A TIME DEPENDENT, QUASI-THREE DIMENSIONAL DEPTH-INTEGRATED NUMERICAL MODEL TO CALCULATE SURFACE HEAT TRANSFER AND ENTRAINMENT TO COLD FLUID INTRUSIONS

By
Robert N. Meroney*

Submitted to

International Symposium on Defined Plane Modeling and Turbulence Measurements, Iowa City, Iowa
16-18 September, 1985

Fluid Mechanics and Wind Engineering
Civil Engineering Department
Colorado State University
Fort Collins, CO 80523

*Professor, Civil Engineering
A TIME DEPENDENT, QUASI-THREE DIMENSIONAL DEPTH-INTEGRATED NUMERICAL MODEL TO CALCULATE SURFACE HEAT TRANSFER AND ENTRAINMENT TO COLD FLUID INTRUSIONS

By Robert N. Meroney

Fluid Mechanics and Wind Engineering Program
Colorado State University
Fort Collins, CO 80523

SUMMARY:

A wind-tunnel validated, depth integrated numerical model is developed to calculate the behavior of heavy and cold fluid intrusions. The model is time dependent, quasi-three dimensional and permits intrusion warming from below due to forced or free convection and entrainment of heat or moisture from above.

1.0 INTRODUCTION:

A depth-integrated numerical model has been developed to help calculate surface heat transfer and entrainment to cold fluid intrusions. This model evolved from depth- or crosswind-averaged forms of the conservation equations of mass, momentum, species, and energy. Submodules permit alternate assumptions for the influence of wind profile, heat transfer, humidity, and fluid entrainment. The construction of these models reflects the philosophy of the models developed by Zeman (14), Colenbrander (2), Morgan, Morris, and Ermak (10); however, there are many differences in detail, and the numerical procedure used here is not similar at all.

The depth-averaged model described below solves the layer-averaged lateral and longitudinal momentum, mass continuity, concentration and enthalpy equations for longitudinally varying depth, width, and cross section averaged densities, temperatures, velocities, and concentrations. The model does not make the Boussinesq assumption; it considers the influence of surface heat transfer, water condensation, friction velocity and surface roughness; and it is computationally simple and fast. A recent modification permits evaluation of molecular dispersion on fluid entrainment. Model constants are tuned to fit the laboratory data of Meroney and Lohmeyer (7) or Neff and Meroney (11). The model is not as flexible or as universal as some of the models reviewed, but then it is also not as complex.

2.0 FORMULATION OF THE LAYER-AVERAGED EQUATIONS:

The layer-averaged equations can be written for two dimensional, radially symmetric, or laterally symmetric geometries. Two dimensional and radially symmetric geometries are discussed by Meroney and Lohmeyer (7, 8). The laterally symmetric form of the equations were first described by Meroney (9).

The formalism for creating layer-averaged conservation equations has been discussed in some detail by Ponce and Yabusaki (12); hence, only
a short review of the procedure will be provided here. The layer-averaged value of a mean variable is defined as

$$
\overline{\psi} = \frac{1}{H_0} \int_0^H \int_0^B \psi(x,y,z) \, dydz.
$$

(1)

since mean variables are assumed distributed in a similar manner over the cross section, covariances $\frac{\phi}{a_b}$ can be approximated as $\frac{\phi}{a_b} = \phi_a \phi_b$, and any residuals associated with this approximation are considered effective stresses and are included in diffusion terms. When entrainment takes place across the upper boundary of the cloud, H, then the upper boundary must obey

$$
\frac{dH}{dt} + U_0 \frac{dH}{dx} = \dot{W}_T + \dot{W}_e,
$$

(2)

where U_0 and W_T are the mean horizontal and vertical velocities at H, and \dot{W}_e is the entrainment rate across the upper boundary. The mean hydrostatic pressure within the layer is found from

$$
(p(x) - p_a(H)) = \frac{p}{H_0} \int_0^H \int_0^x (\rho - \rho_a) \, dz'dz,'
$$

(3)

with the aid of Leibnitz rule the conservation equations can be integrated over the $y-z$ plane cross section areas. For a flow in which the x-axis is aligned with the flow vector the control volume is shown in Figure 1. The final equations developed are nondimensionalized with respect to time, space, density, temperature, and energy scales equal to $H_o^{-1/2}, H_0, o, T_a - T_0,$ and $c_{p0}(T_a - T_0)$ respectively where $s_o' = g(s_0 - 1)$. The final expressions used are:

Width Equation:

If the average width of the flow is $B(x)$, then by analogy to Equation (2) we can define

$$
\frac{dB}{dt} + U_0 \frac{dB}{dx} = 2(V_g + v_e),
$$

(4)

Lateral Momentum Equation:

The fluid will spread laterally due to lateral hydrostatic forces which produce a lateral spread velocity, V_g. The lateral momentum will be retarded by surface drag; hence,

$$
\frac{dM}{dt} + \frac{dUM}{dx} = \beta_1 \frac{(R-1)}{(R-1)} \frac{H^2}{2} \frac{C_f}{g} \frac{V^2}{B} - \frac{C_f}{2} \frac{RV^2}{g}(B - B_0(HS))
$$

(5)

\[+ \frac{1}{Re_T} \frac{d}{dx} \frac{d(M)}{dx} \]

where $M = RV_{\frac{E}{g}HB}$, is twice the local half-section-averaged lateral momentum

$$(HS) = \text{Heaviside operator (1 over source, 0 otherwise)},$$
\[C_f/2 = \text{surface drag coefficient}, \]
\[\beta_1 = \text{hydrostatic pressure constant}, \]
\[1/Re_T = \text{Small numerical diffusivity to maintain stability, and} \]
\[R = 1/((1-\beta T)(1-C+C(1-\beta))), \text{is an equation of state for local} \]
\[\text{gas density in terms of mass fraction and temperature.} \]
\[\text{When the fluid is incompressible, a different state} \]
\[\text{equation is necessary. For liquid/liquid dispersion the} \]
\[\text{appropriate state equation is simply} \]
\[R = (1-C)(1+\beta ca(T_a-T))+CR_o(1+\beta co(T_o-T)) \]
\[\text{where } \beta ca, \beta co, \text{are ambient and source fluid} \]
\[\text{coefficients of volume expansions.} \]

Mass Conservation Equation:

Variation in the mass flux passing through any section is due to
entrainment of ambient fluid across plume boundaries or the result of
ground level sources.

\[\frac{dN}{dt} + \frac{dUN}{dx} = \omega e B_e + 2v e H + RW_B(0) \]

\[+ \frac{1}{Re_T} \frac{d}{dx} \left(\frac{d(N)}{dx} \right) \]

where \(N = RHB, \) is total cross-section averaged mass, and

\[W_o, B_o = \text{source values of width and boiloff velocity.} \]

Mass Fraction Conservation Equation:

The dense fluid species is conserved as it advects from section to
section. Boiloff from a surface pool of cryogenic liquid may add to
the local flux values and longitudinal diffusion may decrease the
values.

\[\frac{dP}{dt} + \frac{dUP}{dx} = R_o \omega B_0 + \frac{1}{Re_T} \frac{d}{dx} \left(\frac{d(P)}{dx} \right) \]

where \(P = RCHB, \) total cross-section averaged mass fraction, and

\[R_o = \text{source value of density.} \]

Longitudinal Momentum Equation:

Plume velocity in the downwind direction results from entrainment of
ambient momentum from the surrounding shear flow and acceleration
cause by hydrostatic gradients in the longitudinal direction. The
velocity is decreased by surface drag, injection of zero momentum
fluid at the ground surface and longitudinal diffusion.
\[
\frac{dK}{dt} + d\frac{UK}{dx} = \frac{B}{2} \frac{d}{dx} \left(R^2 \frac{B(R-1)}{(R_0-1)} \right) \\
- \frac{C_f}{2} R U^2 (B - B_0 (HS)) \\
+ U_a (\omega_e B + 2 \nu_e H) + \frac{1}{Re_T} \frac{d}{dx} \left(\frac{d(K)}{dx} \right)
\]

(8)

where \(K = RUHB \), total cross-section averaged longitudinal momentum,

\(U_a = 1/k \, Ri_\star^{1/2} \ln (H/z_0 + 1) \), is the ambient shear layer velocity at cloud height,

Enthalpy Conservation Equation:

Sensible energy carried with the plume varies with surface sources and longitudinal dispersion. For dense liquids intruding beneath another liquid the humidity terms are, of course, not used.

\[
\frac{dQ}{dt} + \frac{dUQ}{dx} = \frac{R}{0'0'} W_0 B_0 + E_a (\omega_e B + 2 \nu_e H) \\
+ h_s (B - B_0 (HS)) + \frac{1}{Re_T} \frac{d}{dx} \left(\frac{d(Q)}{dx} \right) \\
+ (HS) \, (L_h) \, (\omega_{\phi,T_a} - \omega_{100,T}) \\
(\omega_e B + \nu_e H - R_0' W_0) \\
+ (HS) \, (L_h) \, R(1 - C) \omega_{100,T} \frac{4886}{T^2} \, (T_a - T_0) \, \frac{dT}{dx}
\]

(9)

where \(Q = REHB \), total section enthalpy,

\(E = -(1 + C_s)T/(1 + s_m) \), is the local cross-section averaged enthalpy,

\(W, \phi, T = \) water vapor mass fraction at relative humidity, \(\phi \), and temperature, \(T \),

\(L_h = (L_0)/(c_{po} a_0 T_a) \), is the latent heat of vaporization of water,

\(h_s = 0.32 \left(\frac{Gr}{Re^2 Pr} \right)^{1/2} (1 + C_s) \, RT^2 \)

is the local surface heat transfer coefficient,

\(B = 1 - M_a/M_o \), is a dimensionless source molecular weight,

\(\theta = 1 - T_a/T_o \), is a dimensionless source temperature,

\(s_m = c_{po}/c_{pa} - 1 \), is a dimensionless source specific heat capacity, and

\(Gr, Re, Pr, Ri_\star = \) Grashof, Reynolds, Prandtl and Richardson number scales, respectively.
An equation of state for gases which relates mass fraction, C, to molar or volume fraction, χ, is also useful.

$$\chi = C(1-\beta)/(1 - C + C(1-\beta))$$ \hspace{1cm} \text{(10)}

Such an expression is generally inappropriate for liquid intrusions.

2.1 Water Condensation and Surface Flux Algorithm:

The last two expressions in Equation (9) adjust for heat initially released when a cold gas entrains water vapor, but which is subsequently re-evaporated when the temperature of the plume exceeds ambient dew point. The relations only condense water vapor which exceeds the local saturation values. In these two terms (HS) is the Heavyside operator which equals one when $T < T_{dewpoint}$ and zero otherwise. The dimensionless heat transfer coefficient, h_s, is based on the bulk transfer coefficient for mixed free and forced convection recommended by Leovy (6). Alternative values for fully forced or fully free convection can also be used.

2.2 Entrainment Algorithms:

Entrainment rates are perturbations on the forms suggested by Eidsvik (4) and Ermak et al. (5). Some other forms tried are reviewed in Meroney and Lohmeyer (8). The recommended entrainment expressions are:

$$w_e = c z v_g + \frac{\alpha_4 v_x}{\alpha_4 R_{1x} \frac{R}{H^2}}$$ \hspace{1cm} \text{(11)}

$$v_e = \frac{3.24 H v_x}{B}$$ \hspace{1cm} \text{(12)}

$$v_x = \frac{2}{\alpha} \frac{G_c (1 + s_m) (1 - \theta T)}{(1 + C_s_m) (1 - \theta)}$$ \hspace{1cm} \text{(13)}

These relations retain a near source term which produces entrainment due to gravity spreading in a calm environment. Expressions by Zeman (14) and Morgan et al. (10) also allow for such a condition. A major difference here is all unspecified constants are determined by comparison to the laboratory data of Meroney and Lohmeyer (7, 8) and Neff and Meroney (11), but once the values were chosen they were not varied during the exercises discussed in Section 4.0.

3.0 NUMERICAL METHOD (DENS22):

Equations (4) to (9) were developed in a difference form using an implicit, second-upwind-difference, donor-cell approach. The difference equations were solved by the Thomas or tri-diagonal algorithm. Step sizes in time were limited to

$$\Delta t < \frac{0.25 \Delta x}{u_{\max} + c_{\max}}$$

where c_{\max} is the maximum local wave speed, and the wave speed is defined as $c = (g H)^{1/2}$. The algorithms maintained accurate
conservation of the original cloud mass. The calculations lost less than 0.5% of the mass over the integration periods studied, primarily due to round-off errors.

Constants found to fit the wind-tunnel data most satisfactorily are \(c = 0.05, \alpha_2 = 0.5, \alpha_3 = 1.0, \alpha_4 = 2.4, \alpha_6 = 0.3, \beta_1 = 0.153, \frac{C_f}{2} = 0.0025 \) and \(\frac{1}{Re_T} = 0.05 \).

4.0 VALIDATION EXAMPLES:

The credibility of a numerical model depends upon its ability to reproduce accurately the values of intrusion size and concentration distribution found during experiments. The data selected for comparison to the DENS22 program include instantaneous releases of cold propane and liquid natural gas (LNG) spills on water.

DENS22 Model Comparisons with Maplin Sands Field Experiment:

In 1980 Shell Research, Ltd., performed a series of 34 spills of up to 20m\(^3\) of liquefied natural gas (LNG) or refrigerated liquid propane onto the sea at Maplin Sands in the south of England (Colenbrander and Puttock, (3)). Release of the cryogenic liquids was either continuous or instantaneous. Continuous spills involved the release of liquid at a steady rate from the end of a pipe near the water surface. For instantaneous spills the liquid was poured into an open-topped insulated barge, 12.5m across, which was then rapidly submerged. Tests from the series were chosen in which heat transfer and latent heat release effects were expected to be significant.

Table I gives data for the conditions which existed during the Maplin Sands experiments, and Table II reports downwind distances to the lower flammability limit (LFL). The LFL location is that distance downwind where, during steady conditions, the peak concentration measured at the lowest sensor level (about 0.9m) dropped below the ignition concentration of the gas. For propane and methane this would be mole fractions of 0.021 and 0.05 respectively. Since these experiments are single replications and uncertainty levels are high the estimated deviations are also tabulated. Maximum concentrations versus downwind distance for LNG spill 29 and Propane spill 43 are shown in Figures 2 and 3. Slab model width predictions are displayed on Figures 4 and 5.

Table II tabulates computed LFL distances for each run predicted by a box model (DENS 6, Andreiev et al., (1)), by HEGADAS (Colenbrander, (2)), and DENS22. A linear regression between experimental and calculated values reveals correlation coefficients for DENS6, HEGADAS, and DENS22 of 0.77, 0.62, and 0.69, respectively. If Maplin Sands Run 54 is eliminated as an outlier, the correlations become 0.83, 0.69, and 0.81, respectively.

During all calculations for DENS6 and DENS22 an average value of \(\frac{u_s}{u_{10}} = 0.034 \) was assumed as recommended by Colenbrander and Puttock (3). The surface roughness magnitude was selected to reproduce measure velocities at one meter assuming the associated friction
velocity, \(U_x \). If measured values of \(u_x \) at the 10 meter height are used during calculations the correlations improves to \(r = 0.72 \) for all runs and to \(r = 0.89 \) eliminating Run 54. Scatter diagram plots reveal there is a slight tendency to systematically over-estimate LFL distances for the propane spills and under-estimate LFL distances for the LNG spills.

5.0 SUMMARY AND CONCLUSIONS:

The depth-integrated model (DENS22) was found to reproduce the essence of intrusion behavior for cold dense gas clouds released suddenly, over a finite time, or continuously. The program is reasonably simple (350 lines of Fortran code including print and plot statements), is fast (320 time steps forward in 110 cpu time on a CDC CYBER 185 computer), and does not occupy a large amount of computer memory (a version of the program written in FORTRAN occupies less than 64 k on an IBM PC microcomputer).

REFERENCES:

11. Neff, D. E. and Meroney, R. N. (1982), The Behavior of Heavy Plume Dispersion, Gas Research Institute Report GRI 80/0145, Chicago, IL, USA, 120 pp., (Data Appendix is GRI 80/0145.1, 161 pp.)

Table 1: Maplin Sands 1980 Dispersion Trials Data Summary

<table>
<thead>
<tr>
<th>No.</th>
<th>Flux Measurements</th>
<th>Assume $u_d/u_0 = 0.034$</th>
<th>Calculate u_d and Z_0 from logarithmic velocity profile fit to velocity data</th>
<th></th>
</tr>
</thead>
</table>

CONTINUOUS DISPERSE

DATA SUMMARY

MAPLIN SANDS 1980 DISPERSION TRIALS

CONT'D GAS USE

TABLE 1

MAPLIN SANDS 1980 DISPERSION TRIALS

DATA SUMMARY

CONTINUOUS DISPERSE

DATA SUMMARY

MAPLIN SANDS 1980 DISPERSION TRIALS

DATA SUMMARY

CONTINUOUS DISPERSE

DATA SUMMARY

MAPLIN SANDS 1980 DISPERSION TRIALS

DATA SUMMARY

CONTINUOUS DISPERSE

DATA SUMMARY

MAPLIN SANDS 1980 DISPERSION TRIALS

DATA SUMMARY

CONTINUOUS DISPERSE

DATA SUMMARY

MAPLIN SANDS 1980 DISPERSION TRIALS

DATA SUMMARY

CONTINUOUS DISPERSE

DATA SUMMARY

KEY WORDS

Heat transfer
Dense gas dispersion
Fluid intrusions
Numerical model