
 

TRON: Transformer Neural Network Acceleration with  
Non-Coherent Silicon Photonics 

ABSTRACT 
Transformer neural networks are rapidly being integrated into state-
of-the-art solutions for natural language processing (NLP) and 
computer vision. However, the complex structure of these models 
creates challenges for accelerating their execution on conventional 
electronic platforms. We propose the first silicon photonic hardware 
neural network accelerator called TRON for transformer-based 
models such as BERT, and Vision Transformers. Our analysis 
demonstrates that TRON exhibits at least 14× better throughput and 
8× better energy efficiency, in comparison to state-of-the-art 
transformer accelerators. 
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  INTRODUCTION  

Transformer neural networks have gained significant popularity 
in the last few years, surpassing the performance of traditional 

Recurrent Neural Networks (RNNs) and Convolutional Neural 
Networks (CNNs) [1]. As the network architecture in transformer 
models relies on attention mechanisms and positional encodings 
instead of recurrence, it enables much higher parallelization than 
RNNs for sequence modeling and transduction problems. Since the 
introduction of the first transformer in 2017 [2], powerful 
transformer-based pre-trained natural language processing (NLP) 
models, such as BERT [3] and Albert [4], and computer vision 
models, such as the Vision Transformer [5] have emerged.  
 Despite the remarkable success of the transformer model, its 
size, number of parameters, and operations still require significant 
computational resources, hindering its progress and usage in  
resource-constrained systems. This highlights the main issues with 
these models, which includes long inference times, large memory 
footprint, and low computation-to-memory ratio. Existing work on 
inference acceleration of conventional artificial neural networks 
(ANNs), mainly focuses on compute-intensive operations and 
optimizations at the layer-level granularity, which makes extending 
it to transformers—with its unique layer architecture and memory-
intensive requirements—challenging.  

 Several transformer-centric accelerators have been proposed in 
recent years to overcome these challenges with transformer 
execution [6]-[9]. However, most of the work presented so far either 
focuses on accelerating a specific transformer architecture or is 
based on electronic components. Electronic accelerators are 
susceptible to the limits of the post Moore’s law era, where 
diminishing performance improvements are being observed with 
technology scaling. Such limitations also present major performance 
and energy bottlenecks for electronic dataflows [10]. On the other 
hand, silicon photonics has proven its proficiency as a solution 
beyond high-throughput communication in the telecom and 
datacom domains, and it is now being considered for chip-scale 
communication. Moreover, CMOS-compatible silicon photonic 
components can be used for computations, such as matrix-vector 
multiplications and logic gate implementations. Accordingly, the 
integration of silicon photonics is now actively being considered for 
deep learning acceleration [11].  

In this paper, we introduce TRON, the first silicon-photonic-
based transformer accelerator that can accelerate inference of a 
broad family of transformer models. Our novel contributions are:  

• The design of a novel transformer accelerator using non-
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coherent silicon photonics, with the ability to accelerate any 
existing variant of transformer neural network models,  

• Detailed crosstalk analyses, to improve signal-to-noise ratio 
(SNR) and tunability for photonic microresonator (MR) banks,  

• A comprehensive comparison with GPU, TPU, CPU, and state-
of-the-art transformer accelerators.  

 

The rest of the paper is organized as follows. Section 2 presents 
a background on transformers, ANNs, and their acceleration using 
silicon photonics. Section 3 describes our TRON architecture. Section 
4 discusses the experimental setup and comparisons with other 
accelerators, followed by conclusions in Section 5.  

  BACKGROUND 

2.1. Transformer neural network models  

 The attention mechanism has emerged as a prominent technique 
in sequence learning and NLP, where long-term memory is required. 
By utilizing the attention mechanism, transformers have 
outperformed RNNs (LSTMs, GRUs) across many NLP tasks. As 
shown in Fig. 1, the original transformer model [2] designed for 
sequence learning has two main blocks: encoder and decoder. The 
encoder maps the input sequence into an abstract continuous 
representation. The decoder then processes that representation and 
gradually produces a single output while also being fed the previous 
outputs. Before being sent to the encoder, each input sequence is 
mapped to a vector, and positional encoding is used to embed the 
position information of each vector in relation to the original input 
sequence. The processed input is then passed through to the 
encoder/decoder block.  
 

 
 

Fig. 1. Transformer neural network architecture overview. 

The encoder and decoder blocks consist of N stacked layers (Fig. 
1). The main sub-blocks in the encoder and decoder blocks are the 
multi-head attention (MHA) and feed forward (FF) layer, along with 
residual connections for each, followed by layer normalization. Self-
attention is applied in MHA where it links each element (e.g., word) 
to other elements (e.g., words) in a sequence. Each MHA has H self-
attention heads, and each attention head generates the query (Q), key 
(K), and value (V) vectors to compute the scaled dot-product 
attention. Q, K, and V vectors are generated by multiplying the 
MHA’s input sequence X by the query, key, and value weight 
matrices: WQ, WK, and WV. The self-attention output is then 
computed through a scaled dot-product operation as follows: 

 

𝐻𝑒𝑎𝑑(𝑋) = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 √𝑑𝐾⁄ )𝑉, (1) 

 

where X is the input matrix and 𝑑𝑘 is the dimension of Q and K. The 

output of the MHA is the concatenation of the self-attention heads’ 
outputs, followed by a linear layer. The FF network is composed of 
two dense layers with a RELU activation in between. 

 More recent transformer-based pre-trained language models, 
such as BERT [3] and its variants [4], include the transformer 
encoder block only, as a cascaded set of N layers, followed by an FF 
layer, then GELU, and normalization layers. The recent Vision 
Transformer (ViT) model is also composed of N encoder layers, 
followed by a multi-layer perceptron [5], where the ViT’s inputs are 
sequence vectors representing an image.  

2.2 Transformer acceleration 
Transformer accelerators in prior work focus on accelerating 

either a specific subset of transformer models or specific transformer 
layers. For instance, [7] proposed an FPGA-based hardware 
accelerator, for accelerating MHA and FF layers. Their approach 
involves partitioning the weight matrices used in the MHA and FF 
layers to allow both layers to share hardware resources. In [9], 
another FPGA-based acceleration framework was proposed with a 
pruning technique and a method for storing the sparse matrices. An 
in-memory computing-based transformer accelerator called 
TransPIM was presented in [6], with a novel dataflow for optimized 
data movements along with hardware modifications to high 
bandwidth memory. The work in [8] proposed an automated 
framework called VAQF that guides the quantization and FPGA 
resource mapping for ViTs. Unlike prior efforts, our proposed TRON 
architecture can accelerate a broad family of transformer models for 
NLP and computer vision tasks.  

2.3. Silicon photonics for ANN acceleration 

Due to the significant benefits offered by optical ANN 
accelerators in terms of performance and energy efficiency, they 
have garnered a lot of traction from academic and industry 
researchers [11]. Optical ANN accelerators are either coherent or 
non-coherent. In coherent architectures, which use a single 
wavelength, parameters are imprinted onto the optical signal’s phase 
[12] to perform multiply and accumulate (MAC) operations. Non-
coherent architectures leverage multiple wavelengths and imprint 
parameters onto the optical signal’s amplitude. Each wavelength is 
used to perform operations in parallel. Current research in optical 
ANN accelerators has focused mainly on CNNs, MLPs, and RNNs 
[13]. To the best of our knowledge, TRON is the first optical 
accelerator for transformer ANN models.  

TRON is a non-coherent optical accelerator that uses MR opto-
electronic devices (see Fig. 2) for carrying out key operations. Each 
MR can be designed and tuned to work at a specific wavelength, 
called MR resonant wavelength (λMR), defined as: 

 

𝜆𝑀𝑅 =
2𝜋𝑅

𝑚
𝑛𝑒𝑓𝑓, (2) 

 

where R is the MR radius, m is the order of the resonance, and neff is 
the effective index of the device. By carefully altering neff with a 
tuning circuit, we can modulate electronic data onto an optical signal 
passing by (in the vicinity of) an MR. The tuning circuit used is based 
on either thermo-optic (TO) [14] or carrier injection electro-optic 
(EO) tuning [15]. Both result in a change in neff, and hence a resonant 
shift of ΔλMR in the MR. In non-coherent networks, computations 
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(e.g., multiplications), are done by tuning an MR’s ΔλMR, resulting in 
a predictable change in the optical signal’s wavelength amplitude. 

To increase throughput and mimic neurons in ANNs, non-
coherent architectures make use of wavelength-division 
multiplexing (WDM). This entails having multiple optical signals 
with different wavelengths in a single waveguide using an optical 
multiplexer [11]. The waveguide would pass in the vicinity of a bank 
of MRs, each tuned to a certain wavelength in the waveguide, to 
enable performing several multiplications in parallel. Fig. 2 
illustrates an example of multiplying an input vector [a1, a2, a3] by a 
weight vector [W1, W2, W3]. Two MR bank arrays are used: the first 
imprints input activations onto the optical signals and the second 
performs the multiplication. Using a photodetector (PD) device, the 
dot product output can thus be calculated by summing the three 
signals in the waveguide.  

 

Fig. 2. Top microring resonator (MR) shows input and through ports’ 
wavelengths after imprinting a parameter onto the signal. Bottom MR 
bank arrays perform multiplication by imprinting input activations 
(a1-a3), followed by weight vector values (W1-W3). 

  TRON HARDWARE ACCELERATOR  

Our proposed TRON architecture is a non-coherent photonic 
accelerator that can accelerate the inference of a broad family of 
transformer models. An overview of the architecture is shown in Fig. 
3. The photonic accelerator core is composed of MHA and FF units. 
Such composition allows reuse of resources for the encoder and 
decoder blocks. Interfacing with the main memory, buffering of the 
intermediate results, and mapping the matrices to the photonic 
architecture, are handled by an integrated electronic-control unit 
(ECU). The following subsections describe the TRON architecture 
and the hardware optimizations we have considered to efficiently 
accelerate transformer ANN models. 

3.1. MR tuning circuit design  
MR devices in non-coherent architectures require a tuning 

mechanism, based on EO or TO, as mentioned earlier. In TRON, we 
employ a hybrid tuning circuit where both TO and EO are used to 
induce ΔλMR. This enables us to combine the advantages of both 
while overcoming their disadvantages. EO tuning is faster and 
requires less powe𝑟, but it cannot be used for large tuning ranges 
[15]. Conversely, TO tuning accommodates a larger tunability range 
but at the expense of higher latency and power [14]. Accordingly, in 
our design, EO tuning is adopted for fast induction of small ΔλMR in 
MRs, while slower TO tuning is used only when larger ΔλMR is 
required. The effectiveness of this hybrid approach was previously 
demonstrated in [16]. To further reduce the power overhead of TO 
tuning, we adopt thermal eigen decomposition method (TED) from 

[17]. TED entails tuning all MRs within a bank array together, which 
reduces power consumption. Moreover, the approach uses 
microheaters to perform thermal tuning which reduces thermal 
crosstalk noise from heat dissipated from adjoining TO circuits. 

 

 
Fig. 3. Overview of the proposed TRON accelerator architecture. 

3.2. MR bank design-space analysis  
 To ensure error-free MAC operations in the optical domain, it is 

necessary to manage various sources of noise, namely thermal and 
crosstalk noise, which can interfere with parameter imprinting and 
degrade the network performance and accuracy. Our TED-based 
tuning mechanism alleviates the thermal noise that can arise from 
TO tuning. But non-coherent architectures, like TRON, are 
inherently noise prone due to multiple wavelengths propagating in 
the same waveguide which creates inter-channel crosstalk. In inter-
channel crosstalk, a portion of the optical signal from neighboring 
wavelengths can leak into one another, causing signal distortion (see 
Fig. 2; bottom right). This phenomenon is further exacerbated with 
the presence of multiple MR banks in series, where multiple 
wavelengths can undesirably drop into an MR. With well-designed 
channel spacing (CS) and Q-factor in the MR, this can be managed 
by ensuring that the signal-to-noise ratio (SNR) is better than the 
detector sensitivity. The design of an MR should ensure adequate Q-
factor to improve SNR. Additionally, the MR design should also 
possess sufficient tunable range, so that necessary parameters can be 
imprinted free of error. Mathematically, tunable range can be 
represented as 2×FWHM (full width half maximum), shown on the 
top left in Fig. 2. We optimize MR design for high FWHM and high 
SNR. For this optimization, we use the following models from [18]: 

 

𝑆𝑁𝑅 (𝑑𝐵) =  10 × log10 (𝑃𝑠𝑖𝑔𝑛𝑎𝑙 𝑃𝑛𝑜𝑖𝑠𝑒⁄ ),    (3) 
𝑃𝑠𝑖𝑔𝑛𝑎𝑙 =  𝛷(𝜆𝑖 , 𝜆𝑗 , 𝑄)𝑃𝑠(𝜆𝑖 , 𝜆𝑗), (4) 

𝑃𝑛𝑜𝑖𝑠𝑒 =  ∑ 𝛷(𝜆𝑖 , 𝜆𝑗 , 𝑄)𝑃𝑆(𝜆𝑖 , 𝜆𝑗)(𝑖 ≠ 𝑗)

𝑛

𝑖=1

, (5) 

where Φ is the crosstalk coefficient of the inter-channel crosstalk 
between neighboring channels 𝜆𝑖  and 𝜆𝑗, which is given by: 

 

𝛷(𝜆𝑖 , 𝜆𝑗 , 𝑄) =  (1 + (
2𝑄(𝜆𝑖 − 𝜆𝑗)

𝜆𝑗

)

2

)

−1

. (6) 

 

Here, (𝜆𝑖 − 𝜆𝑗) represents the channel spacing CS, i.e., the spectral 
distance between two adjoining wavelengths. This is also an 
optimizable parameter within the confines of the free spectral range 
(FSR) we are considering. 𝑃𝑆 in (4) and (5) is the signal power of 𝜆𝑖 
that reaches the MR that is sensitive to 𝜆𝑗, and can be defined as: 
 

𝑃𝑆 =  𝜓(𝜆𝑖 , 𝜆𝑗)𝑃𝑖𝑛(𝑖), (7) 
 

where 𝑃𝑖𝑛  is input power to the waveguide, calculated by 
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considering the detector sensitivity and the signal power loss of 
𝜆𝑖  before the MR with resonance wavelength 𝜆𝑗  within the bank, 
represented by 𝜓. When an optical signal in a waveguide passes by 
an MR, the crosstalk induced power suppression in its power can be 
modeled as a through loss, which is defined as 𝛾 times the signal 
power before it passes by the MR. This suppression factor 𝛾  and 
hence 𝜓 can be calculated as: 

𝛾(𝜆𝑖 , 𝜆𝑗 , 𝑄) = (1 + (
2𝑄(𝜆𝑖 − 𝜆𝑗)

𝜆𝑗

)

−2

)

−1

, (8) 

𝜓(𝜆𝑖 , 𝜆𝑗) = ∏ 𝛾(𝜆𝑖 , 𝜆𝑘 , 𝑄)

(𝑘−1)<𝑗

𝑘=1

. (9) 

For calculating FWHM, we use the following model: 

𝐹𝑊𝐻𝑀 =
𝜆𝑟𝑒𝑠

𝑄 − 𝑓𝑎𝑐𝑡𝑜𝑟
, (10) 

where 𝜆𝑟𝑒𝑠 is the resonant wavelength of the MR being considered. 
Using these models, we can identify the optimal design space for our 
MR banks which can ensure high SNR and high tunable range 
(𝑅𝑡𝑢𝑛𝑒). We must also consider that the lowest optical power level 
(𝑃𝑙𝑝𝑎𝑟) should be higher than 𝑃𝑛𝑜𝑖𝑠𝑒 , w.r.t. 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 : 

10 log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑙𝑝𝑎𝑟

) < 10 log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

) , (11) 

where 𝑃𝑙𝑝𝑎𝑟 can be defined in terms of 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  as follows: 

𝑃𝑙𝑝𝑎𝑟 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙 × 𝑅𝑡𝑢𝑛𝑒

𝑁𝑙𝑒𝑣𝑒𝑙𝑠

 . (12) 

Replacing 𝑃𝑙𝑝𝑎𝑟 in (11) yields the following relation: 

10 log10 (
𝑁𝑙𝑒𝑣𝑒𝑙𝑠

𝑅𝑡𝑢𝑛𝑒

) < 𝑆𝑁𝑅, (13) 

where 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 is the number of amplitude levels we need to represent 
across the available 𝑅𝑡𝑢𝑛𝑒: for an n-bit parameter (ANN weight or 
bias) representation, 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 will be 2𝑛. If positive and negative values 
are represented separately, as in the case with TRON, then 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 
will be 2𝑛−1. The relationship in (13) can be rearranged to obtain the 
relationship between 𝑅𝑡𝑢𝑛𝑒 and 𝑆𝑁𝑅: 

𝑅𝑡𝑢𝑛𝑒 > 𝑁𝑙𝑒𝑣𝑒𝑙𝑠 × 10−
𝑆𝑁𝑅
10 (14) 

Utilizing these models, we exhaustively explored the MR bank 
design space and the optimal parameters [Rtune,Q,SNR,CS] with the 
lowest Rtune were identified as [0.45, 6500, 24.3, 1].  

3.3. Multi-head Attention (MHA) unit design 
The major challenge with transformer inference acceleration is 

the time-consuming matrix multiplications (MatMuls). Fortunately, 
these operations can be decomposed into vector dot-product 
operations as outlined for optical CNN acceleration in [16]. 

Looking  closely at the self-attention in each head (1), the 
computation of MatMul (𝑄. 𝐾𝑇)  cannot be performed until the 
generation and storage of 𝐾𝑇 completes. This dependency would 
infer significant power and latency overhead as we would first need 
to generate K matrix (𝐾 = 𝑋𝑊𝐾) optically, convert the output to 
digital domain, buffer the values, generate 𝐾𝑇 , and then convert the 
matrix to the optical domain again to calculate the next MatMul 
(𝑄. 𝐾𝑇). Alternatively, using MatMul decomposition, we can rewrite 

the operation as two cascaded MatMul steps:  
 

𝑄. 𝐾𝑇 = 𝑄. (𝑋. 𝑊𝐾)𝑇 = (𝑄. 𝑊𝐾
𝑇). 𝑋𝑇   (15) 

 

 
(a) 

 
(b)                                                        (c) 

 

 
(d) 

Fig. 4. (a) Attention head unit comprised of seven MR bank arrays, 
each with dimension K×N; (b) Linear layer comprised of an MR bank 
array with dimension K×N; (c) Add and Normalization layers using 
coherent photonic summation and an MR for imprinting the 
normalization parameter; (d) MHA unit composed of H attention 
heads, buffer and concatenate block, linear layer, and an add and 
normalize block.  

As shown by the top four MR bank arrays in Fig. 4(a), no 
intermediate buffering is needed to compute 𝑄. 𝐾𝑇. The first two MR 
bank arrays generate Q, then by having 𝑊𝐾

𝑇 and 𝑋𝑇 previously stored 
and used to tune the MRs in the following two MR bank arrays, we 
can directly get the output of (15) optically without any intermediate 
buffering or opto-electric conversions.  To further reduce the latency 
and power overhead, we include the scaling factor in (1) within the 
weight matrix (𝑊𝐾

𝑇) storage in the ECU. Thus, the individual MR 
tuning values would be 𝑊𝐾

𝑇
𝑖 √𝑑𝑘⁄ , instead of having an additional 

MR bank array to perform the scaling operation. As the value of 𝑑𝑘 
(dimension of Q and K) is usually 64 in most transformer models, a 
simple 3-bit left shift circuit can efficiently handle the division. 
 For the MatMul operations, most optical ANN accelerators (such 
as [13]) calculate them one-by-one, by having separate MAC units 
with MR bank arrays to perform the multiplication operations, then 
accumulate and add the partial sums. As there are more than two 
consecutive MatMul operations involved in the attention 
computation, we avoid the accumulation of intermediate values and 
pass the individual multiplication results generated by the first MR 
bank array to the following MR bank arrays directly. The summation 
of all the multiplications and partial sums is then done at the end, 
before the softmax block, as shown in Fig. 4(a). This approach avoids 
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the latency and power costs from early summations, intermediate 
buffering, and associated opto-electric conversions. Moreover, as 
outlined in Section 3.1, we have ensured minimal crosstalk noise, 
which would normally be an issue due to such MR arrangement.  

Following the calculation of  (𝑄. 𝐾𝑇)  by the upper MR bank 
arrays shown in Fig. 4(a), all partial sums are accumulated using 
balanced photodetectors (BPDs). BPDs help accommodate both 
positive and negative parameter values by placing separate positive 
and negative arms for the same waveguide. The sum acquired from 
the negative arm is subtracted from the sum from the positive arm. 
The results are then converted to the digital domain, to undergo 
softmax computation.  

Another challenge in MHA is the softmax operation. It is 
performed in each attention head and restricts parallelism as all 
results from the previous MatMul need to be generated first. For its 
implementation, we propose two optimization solutions. First, we 
avoid the computationally expensive division and numerical 
overflow by employing the log-sum-exp trick, used in a few previous 
works such as [7], as follows:  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜒𝑖) =
exp(𝜒𝑖 − 𝜒𝑚𝑎𝑥)

∑ exp(𝜒𝑗 − 𝜒max)
𝑑𝑘

𝑗=1

  , (16)

= exp (𝜒𝑖 − 𝜒𝑚𝑎𝑥 − ln (∑ exp(𝜒𝑗 − 𝜒𝑚𝑎𝑥)

𝑑𝑘

𝑗=1

)) ,

 

where softmax can be divided into four operations: finding 𝜒𝑚𝑎𝑥 , 
subtraction, natural logarithm (ln), and exponential (exp). Finding 
𝜒𝑚𝑎𝑥  and the subtraction can be computed using simple digital 
circuits. As shown in Fig. 4(a), the analog-to-digital converter (ADC) 
output is buffered while also being fed to a comparator circuit, so 
that finding  𝜒𝑚𝑎𝑥 would be computed in parallel to the MatMuls. 
The natural logarithm (ln) and exponential (exp) computations can 
be calculated using look-up tables (LUTs) [19]. This also helps get the 
final softmax output as an analog value from the memristor cell in 
the LUT, which can be used to directly tune the MR bank array. 
Furthermore, our scaled dot-product attention design enables high 
parallelism because the bottom vertical cavity surface emission laser 
(VCSEL) array (Fig. 4(a)) can be synchronized to only be turned on 
when the softmax operation is done.  

 The linear layer in MHA is also implemented optically using two 
MR bank arrays (Fig. 4(b)). For adding the MHA input to its current 
output (implementing the residual connection), coherent photonic 
summation is employed, as shown in Fig. 4(c), where the output 
signal from the linear layer is used to directly drive a VCSEL with 
wavelength λo. Another VCSEL with the same wavelength, is driven 
by value(i) from the residual connection, and thus, when the two 
waveguides meet, they undergo interference, resulting in the 
summation of the two values. Coherent summation is ensured by 
using a laser phase locking mechanism [20], which guarantees that 
VCSEL output signals have the same phase for constructive 
interference to occur. Lastly, layer normalization (LN) is performed 
optically using a single MR, tuned by the LN parameter. The entire 
MHA architecture is shown in Fig. 4(d).  

3.4. Feed Forward (FF) unit design  
The FF Unit (Fig. 5(a)) is composed of two fully connected (FC) 

layers, with a non-linear activation in between. Each FC layer is 
accelerated using two MR bank arrays, with dimensions K×N: one 

to imprint the input activations and the second to compute the 
MatMul between the inputs and the weight matrices. The bias values 
are added using coherent photonic summation, discussed in the 
previous section. For the non-linear unit, we implemented an optical 
RELU unit, with semiconductor-optical-amplifiers (SOAs). When the 
gain in an SOA is adjusted to a value close to 1, the behavior becomes 
almost linear, resembling the RELU operation. The work in [21] 
demonstrated how SOAs can be exploited to implement other non-
linear functions such as Sigmoid and tanh. This expands the scope of 
TRON and enables us to implement the GELU operation (used in ViT) 
instead of the RELU, optically. The GELU operation can be 
approximated as follows [22]:  

𝐺𝐸𝐿𝑈(𝑥) = 𝑥𝛷(𝑥) = 0.5𝑥(1 + tanh [√2 Π⁄  (𝑥 + 0.044715𝑥3)]) 

                                         = 𝑥𝜎(1.702𝑥).                                                    (17) 

 
(a) 

 
(b) 

Fig. 5. (a) FF block composed of four-MR bank arrays with 
dimensions K×N, SOA-based RELU and GELU units, and bias and 
residual connection additions, done with coherent photonic 
summation; (b) GELU unit composed of three MRs, SOA, and a VCSEL.  

 

As shown in Fig 5(b), the first multiplication between 1.702 and 𝑥 
is implemented using a single MR, and the sigmoid function is 
computed using the SOA implementation, described above. The last 
multiplication of the input with the sigmoid output is calculated 
using two MRs. To store the input signal and use it to tune the second 
MR, a low-power, local storage mechanism is used where the analog 
input signal from the PD is stored in a memristor cell to directly tune 
the last MR. The output from the non-linear unit is then buffered and 
used to tune the MRs in the first bank array of the second FC layer 
(Fig. 5(b)), to be multiplied by the weight matrix (W2). The 
normalization layer is then implemented using an MR. Afterwards, 
the residual connection is added through coherent photonic 
summation, and the final normalization layer is implemented with 
another MR.  

3.5. TRON architecture 
The architecture of TRON (Fig. 3) is designed to accelerate 

various transformer models. The TRON architecture is composed of 
two sets of MHA units and one set of FF units. Each set has a 
dimension of L. Such an arrangement enables both the encoder and 
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decoder blocks to easily reuse most of the units. In case of the 
encoder block, the first VCSEL array will be used to drive the input 
to the second set of MHA units only. The MHA unit can be divided 
into two parts: before and after the softmax operation. As softmax 
(see (1)) cannot be computed till the first part is completed, both parts 
cannot be parallelized. However, the MatMul operations in the 
second part can be parallelized with the MatMul operations in the FF 
unit. For the decoder block, the first VCSEL array is used to drive the 
input to the first set of MHA units. Its output is used as the input to 
the second MHA unit whose output then drives the FF unit. 
Moreover, VCSEL-reuse, as described, reduces the laser power 
consumption and inter-channel crosstalk. Accordingly, single 
VCSEL arrays are shared among rows in each MR bank array. 
Through architecture design space exploration, we identified the 
optimal parameters discussed, [H,L,K,N], as [4,2,51,17]. This 
configuration excelled in both energy efficiency and performance.  

  EXPERIMENTS AND RESULTS 

We performed detailed simulation-based analyses to assess the 
efficiency of our proposed TRON architecture. Four transformer 
models were considered in our analyses: Transformer-base [2], 
BERT-base [3], Albert-base [4], and ViT-base [5]. The model 
parameters are shown in Table 1, where dmodel and dff are the 
dimensionality of input/output and FF layers. We developed a 
simulator in Python to estimate the area, performance, and energy 
costs associated with running each model. The area, performance, 
and energy estimates for all electronic buffers used in TRON were 
estimated using CACTI [23] at 28nm; while the electronic circuit in 
softmax was synthesized using Xilinx Vivado at 28 nm and the 
resulting power/delay estimates were used in our analyses. 
Tensorflow 2.9 was used to train and analyze model accuracy. 

 

Table 1: Transformer models and parameter counts 

Model Params Layers Heads dmodel dff 

Transformer-base 52M 2 8 512 2048 
BERT-base 108M 12 12 768 3072 
Albert-base 12M 12 12 768 3072 

ViT-base 86M 12 12 768 3072 
 

Table 2: Transformer model performances 

Model Dataset(s) Accuracy  
(32-bit) 

Accuracy 
(8-bit) 

Transformer-base Ted_hrlr_translate 66.73% 70.4% 
BERT-base Sentiment-Analysis-of-

IMDB-Movie-Reviews 
85.8% 85.8% 

Albert-base Sentiment-Analysis-of-
IMDB-Movie-Reviews 

88.3% 88.7% 

ViT-base ImageNet/Cifar-10 97.7% 98.0% 
 

The achieved accuracies and datasets associated with each model 
are shown in Table 2. The Transformer, BERT, and Albert models 
were used for NLP tasks. ViT was evaluated using an image 
classification task, with pre-training on ImageNet and fine-tuning on 
Cifar-10. Our analysis concluded that 8-bit model quantization 
results in comparable accuracy to models with full (32-bit) precision 
(see Table 2); thus, we targeted 8-bit precision transformer models.  
 The optoelectronic parameters considered for TRON’s analysis 
are shown in Table 3. We considered various factors that contribute 
to photonic signal losses such as: waveguide propagation loss (1 

dB/cm), splitter loss (0.13 dB [24]), combiner loss (0.9 dB [25]), MR 
through loss (0.02 dB [26]), MR modulation loss (0.72 dB [27]), EO 
tuning loss (6 dB/cm [15]), and TO tuning loss (27.5 mW/FSR [14]). 
Increasing the number of wavelengths and the waveguide length 
will in turn increase the MR count, photonic loss, and the required 
laser power consumption. Accordingly, we modeled the required 
laser power used in our architecture for each source as:   
 

𝑃𝑙𝑎𝑠𝑒𝑟 − 𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ≥ 𝑃𝑝ℎ𝑜𝑡𝑜_𝑙𝑜𝑠𝑠 + 10 × log10 𝑁𝜆, (19) 
 

where 𝑃𝑙𝑎𝑠𝑒𝑟 is the laser power in dBm, 𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 is the PD sensitivity 
in dBm, 𝑁𝜆 is the number of wavelengths, and 𝑃𝑝ℎ𝑜𝑡𝑜_𝑙𝑜𝑠𝑠 is the total 
optical loss encountered by the signal, due to the factors discussed. 
 

Table 3: Parameters used for TRON analysis 

Devices Latency Power 
EO Tuning [15] 20 ns 4 μW/nm 
TO Tuning [14] 4 μs 27.5 mW/FSR 

VCSEL [13] 0.07 ns 1.3 mW 
Photodetector [13] 5.8 ps 2.8 mW 

SOA [13] 0.3 ns 2.2 mW 
DAC (8 bit) [28] 0.29 ns 3 mW 
ADC (8 bit) [29] 0.82 ns 3.1 mW 

Memristor cell [13] 0.1 ns 0.07 μW 
 

 
Fig. 6. Power and latency breakdown across TRON components. 

4.2. TRON architecture component-wise analysis  
To understand the performance of the major components within 

the TRON architecture, we present a breakdown in terms of power 
and latency in Fig. 6. For the power, it is evident that MatMul 
operations in the attention heads contribute to more than half of the 
architecture’s power overhead. This is due to the large dimensions 
of the matrices being multiplied in the MHA blocks, in each attention 
head. This requires many digital-to-analog converters (DACs), 
whose power consumption is considerable. Moreover, the sequential 
dependency in the attention head also contributes notably to the 
latency overhead. As Albert shares all attention and FF parameters 
across layers [4], this leads to a minimization of the number of active 
DACs, reducing overall power consumption for the Albert model. 

4.3. Comparison to state-of-the-art accelerators 
We compared TRON execution on several processors and state-

of-the-art transformer accelerators: Tesla V100-SXM2 GPU, TPU v2 
[30], Intel Xeon CPU, TransPIM [6], FPGA transformer accelerator 
in [7] (FPGA_Acc1), VAQF [8], and FPGA transformer accelerator in 
[9] (FPGA_Acc2). VAQF focuses on vision transformers and FPGA-
Acc2 on traditional encoder-decoder transformer architectures and 
transformer-based language models; results for these two platforms 
are thus restricted to the models they are targeted for. Power, 
latency, and energy values reported for the selected accelerators 
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were used, and results from executing models on the GPU/CPU/TPU 
platforms to estimate the EPB and GOPS for each model. 
 Fig. 7 shows the GOPS comparison between TRON and the other 
architectures considered. Our architecture achieves on average 262×, 
1631×, 1930×, 14×, and 55× better GOPS than GPU, TPU, CPU, 
TransPIM, and FPGA_Acc1, respectively. When comparing 
transformer model-specific accelerators, TRON has on average 352× 
higher GOPS than FPGA_Acc2 for transformer, BERT, and Albert 
models, and 846× higher GOPS than VAQF for ViT. The higher 
throughput over all compute platforms can be explained in terms of 
TRON’s high-speed execution in the optical domain and minimal 
computations in the digital/electric domain.  

Fig. 8 shows the energy-per-bit (EPB) comparison. On average, 
TRON attains 4231×, 12397×, 10971×, 14×, and 8× lower EPB than 
GPU, TPU, CPU, TransPIM, and FPGA_Acc1. For model-specific 
accelerators, we achieve on average 802× lower EPB than 
FPGA_Acc2 for transformer, BERT, and Albert models, and 32× 
lower EPB than VAQF for ViT. These EPB improvements can be 
attributed to TRON’s low latency operations and relatively lower 
power compared to some of the computation platforms considered. 
 

 
Fig. 7. Throughput comparison across transformer accelerators. 

 

 
Fig. 8. EPB comparison across transformer accelerators.  

  CONCLUSIONS  

 In this paper, we presented the first non-coherent silicon 
photonic hardware transformer accelerator, called TRON. Our 
proposed architecture exhibited throughput improvements of at 
least 14× and energy-efficiency improvements of at least 8× when 
compared to eight different processing platforms and state-of-the-
art transformer accelerators. These results demonstrate the promise 
of TRON in terms of energy-efficiency and high-throughput 
inference acceleration for transformer neural networks. This work 
focused on the hardware architecture design with silicon photonics. 
When combined with software optimization techniques that aim to 
reduce a transformer’s large memory footprint, significantly better 
throughput and energy efficiency can be achieved. 
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