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Abstract:
Silicon photonic neural network accelerators (SPNNAs) offer chip-scale and light-speed
computation and communication to boost AI inferencing and training performance. In this
invited paper, we discuss some of the benefits and challenges of implementing SPNNAs.
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1. Introduction

Recent years have seen a push towards domain-specific hardware deep-neural-network (DNN) accelerators with
support for custom memory hierarchies, variable precision, and optimized matrix-vector multiply-and-accumulate
(MAC) operations. Such DNN accelerators (e.g., Google’s TPU and Amazon’s Inferentia) have shown superior
energy-efficiency (≈MAC/sec/Watt) and footprint efficiency (≈MAC/sec/mm2) compared to GPUs for DNN in-
ference tasks and training [1]. However, such accelerators cannot keep pace with the ever growing complexity of
DNN applications with DNN sizes doubling almost every 3.4 months [2]. To address the limitations facing con-
ventional electronic accelerators, researchers in both academia and industry are investigating the implementation
of photonic neural network accelerators. By communicating and processing data in the optical domain, silicon
photonic neural network accelerators (SPNNAs) offer the promise of providing very high footprint efficiencies in
the hundreds of TeraMAC/sec/mm2 with energy efficiencies of sub-femtoJoule/MAC [3]. Not only can SPNNAs
address the fan-in and fan-out problems with linear algebra processors, their operational bandwidth can match that
of the photodetection rate (typically ≈100 GHz), which is at least over an order of magnitude faster than electronic
counterparts that are restricted to a clock rate of a few GHz [4]. Considering such benefits, there have been many
implementations of coherent and noncoherent SPNNAs [4–12]. Nevertheless, there exist several roadblocks to
the further advancement of SPNNAs and scaling them to satisfy the performance requirements of rapidly grow-
ing DNNs. In particular, SPNNA performance can be highly impacted by the optical losses and crosstalk noise
accumulating when cascading photonic devices [13], susceptibility to fabrication-process variations and thermal
crosstalk [14–17], and high cost and low performance of optical storage and optical nonlinear activations [18], just
to name a few. In this invited paper, we present a brief overview of some of our prior work on the implementation
of noncoherent SPNNA architectures, analysis of coherent SPNNAs under uncertainties, and design optimization
techniques to improve robustness and power efficiency in SPNNAs.

2. High-Performance Noncoherent SPNNAs

When designing an SPNNA, it is important to co-design and co-optimize components at the device, circuit,
architecture, and application level for more holistic optimization of the entire system. In [8], we showed the
promise of hardware-software cross-layer co-design and co-optimization in SPNNAs. Our proposed SPNNA,
called CrossLight, involves device-level engineering for resilience to fabrication-process variations and thermal
crosstalk, circuit-level tuning enhancements for inference latency reduction, and an optimized architecture-level
design that also integrates the device- and circuit-level improvements to enable higher resolution, better energy-
efficiency, and improved throughput compared to prior efforts on photonic accelerator design. We demonstrated
9.5× lower energy-per-bit and 15.9× higher performance-per-watt compared to state-of-the-art photonic DNN ac-
celerators. To further reduce SPNNA implementation overhead (e.g., for resource-constrained platforms), we can
target simpler binary/ternary quantized models. Accordingly, we developed a novel optical-domain binarized-
neural-network (BNN) accelerator, called ROBIN, in [9] and a sparse SPNNA, called SONIC, in [10]. Both
ROBIN and SONIC showed considerable improvements in performance-per-watt and energy-per-bit compared
to existing state-of-the-art electronic and photonic accelerators. In addition, we proposed an SPNNA to accelerate
both homogeneously quantized and heterogeneously quantized convolutional-neural-network (CNN) models [11],



which have lower memory footprint and computational complexity. In [12], we proposed an SPNNA for acceler-
ating any combination of simple recurrent neural networks (RNNs) and the newer RNN variants, including GRUs
and LSTMs. As many of these applications are employed in real-time scenarios, SPNNAs can help efficiently
accelerate RNN/LSTM/GRU inference. Our work in this area shows the importance of cross-layer co-design and
co-optimization to realize high-performance, scalable, and robust SPNNAs.

3. SPNNA Design Challenges and Optimization

Despite the potential benefits of SPNNAs compared to their electronic counterparts, there are several challenges
that must be addressed for further advancement and scaling of SPNNAs. For example, SPNNA performance is
highly impacted by the intrinsic optical loss and crosstalk noise in underlying photonic devices and uncertain-
ties due to fabrication-process and thermal variations. In [13], we presented a comprehensive analysis of the
impact of optical loss and coherent crosstalk noise in coherent SPNNAs and showed considerable scalability con-
straints, drop in network accuracy (≈84% reported in [13]), and power penalty due to such inefficiencies. In [14],
we studied the impact of nonuniform insertion loss across devices, quantization errors, and optical-phase and
splitting-ratio noise in coherent SPNNAs, and showed up to 46% drop in the network accuracy due to such im-
perfections. We found that devices with higher adjusted phase settings (e.g., Mach–Zehnder interferometers in
coherent SPNNAs) are more susceptible to uncertainties, based on which we proposed a method to minimize the
required phase shifts, which in turn determine tuning power consumption, in coherent SPNNAs without impacting
the network accuracy [19]. To improve SPNNAs’ performance under uncertainties and reduce their power and
area consumption, we proposed a hardware-aware pruning technique based on lottery ticket hypothesis [20] and
magnitude-based pruning [21], both being able to prune SPNNAs by more than 85% without any loss in the infer-
encing accuracy. We also characterized coherent SPNNAs under correlated optical lithography imperfections (e.g.,
silicon-on-insulator thickness and etch-depth variations) in [22], and showed a significant drop in the network ac-
curacy (to below 10%) due to such variations. Moreover, we proposed a design optimization solution based on
using shallow-etched ridge waveguides in the design of underlying devices in coherent SPNNAs to improve their
robustness under fabrication-process variations, and achieved on average a 50% increase in the network accuracy.
Our work in this area shows the severe impact of uncertainties in SPNNAs and the critical need for low-cost
design-time and run-time optimization solutions to realize robust SPNNAs under uncertainties.
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