonic neural networks (SPNNs) are be-
ing explored as post-Moore’s law successors to CMOS-based
artificial intelligence (AI) accelerators thanks to their ultra-
high speed and ultra-low energy consumption. However, their
accuracy and energy efficiency can be catastrophically degraded
because of the sensitivity of underlying photonic components to
fabrication-process variations and run-time uncertainties (e.g.,
thermal crosstalk). To apply existing component-level uncertainty
mitigation techniques to SPNNs, we need to perform criticality
assessment to identify susceptible components. In this paper,
we explore several fabrication-process variations and run-time
uncertainties in optical components and present a hierarchical
study of their impact on the MNIST classification accuracy
in an SPNN based on Mach–Zehnder Interferometers (MZIs).
Simulation results show that the criticality of uncertainties varies
significantly based on both the location and the tuned char-
acteristics of the affected components. We also review existing
work on techniques to mitigate such adverse impact on SPNN
performance.

I. INTRODUCTION

The rise of deep learning as the foundation of most modern
artificial intelligence (AI) applications has been fueled by
domain-specific AI accelerators that support custom memory
hierarchies, variable precision, and optimized matrix multipli-
cation. Modern AI accelerators demonstrate superior energy-
and footprint-efficiency compared to GPUs for a variety of
inference and some training tasks. With the slowdown of
Moore’s law, these accelerators approach fundamental limits
on their performance due to (i) the limited computational and
performance-per-watt capabilities of silicon CMOS, and (ii)
the use of low-bandwidth metallic interconnects [1].

Optical computing and communication can potentially over-
come both these performance-limiting issues. Computations
required in deep learning, such as matrix-vector multiplication,
can be performed entirely in the optical domain with high
energy efficiency. For instance, with respect to multiply-and-
accumulate (MAC) operations, optical computing can achieve a
1000× better energy footprint efficiency compared to the most
energy-efficient electronic accelerators today [2]. Additionally,
optical interconnects represent a post-Moore’s law alternative to
replace low-performance metallic interconnects, hence ensuring
lower power consumption, higher bandwidth, and lower latency
for the communication.

With the advent of silicon photonics, optical components
can now be integrated into dense silicon chips using CMOS-
compatible manufacturing techniques. Silicon-photonic neural
networks (SPNNs) integrate the performance benefits offered

by optical computing and interconnects with the low-cost and
mature CMOS fabrication process to enable low-latency and
energy-efficient optical domain data transport and processing.
However, SPNNs are prone to several reliability issues. Imper-
fections in the optical lithography process lead to variations in
critical waveguide dimensions and hence incorrect operation
of photonic components. Moreover, mutual thermal crosstalk
between adjacent optical components due to convective heat
transfer has been observed [3]. These uncertainties, along with
the finite encoding precision on tuning parameters, can lead to
erroneous matrix-vector multiplication and a consequent loss
in SPNN classification accuracy.

In this paper, we present a comprehensive analysis of the
impact of uncertainties in SPNNs. In particular, we show that
the effect of uncertainties can vary depending on the location
and type of affected optical components. The main contributions
of this paper are as follows:
• An overview of different uncertainties in SPNNs origi-

nating from fabrication-process variations, manufacturing
defects, and thermal crosstalk;

• A hierarchical analysis of the impact of different uncertain-
ties on SPNN performance starting from the component
level to the system level;

• A framework to identify critical SPNN components where
uncertainties can lead to severe performance degradation.

The remainder of the paper is organized as follows. In
Section II, we review the fundamentals of SPNNs and the two
main classes of SPNNs (i.e., coherent and noncoherent). Section
III discusses the various sources of uncertainties in coherent
SPNNs and explores prior work on analysis and mitigation
of such component imprecision. In Section IV, we present a
comprehensive hierarchical study on the impact of random
uncertainties in coherent SPNNs. Our analysis can be used to
identify the variation-susceptible “critical” components in the
network. We draw conclusions in Section V.

II. AN OVERVIEW OF SPNNS

A multi-layer perceptron-based artificial neural network
(ANN) maps an input feature vector to an output vector through
a series of linear transformations and non-linear activation
functions. The neurons in adjacent linear layers (see Fig. 1(a))
are interconnected using weighted edges; these weights are
updated during training to change the effect of each input. To
mimic this dynamic weighting of connections, silicon-photonic
devices can be used to control the optical transmission between
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Fig. 1: Hierarchical design of a coherent SPNN: (a) system-level, (b) layer-level, (c) device-level, and (d) component-level; (e) 3D schematic
of a strip waveguide.

two neurons in different ways. Coherent SPNNs (C-SPNNs)
use thermo-optic phase shifters (PhS) to modify the phase
of the optical signal between two neurons. In this case, the
tuned phase shifts in the PhS denote the dynamic edge weight.
Alternatively, noncoherent SPNNs (N-SPNNs) use microring
resonators (MRs) to modify the optical signal power on the
interconnection between two neurons. The performance of N-
SPNNs can be adversely affected due to geometric variations
in the waveguides. Experimental studies have shown that MRs
used in N-SPNNs can suffer from a 4.79 nm resonance drift
within a wafer due to process variations [4]. Additionally, N-
SPNNs require several power-hungry wavelength-conversion
steps and are prone to inter-channel crosstalk among different
wavelengths.

As a result, C-SPNNs are being preferred for emerging
AI accelerators [5]. In this paper, we primarily focus on
uncertainties in C-SPNNs. Fully connected layers in C-
SPNNs can be represented mathematically as matrix-vector
multiplication followed by an activation function. Consider a
layer Li with ni neurons fully connected to the next layer
Li+1 with ni+1 neurons. The output vector at Li+1 is then
given by O

ni+1×1
i+1 = fi+1(M

ni+1×ni

i+1 Oni×1
i ). Note that fi+1

and Mi+1 are the nonlinear activation function and weight
matrix associated with layer Li+1, respectively. In C-SPNNs,
the linear multiplication with the weight matrix (i.e., M )
is implemented using arrays of configurable Mach–Zehnder
interferometers (MZIs), as shown in Fig. 1(b)). Typically,
activation functions (e.g., fi+1) are implemented electronically
as optical nonlinearities require high signal power and impose
lower bounds on the physical footprint [6].

MZIs are used to determine the phase difference between
collimated optical signals. Fig. 1(c) shows the typical structure
of an MZI with two tunable PhS—with phase shifts φ and
θ—and two 50:50 beam splitters (BeS). The PhS, shown in
Fig. 1(d), are used to apply phase shifts and obtain varying
degrees of interference between the optical signals traversing
the two waveguides in the MZI. The refractive index of a
silicon (Si) waveguide changes with temperature; this is known
as the thermo-optic effect. The thermal microheaters in PhS can
tune this temperature change by varying the current through
a resistor coil. The Joule heat dissipated from the resistor, in

turn, controls the applied phase shift. Fig. 1(d) also shows the
schematic of a 2×2 directional coupler-based beam splitter. A
fraction of the input optical signal denoted by transmittance
t in In1 (In2) is coupled to Out2 (Out1) with a phase shift
of π/2. The remaining fraction of the optical signal denoted
by reflectance r is reflected to the original waveguide and
propagates from In1 (In2) to Out1 (Out2). The ratios r and t
are referred to as splitting ratios in this paper. As the optical
signal is distributed among the two waveguide in the ratios
of r and t, the optical power is distributed in the ratios of r2

and t2. Therefore, from the law of conservation of energy, we
have r2 + t2 = 1. In an ideal 50:50 beam splitter, half of the
optical power is reflected while the other half is transmitted;
therefore, both the transmittance and reflectance coefficients
are 1√

2
. The transfer matrix of an MZI with two PhS (φ and

θ) and two BeS—with splitting ratios (r, t) and (r′, t′)—is
given by:

TMZI =

(
rr′ei(θ+φ) − tt′eiφ ir′teiθ + it′r
it′rei(θ+φ) + itr′eiφ −tt′eiθ + rr′

)
. (1)

Using singular value decomposition, the weight matrix
corresponding to the layer Li can be factorized into two
unitary matrices and a diagonal matrix: Mi = UiΣiV

H
i ; Ui

and Vi are the unitary matrices and V Hi denotes the Hermitian
transpose of Vi. Moreover, Σi is a diagonal matrix consisting
of the eigenvalues of Mi. Any ni × ni unitary matrix can be
represented by an array of

(
ni

2

)
MZIs connected as shown in

Fig. 1(b). MZIs can also be used to attenuate each waveguide
separately without mixing (see Σ4×4 in Fig. 1(b)). In this way,
an ni×ni diagonal matrix can be represented by ni MZIs with
one input and one output of each MZI terminated using optical
waveguide tapers to prevent back-reflection and cross-coupling
at the unused ports [7] Additionally, an optical amplification,
denoted by β in Fig. 1(b), is required on each output to counter
the power dissipation in lossy MZIs.

SPNNs can be trained either in an in-situ or an ex-situ fashion.
In in-situ training, gradient computation needs to be performed
on the SPNN platform; this involves sequentially perturbing
each parameter of the circuit. Such training demands significant
computational time and resources and its efficiency can be
affected under thermal crosstalk. Thus, current implementations
of SPNNs are typically trained ex-situ using a software model
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of the optical system on a digital computer. After training, the
voltage drivers in the PhS are configured to realize the trained
weights.

III. UNCERTAINTIES IN SPNNS

Silicon photonic integrated circuits are sensitive to
nanometer-scale lithographic variations, manufacturing defects,
and thermal crosstalk. In this section, we explore the fabrication-
process variations and run-time uncertainties affecting different
photonic components.

A. Fabrication-process Variations in C-SPNNs

Imperfections in the optical lithography process may lead
to variations in the resist sensitivity, resist thickness, exposure
change, and etching. A prominent example of such variation
is in the Si waveguide width and thickness. Owing to the high
refractive index contrast between the Si core and SiO2 cladding
(see Fig. 1(e)), variations in the waveguide width and thickness
significantly perturb the effective index. The effective index
(neff ) is the ratio between the phase shift per unit length in a
waveguide relative to the phase shift per unit length in vacuum.
The effective index also depends on the wavelength of the
optical signal.

The temperature-dependent phase shift in PhS is given
by ∆φ =

(
2πl
λ0

)
·
(
dn
dT

)
· ∆T , where l is the length of the

phase shifter and λ0 is the optical wavelength [3]. Also,
dn
dT ≈ 1.8 · 10−4 K−1 is the thermo-optic coefficient of silicon
at λ0 =1550 nm and temperature T =300 K, and ∆T is the
temperature change. The tuned phase shift, ∆φ can also change
under lithographic variations in l. Additionally, impurities
introduced in the waveguide material during fabrication can
affect dn

dT .
The microheaters in PhS are controlled either by applying

a tuned voltage or passing a tuned current across the resistor
coil. This voltage/current can be supplied from a DC source
based on a digital-to-analog converter (DAC). The precision
of the temperature shift ∆T , and in turn, the phase shift is
limited by the quantization error in the DAC. For example,
in an 8-bit DAC, only 256 different phase shifts in the range
[0, 2π] can be realized. Low-precision PhS can degrade the
accuracy of the linear multipliers in SPNNs.

The power coupling coefficient in directional-coupler-based
BeS denotes the fraction of input power coupled from one mem-
ber waveguide to the other. This is given by K(z) = sin2 (δz),
where z is the coupler length and δ is the field coupling
coefficient. In ideal 50:50 BeS (r = t = 1√

2
), K(z) = 1/2.

Variations in the waveguide dimensions and the gap between
the coupled waveguides arising from proximity effects in the
etching process affect δ. Changes in δ, in addition to variations
in the coupler length z, can lead to non-idealities in BeS.

Fabrication-process variations have a significant impact on
the individual PhS and BeS; as a result, MZIs are highly
sensitive to manufacturing uncertainties. Indeed, MZIs are
more sensitive to differential variations among the two con-
stituent waveguides than the common-mode variations to the
entire device. This is because the operation of interferometric

devices (e.g., MZIs) depends on the phase difference between
optical signals in the constituent waveguides. As a result,
common-mode variations, that affect optical signal on both the
waveguides uniformly, do not have a significant impact on the
performance of MZIs. Clearly, understanding the uncertainties
in silicon-photonic circuits (including SPNNs) is essential for
yield ramp-up.

B. Run-time Uncertainties in C-SPNNs

Run-time uncertainties in C-SPNNs can arise due to mutual
thermal crosstalk among the microheaters in thermo-optic
phase shifters. The tuned phase shift in thermo-optic PhS is
proportional to l ·∆T , where l and ∆T denote the phase shifter
length and the change in temperature, respectively. To minimize
the MZI area overhead, larger ∆T is required for tuning PhS.
This necessitates increased heater power consumption and
results in higher susceptibility to thermal crosstalk. In fact, even
the most efficient phase shifter requires a voltage Vπ = 4.36
V and power Pπ = 24.77 mW to provide phase shift of π
[8]. The change in phase in the victim phase shifter due to
thermal crosstalk depends on its geometric structure, heater
material, and the distance from the aggressor phase shifter.
For a 5 µm aggressor-victim gap filled with the default SiO2
cladding and Pπ = 24.77 mW, the optical phase shift in the
victim phase shifter is greater than 0.5 rad [3]. Note that due
to the latency associated with thermal tuning, the effects of
thermal crosstalk may not be localized among proximal micro-
heaters, especially in C-SPNNs with several MZIs. Moreover,
due to simultaneous thermal gradients emanating from multiple
MZIs, developing a high-fidelity thermal model is complex and
requires experimental measurements on a taped-out photonic
circuit and is beyond the scope of this paper.

Prolonged voltage biasing of optical components can lead
to the formation of traps at the Si-SiO2 boundary in optical
waveguides. Such traps affect the refractive index of the Si
core, thereby leading to higher scattering-induced optical loss.
Experimental results on on-chip photonic networks show up to
a 30% increase in the energy-delay product due to trap-induced
aging. Similar aging-induced run-time uncertainties will also
affect C-SPNNs due to long-term thermal biasing.

IV. HIERARCHICAL ANALYSIS OF THE IMPACT OF
UNCERTAINTIES IN C-SPNNS

While there are different sources of uncertainties in PhS
and BeS (e.g., lithographic variations, defects, impurities,
thermal crosstalk), their impact can be modeled by considering
uncertainties in the phase shifts (for PhS) and splitting ratios
(r and t for BeS). In this section, we present a case study
on the impact of uncertainties in these parameters due to
lithographic variations and thermal crosstalk. However, our
criticality-assessment approach is agnostic to the source of
uncertainties and will therefore hold for any other sources of
uncertainties affecting the phase shifts and splitting ratios. Fig.
1(a)-(d) shows the different hierarchical levels in our analysis.
Component-level uncertainties in the phase shifters and beam
splitters lead to faulty MZI operation at the device-level. An

3

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 21,2022 at 16:16:16 UTC from IEEE Xplore.  Restrictions apply. 



0
π/2

π
θ (radians) 0

π

ϕ (ra
dian

s)

1.06

1.12

1
1/F

Top-to-bottom: 

Δ!"#
= 0.1, 0.05, 0.01

2π

0
π/2

π
θ (radians) 0

π

ϕ (ra
dian

s)

1.06

1.12

1
1/F

Top-to-bottom: 

Δ!"#
= 0.1, 0.05, 0.01

2π

(a)

1

2

3

4

5

6

7

8

9

105×
1 

In
pu

t

5×
1 

O
ut

pu
t

U5×5 (Unitary)MZI Number
1 2 3 4 5 6 7 8 9 10

0

5

10

15

Av
er

ag
e 

R
el

at
iv

e-
Va

ria
tio

n 
D

is
ta

nc
e 

(R
V

D
)

U1

U2

U3

U4

(b)

20

40

60

A
cc

ur
ac

y 
(%

)

80

0 0.05 0.1 0.15
0

0.20
σ!", ⁄σ!# π, 2σ$%&

0.0

70%

PhS & BeS (σNI , σBeS)
BeS (σBeS)

NI PhS (σNI)
ND PhS (σND)

(c)

Fig. 2: (a) Deviation in TMZI due to ND phase uncertainties; (b) Average RVD (left) for four 5×5 unitary matrices with one MZI under
variations at a time. Right: An MZI array (including the MZI numbers) to represent any 5×5 unitary matrix; (c) Impact of ND and NI phase
uncertainties and uncertainties in BeS splitting ratio on the C-SPNN inference accuracy.

array of faulty MZIs lead to deviated matrices (e.g., U , Σ, and
V H ); this in turn, leads to faulty weight matrix (M ) at the layer-
level. At the system-level, a C-SPNN with such faulty weight
matrices leads to inferencing errors. We conclude this section
with a discussion on few mitigation techniques to improve the
tolerance of C-SPNNs against uncertainties.

A. Component-level: PhS and BeS

The phase shifts in thermo-optic PhS can be affected due
to lithographic variations in the waveguide, quantization error
in the DAC, and thermal crosstalk. Phase uncertainties from
these sources can be classified into two main types:

1) Nominal-dependent (ND) phase uncertainties: The stan-
dard deviation of the phase uncertainties is proportional
to the nominal tuned phase shift. In this case, the deviated
phase shift is given by φ̃ = φ + σndφℵ(0, 1). Here, φ
and ℵ(0, 1) denote the nominal tuned phase shift and the
standard normal distribution, respectively. The standard
deviation of the uncertainties (σndφ) increases with φ.
ND uncertainties predominantly affect PhS with high
phase shift; typical sources include thermal crosstalk and
quantization errors.

2) Nominal-independent (NI) phase uncertainties: In this
case, the standard deviation of the uncertainties is inde-
pendent of the tuned phase shift, φ̃ = φ+ σniℵ(0, 1). NI
uncertainties include geometric process variations in the
waveguide and manufacturing defects and impurities.

Prior studies indicate a mean phase uncertainty of up to
0.21 rad (≈ 0.07π) in fabricated PhS. To consider a range
of uncertainties around this mean, we vary σnd and σni in
the range [0.005π, 0.15π]. In ideal 50:50 BeS, r = t = 1/

√
2

(Sec. III.A). However, with uncertainties, a deviation of 1-2% is
typically expected in the r and t parameters. For our analysis,
we consider the deviated reflectance, r̃ = r + σBeSℵ(0, 1)
with the deviated transmittance, t̃ =

√
(1− r̃2). For a fair

comparison with the impact of PhS uncertainties, σBeS is varied
in the range [0.005 ·1/

√
2, 0.15 ·1/

√
2]. Note that uncertainties

in the BeS are, in principle, nominal independent as all the
devices have the same nominal splitting ratios (r = t = 1/

√
2).

B. Device-level: MZIs

Variations in the phase shifts and splitting ratios affect the
MZI transfer matrix, TMZI (1). To measure the closeness
between the deviated transfer matrix T̃MZI and TMZI , we use
the fidelity metric given by: F (T, T̃ ) =

∣∣∣Trace(T̃ †T )/N
∣∣∣2.

Here, T̃ † and N denote the conjugate transpose and the size of
T̃ , respectively. Note that F (T, T̃ ) = 1 if and only if T = T̃
and F decreases with decreasing similarity between T and T̃ .
Fig. 2(a) shows how F changes due to ND phase uncertainties.
In this case, the deviated phase shifts are θ̃ = θ(1 + ∆rel) and
φ̃ = φ(1 + ∆rel), where ∆rel denotes the relative change in
the phase shifts. Clearly, an MZI with higher phase shifts is
more susceptible to ND phase uncertainties (the z-axis in Fig.
2(a) denotes 1/F ). However, for NI phase uncertainties, F is
independent of θ and φ. The susceptibility of different MZIs
to such uncertainties, and also to uncertainties in the splitting
ratio, depends solely on their position in the MZI array.

C. Layer-level: MZI Array

Unitary multipliers in the linear layers of C-SPNNs can be
realized using MZI arrays. Due to faulty MZIs, these unitary
multipliers can deviate from their intended form. The deviation
can be measured using the relative-variation distance given by:

RVD(Ũ , U) =

N∑
m=1

N∑
n=1
|Ũm,n−Um,n|

N∑
m=1

N∑
n=1
|Um,n|

. Here, U (Ũ ) denotes the

N ×N intended (deviated) unitary matrix and |Um,n| denotes
the absolute value of Um,n. Fig. 2(b) shows the mean RVD
(over 1000 iterations) when uncertainties with σnd = 0.05,
σni = 0.05π, and σBeS = 0.05/

√
2 are inserted in one MZI

at a time, in four different randomly generated 5× 5 unitary
matrices. We observe that the distribution of mean RVD differs
across the four unitary matrices. Therefore, the impact of
uncertainties in the MZI array on the unitary multipliers depend
on both the phase shifts and the position of the affected MZI.

D. System-level: C-SPNN

Incorrect matrix multiplication at the layer-level can lead to
misclassifications in the C-SPNN. To understand the impact
of uncertainties in the phase shifts and splitting ratios on
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the classification accuracy, we consider an imprecise fully-
connected C-SPNN with two hidden layers of 16 complex-
valued neurons. Each linear layer is followed by a nonlinear
Softplus layer. A LogSoftMax layer is used after the output
layer to obtain a probability distribution. We use a cross-entropy
loss function during training. To reduce the feature vector size,
each real-valued MNIST image is converted to a complex
feature vector of length 16 using fast Fourier transform [9].

Fig. 2(c) shows the mean inference accuracy (over 1000
Monte Carlo iterations) under random ND and NI uncertainties
in PhS (characterized by σnd and σni) and uncertainties in
BeS (characterized by σBeS). We observe that for the different
cases, the inference accuracy declines steeply due to these
uncertainties. In particular, with uncertainties in both PhS and
BeS, the accuracy drops by ≈70% even under low levels
of uncertainties (σni = 0.05π and σBeS = 0.05/

√
2). Also,

uncertainties in PhS have a higher impact on the accuracy
compared to similar uncertainties in BeS.

Understanding the impact of localized uncertainties in the
MZI array is necessary for identifying the critical components
in an SPNN. The tolerance of an MZI is defined as the
maximum allowable change in the splitting ratio of a component
beam splitter that can be recovered using post-fabrication
thermal tuning in PhS. Based on this notion of tolerance, it
is found that the central MZIs in an array, which require a
tuned phase shift very close to 0, have the minimum tolerance
to beam splitter fabrication errors. However, the tolerance
of an MZI to uncertainties (or the lack thereof) can also be
quantified by the accuracy loss due to localized uncertainties
in the MZI. A higher accuracy loss signifies lower tolerance
of an MZI to localized uncertainties. To simulate the impact
of localized nominal-independent uncertainties, we divide the
C-SPNN into zones of 4 MZIs (in a 2× 2 grid). We then select
one zone at a time to insert uncertainties with σni = 0.1π
and σBeS = 0.1/

√
2 while all other zones have background

uncertainty with σni = 0.05π and σBeS = 0.05/
√

2. Fig.
3 shows the mean accuracy loss (over 1000 Monte Carlo
iterations) due to localized uncertainties in the two unitary
matrices corresponding to the first hidden layer in our C-SPNN
in the form of heatmaps. Each cell in the heatmaps corresponds
to a zone with 2×2 MZIs. The value (color) in each cell denotes
the accuracy loss due to uncertainties. We observe that even
under similar levels of uncertainties the accuracy loss can vary
by up to 10%. Also, note that the low- and high-impact zones
are arranged randomly in each heatmap. This reiterates our
prior observation that the susceptibility of MZIs to different
uncertainties depends on the tuned phase shifts as well as their
location in the array.

However, in the presence of nominal-dependent phase
uncertainties, the inferencing accuracy is strongly correlated
to the tuned phase shift of the affected MZI(s) – MZIs with
higher phase shifts are more susceptible to such uncertainties.
To demonstrate this, we rank the tuned phase shifts inn each
layer of our example C-SPNN in decreasing order, and insert
nominal-dependent uncertainties (quantified by σnd) to the
top fhigh% and bottom flow% ranked phase shifts. Fig. 4

(a) (b)

Fig. 3: Average accuracy loss (in %) due to zonal perturbations in the
unitary weight matrices representing the weights in the first hidden
layer: (a) UL1 and (b) V H
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shows the inferencing accuracy loss due to such uncertainties
can be catastrophic (up to ≈ 60%) when MZIs with higher
phase angles are affected. In contrast, MZIs with lower phase
angles are practically resilient to ND uncertainties. Therefore,
minimizing the tuned phase shifts improves the C-SPNN
performance under such uncertainties, in addition to improving
their power efficiency (static power consumption in PhS is
proportional to the tuned phase shift). However, in realistic
scenarios, C-SPNNs encounter both NI and ND uncertainties
and therefore the overall susceptibility of MZIs to uncertainties
depends on both their tuned phase shift and location.

E. Mitigating the Impact of Uncertainties in C-SPNNs

The extent of the impact of fabrication-process and run-time
uncertainties on C-SPNNs has only recently been fully under-
stood and as such, there are very few uncertainty mitigation
techniques specific to C-SPNNs. Post-fabrication trimming
approaches can minimize the phase uncertainties between the
two arms of an MZI by implanting Ge in the Si waveguide.
Ge implantation converts crystalline Si (lower refractive index)
into its amorphous form (higher refractive index) by breaking
the chemical bonds. Due to this, the refractive index (and in
turn, the phase shift) in each arm can be precisely trimmed
by laser annealing [10]. However, post-fabrication calibration
methods rely heavily on the characterization of individual MZIs;
therefore, this method is infeasible for C-SPNNs with high MZI
count. In order to reduce thermal crosstalk, microheaters can be
isolated using deep trenches cutting through the SiO2 cladding.
These structures do not involve special fabrication techniques
and lead to a 3× reduction in the phase shift under thermal
crosstalk [3]. Recent search efforts for mitigation techniques
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also focus on uncertainty resilient architectures such as the
FFTNet which reduces the optical depth and utilizes fewer
MZIs, and the diamond topology where the symmetric structure
leads to uniform optical losses in each input-to-output path.
An uncertainty-aware training method that uses a modified
cost function during training and post-fabrication hardware
calibration is presented in [11]. A novel zero-cost optimization
technique that improves the power efficiency and robustness by
leveraging the non-uniqueness of singular value decomposition
has been proposed in [12].

V. CONCLUSION

SPNNs are prone to nanometer-level fabrication process
variations, inter-device thermal crosstalk, optical loss, and
manufacturing defects. Each of these sources of uncertainties
affects the phase angles and the splitting ratios in different ways.
In this paper, we have presented a comprehensive analysis of the
various fabrication-process variations and run-time uncertainties
and explored several methods to mitigate their impact on the
performance of an SPNN. We have used a unified hierarchical
approach for criticality assessment of these uncertainties and
shown that the degradation in performance depends on both
the tuned parameter values and the position of the affected
components. Our framework can be used for post-training
identification and compensation of critical SPNN components.
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