Comments on “Boundary-Layer
Turbulence Measurements with Mass
Addition and Combustion”

ROBERT N. MERONEY*
Colorado State University, Fort Collins, Colo.

In Ref. 1 an investigation was made of the turbulent velocity fluctuation field in an isothermal boundary layer with homogeneous injection. The authors measured the shear stress distribution across the boundary layer and displayed the results in Fig. 5 of their paper as normalized shear stress as a function of velocity ratio ϕ.

In Ref. 2 Meroney developed an analytical expression for the velocity profile across the turbulent transpired boundary layer together with an approximate technique to determine the normalized shear stress distribution. He proposed for a velocity profile near the wall

$$u^+ = y^+ + \frac{1}{2} (u^+) y^{+2} + \frac{1}{3!} (u^+) y^{+3} + U_4^+ y^{+4}$$

and farther from the wall

$$u^+ - u^+ = \frac{u^+}{b k} \ln \frac{y^+ + \frac{1}{k} (1 + v_4 u_+^+)^{1/2} \ln y^+}{\delta}$$

$$= \frac{\pi}{k} (1 + v_4 u_+^+)^{1/2} \left[\frac{2 - \omega}{\delta} \right]$$

where the nondimensional nomenclature have their conventional definitions, and the matching conditions have been computed to be

$$y_2^+ = 15.67 - 860 (v_4 u_+^+)^{1/2} / u_+^+ - 11.4 v_4 u_+^+$$

$$U_4^+ = -5.4 \times 10^{-4} - 1.3 (v_4 u_+^+)^{1/2} / u_+^+ - 1.6 \times 10^{-5} v_4 u_+^+$$

The shear profile may be determined from the velocity profiles from

$$\frac{\tau}{\tau_w} \approx (1 + v_4 u_+^+) - (1 - v_4 u_+^+) \times$$

$$\frac{2 \int_0^{y^+} (u^+) d\xi - u^+ \int_0^{y^+} u^+ d\xi}{2 \int_0^{y^+} (u^+) d\xi - u_+^+ \int_0^{y^+} u^+ d\xi}$$

Near the boundary Eq. (3) reduces to

$$\frac{\tau}{\tau_w} \approx 1 + v_4 y^+ + (v_4 u_+^+) / 20 y^+ + v_4 u_+^+ U_4^+ y^+$$

(4)

Figure 1 compares the calculated distributions of shear stress from Eqs. (1–3) with the data displayed in Fig. 5 of Ref. 1. The comparison is good except at very high blowing rates. Figure 2 compares measured values of the normalized maximum shear stress with computed values. Equation (3) seems to provide better agreement with this variation than a previously suggested correlation by Tennekes in Ref. 3.

The rather large divergence of theory and data at high blowing rates in Fig. 1 may represent separation of the main flow from the transpired wall. If the flow parameters are compared with the somewhat limited criteria for attachment suggested by Hacker, this premise is strengthened. Hacker suggested an empirical blow-off criteria of $[(\rho v)/\rho v_\infty]_{Re}^{1/8}$ = 0.08 for air into air transpiration at low Mach numbers.

Fig. 1 Shear stress distribution across the isothermal turbulent boundary.

Fig. 2 Variation of pseudofriction velocity with mass transfer number.

Received January 2, 1968.
* Assistant Professor. Member AIAA.

Reprinted from AIAA JOURNAL, Vol. 6, No. 6, June 1968, pp. 1213–1214

Copyright 1968, by the American Institute of Aeronautics and Astronautics, and reprinted by permission of the copyright owner.
When the mass transfer number B equals 20 for the data in Ref. 1, this expression equals approximately 0.11. In addition, the kink observed in the velocity profiles displayed as Fig. 2 of Ref. 1 for $B = 20$ suggests the presence of separation.

References

5 Mckley, H. S. and Davis, R. S., "Momentum Transfer for Flow over a Flat Plate with Blowing," TN-4017, 1957, NACA.