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VELOCITY AND SHEAR DISTRIBUTIONS IN A TRANSPIRED TURBULENT
BOUNDARY LAYER

ROBERT N. MERONEY*
COLORADO STATE UNIVERSITY

A system of equations isderived todescribe the velocity and shear stress distributions in a
constant property turbulent boundary layer with transpiration. The velocity near the wall was
expressed in the form of a Taylor series. This was combined with a semi~logarithmic relation
(including atranspiration parameter) for the turbulent core region. Matching is accomplished
by requiring agreement between the velocities and velocity gradients and is thus independent
of the concept of a laminar sub-layer thickness. These two equations provide a smooth and
continuous curve from the wall to the free stream which shows good agreement with existing
data.

Derivation of an expression for the shear stress through the boundary layer was accomplish-
ed by integration of the momentum equation. The result compares well with available data
in the turbulent core region. Deviations near the wall are attributed toinaccuracies of meas--
urements in this region.

INTRODUCTION

The fundomental equations which describe the fluid dynamics of the turbulent boundary
layer~~the continuity equation, the momentum equation, and the energy equation developed
from the Navier-Stokes equations-~have not been solved for even the simplest case because
of their complexity. Our knowledge of the mechanism of the turbulence and its transport
processes in inadequate as a basis for a theory that would be sound and complete. Present
concepts of time-mean velocity and scalar quantity distributions and the corresponding resist-
ance coefficients are still semi~empirical in nature. The few experimental investigations of
the distribution of scalar quantities during wall turbulence over an impervious surface are
restricted to the transport of heat and the measurement of mean temperatures. No data are
available on turbulent quantities of temperature fluctuations; thus any insight into this trans-
port can only be based on some assumed analogy between the transport of a sealar quantity
and the transport of momentum. Thislack of definition isdirectly related to the current under~-
standing of the transfer mechanisms for mass infection into a turbulent boundary layer flow.
Much of the pervious work on the transpired turbulent boundary layer has been concentrated
on extending to the case of transpiration the semi-empirical laws which have been found for
the transport in the boundary layer on the impervious surface,

A review of recent studies of the transfer mechanisms which govern mass injection into
turbulent flow enphasizes the need for a firmer foundation to undergird efforts to analyze
transport rates during mass transfer to a turbulent boundary layer. This paper summarizes

v relations which successfull y describe the velocity and shear distributions in a turbulent bound-
ary layer in the presence of mass transfer to the gas stream.

*Colorado State University,
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NOMENCLATURE

a, b constants - see equation (13)

Ct/2 skin friction coefficient

g constant - see equation (16)

Re Reynolds number, Re = ux/y

u', v, w', velocity fluctuations parallel, perpendicular, and across plat
u, v mean velocity parallel and perpendicular to plate

ur scale velocity based on wall shear stress, Uy = w]’rw/p

uy scale velocity based on maximum shear stress, up = T max.
u dimensionless velocity, u*t = u/u,

x distance along plate

y distance normal to plate

yt dimensionless distance, y' = u, v/v

Greek Symbols

8 boundary layer thickness

i absolute viscosity

v kinematic viscosity

g y/'8

™ constant - see equation (21)
0 density

T shear stress

Subscripts

w wall value )
e free stream value

L sublayer thickness value
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VELOCITY DISTRIBUTION IN A TRANSPIRED TURBULENT BOUNDARY LAYER FLOW

In fully developed turbulent channel flow, o theoretical expression may be developed
which gives a continuous and smooth transition for the mean velocity distribution in the wall
region to the logarithmic distribution in the fully developed turbulent core.2 The present
paper establishes a theoretical expression for the mean velocity distribution in the boundary
layer along aninfinite flat plate when transpiration occurs. The expression in the wall region
satisfies equations of motion near the wall.

Inuniform turbulent flow overan infinite two-dimensional flat piate, changes of the flow
variables in the x-direction are negligible near the wall compared to changesin the y-direction.
The equations of mean motion for constant property incompressible turbulent flow may then
be written as:

v =0 (1)

vu_=vu - {uvy (2)

The fluctuating velocity components must also satisfy the continuity equation:

u!+vl+w':0 (3)
X y z

Near the wall the velocities can be expressed in a Taylor series as:

n
= 4

S=xzsSy (4)

where
L
S = '—I-l_} (S=u', v', w', oru (3)
n n: ‘d nl -
y ‘y=0

From the no=slip condition at the wall and from equation (3): vi=u =vj=wi=U,= Oaty=0,

and from the mean velocity continuity equation it appears that v = V,, = const.
Substituting equation (4) intoequation (2) and collecting coefficients in the corresponding
powers of y, one obtains the following equations:

Nt vy - 2vu, = 0 (6a)
vk 2v u, - 3:2zivug= 0 (69)
yZ; E -4-3-vu4+3u_'17;= 0 (6c)

3 _ —_
v 4ku4 -5 4. vug + 4u'2v'2 =0 (6d)

Evaluation of equations (6a), (6b), and (4) yields
Velt 2 1 v 3 4
u=uy+ ;’vly +_3T ui\—‘jlj yoruy .. (7
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and the turbulent shear stress near the wall becomes

T = o, - 2| N 4
3 k ! 1-

Vs
iavus SVLU Y e (8)

JOSE

4 31

1

The above relations may be placed in amore convenient non-dimensional form by introducing
the following definitions:

L ={(Lu /v (L =x, y, orz) (9a)
TW
M = (M/u ) M=y v, u, v\, w) (9b)
TW
where
U.T = \/vul
w

Equations (7) and (8) thus becomes

+ + 1, 4+, 2 1, 42, 43 + +4 + +5
= = +.... (10
u y +E\vw)y +3., \vw)y +U4y +U5y (10)
. -
1 |+=i,<-~+_ +3 3[‘ +3 b -Z-- + o+ +4 ,
u'v ,*U‘l- VW / .J}’ + :g U5 VWL4 Yy + (1 ;)

The expansion of u* will be truncated after the terms of the fourth order in y*. This trunca-
tion appears reasonable since higher order derivatives of mean velocity are extremely smal’
in the region close to thewall. Equations (10) and (11) reduce to expressions found in refer-
ence 2 when vi; approaches zero.

Inorder to calculate coefficient Ui’ and thevalue of y* at which asmooth and continuous
transition to anexpression for the turbulent core velocity distribution occurs, the value of ut
and its first derivative, ut, from equation (10) must be matched with corresponding values
given by a turbulent core relation.

Recent theoretical proposals by Stevenson3, Cornish4, and Smith? for the correlation of
the velocity profiles in a transpired air into air turbulent boundary layer appear to shed some
light on the importance of specific parameters and the structure of the transpired boundary
layer in the turbulent core region. Smith suggested that the well known velocity defect law
and the law of the wake proposed by Coles® is applicable toboth transpired and non-transpired
boundary layer flows if the scale velocity employed is the friction velocity based on the maxi-
mum shear. This would indicate that the outer region of a turbulent boundary layer remains
arelatively simple region which "floats" onacomplicated substrate evenwithblowing. Smith
‘reasoned that the force affecting the outer flow should be the force at its inner edge. For the
transpired boundary layer, this force can be represented by the broad maximum shear stress
which exists in the region of y/& =0.1. Smith proposed the following velocity defect law:

u -

N . I PR S o (12)
e TRy T P oo s Ry
where F(y/8) is equivalent toColes' velocity defect expression. Fraser suggests the follow-
ing correlation to determine the value of the required scale velocify,7/ 18

u{; / v u t/z
.__=a+b|1+ w_e
u 2
T u
p

\ (13)
/
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Stevenson, Cornish, and this author have extended Prandt!'s mixing length theory to the
case of transpiration. All derivations are essentially similar, and the differences depend upon
the choice of integration constants and the final algebraic form chosen to display the results.
Stevenson chose to express the equation for the outer turbulent boundary layer region with
transpiration as

/ !

2u k v u »,"/2 / un'a 1/25
I EE S5 Y=F(y/e) (14)
W \ U; ; 4 u,ri 1

Fraser correlated hisvelocity profile data b; the methods of both Smith and Stevenson and
indicated both gave satisfactory representation./ Some authors have been unable to correlate
suction data with the relation suggested by Smith.3 The expressions available to calculate
the maximum shear stress necessary for Smith's equation (12) are approximate and are based on
only a small amount of experimental information.

The final relation suggested by the present author for representing the velocity defect
profile is derived as follows. According to the concepts of Prandtl, the momentum equation
in the turbulent core region of flow where the comparative effect of microscopic transports is
small may be expressed from equation (2) as 8

22
viy =)y (13)

where the mixing length for higher Reynolds numbers is of the form?

; +
L= 16
o g(vw)y (18)
Infroduction of the nondimensional groupings of equation (9a and b) and integration produces
from equation (15): 2.2 49 4 +
ROV CW I

s+ 242, B2, 4+ ,
ku=gy(u),+u/(uw-i (17)

In the turbulent core region the third term of equation (17) is negligible. Integration of equa-
tion (17) with respect to y© and introduction of boundary conditions at the edge of the bound-
ary layer reveals:

.
v + ) t/2 |+
e 0T slevTdhy e (18)
2 + g w e + e
4g 5 S )

P ANy (19)

which is a form of von Karman's logarithmic velocity distribution.
Equation (18) is similar to the expression found by Clarke, Menkes, and Libby” which
was of the form

v+
;2 +
5y (20)

4g

u+=A+BZ/hy++
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where A, B, and g are determined to be functions of v, by dimensional reasoning. The pa-
rameters A, B, and g were chosen to conform with typical values for non-transpiration theory.
In reference 12 an experimental study was made of the effect of the blowing parameter vi
on the parameter g. The author found that for blowing rates less than v,,/ug<0.005 the pa-~
rameter g appeared to be independent of v{. For this reason the value g =K = 0.4 will be
accepted here.

Comparison of values for ut versus y* obtained from equation (18) with experimental
results reveals a strong variation from measured values. Examination of the relationships in-
volved revealed that this difference is due to the non-logarithmic variation of the empirical
data in the far turbulent core where y/5>0.15. Thisphenomenon hasbeen previously cbserv-
ed for the non-transpiration case, and numerous authors have commented on the phenomenon
and suggested empirical and semi-empirical corrections,é, 10,1

Colesnoticed thesimilarity between the flow in the turbulent core region and wake flow.
He proposed a purely empirical correction function w(g) which has a universal character for
all non-blowing wall shear flows. 13 Coles suggested that the velocity distribution be written,

tolayt ol 21

u'=Zany +B+g w(8) (21)

where B is the typical constant of van Karman, i.e., approximately 4.9 t0 5.3, and 7 is a
profile parameter which is related to the free stream pressure gradient. Coles suggested a
value of 11 = 0.55 (assuming g = 0.4 and B =5.1). The actual wake function may be approx-
imated by the antisymmetrical function
(28 - 1=
2

w(E =1 +sin

(22)

It is now proposed to apply Cole's Law of the Woke correction to equation (18) and to
establish the variation of m with v by comparison with experimental data. Hence, in the
form of a velocity defect law, equation (18) becomes

<

+ 7 -~ . A +
ue-u+=- “’Zznzé’:-i(1+v;u:)”2,é 2’_;

4g s 8 5

+
TT*(V r
+
e (2 -0y T8 )] (23)
o

where m*(vih) varies with the blowing parameter.

Aspreviously noted, several authors have developed expressions for the franspired turbulent
boundary layer velocity profile.3:7,14=17 Most of these expressions are an extension of
Prandtl's momentum transfer theory with various corrections and assumptions for the integration
constants. The theories of Goodwin!3 and Rubesin'4 depend on empirical knowledge of the
laminar sublayer thickness. No satisfactory correlation for this quanfi;y, which varies with
x and vy, has been found which will fit the data of all investigators.” Smith proposes the
use of a correlation parameter based on the maximum total shear stress. s |

In connection with the development of his theory for the transpired turbulent boundary
layer, Goodwin suggested the following correlation for the constant 1m*(vg),

ind 1 et
T . 7 (46 /dx) /waz-/Cf (24)
g 8
After considering the momentum integral equation with injection this may be written,
’
A A W (25)
g g w e
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Comparison of thisexpression with various experimental data reveals satisfactory cgreemenf.sl

7,9,15

r’rs

Substitution of equation (25) into equation (23) provides finally,

+ + VW -2 * 1 + +1/2 *
Uy U = -y an Z:—-—-(i-i—v\ﬂué) /,nZ:
ag” s 8 8
- + + /2 +, .00
+-§-(1 +v ue) 2 ~wly /s )J: (286)

Equation (26) was derived in the manner described prior to the appearance of equation (14).
By rearrangement, equation (14) can be written in terms of u'; -ut. The small order terms
which are neglected in equation (26) do not appear to increase the accuracy of the results,
and the simplified form has the important advantage of being easier to match with equation
(10). Figure 1 compares equation (26) with various data from reference 9.

To match the velocity distribution in the turbulent core region, equation (26), with that

close to the wall, equation (10}, we divide equation (26) into two equations,

+
v
+ 4 + £+ + 4
u =-—w7(1,'n2y ~2.4ny Un 6+)+i(1+v uf)l/z/(ny-'-
4 g w e
g
27)
+Z (e vt uh) P (g + B
o
and
ot
. { +
el W n? st e L vty 12 ] s
e 2 g w e
4g
- o+ 1/2 ’
2 (L +vi ) / +B (28)
g w e

where B* is a function of vd;‘s. At present, experimental data are not adequate to provide
a clear picture of this functional relationship. Hinze remarks that for non-transpired bound-
ories B* is related to the laminar sublayer thickness by

1, +
B# = 3 (Zn 4g - 1) + 6 (29)
The variation of the laminar sublayer with blowing has been suggested by Rubesin to bel4
+ ot +
<5L-:_:—_-,<,n(1 +va) (30)
w

where Z is set equal to 6.70 herein.

To obtain the complete transpired velocity profile for a specific skin friction, blowing
rate, and boundary layer thickness, the values of u™ and its first derivative vt are calcu-
lated from equations (10) and (27). The equivalent terms from the above expressions are set
equal, and the constant U‘i and the matching point y;; are determined algebraically. These
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steps have been carried out for awide range of blowing rates andwall skin friction conditions
on a computer.
Functional relationships which appear to fit the results well are

1/2 2 . 0.43

+ + +
= 15. - o} -
Yo 13.67 - 86 (vw) / (ue) 11.4 (vw)

- +1.7 2 1.7

F -3 + -2, 4
U, 5.4x10 7 - 1.3(vw) / (ue) -1.6%x 10 (Vw)

Figure 2 is a typical example of matching equation (10) with (27) for the experimental con-
ditions of Mickley, et al.12

It should be noted that the expression for the velocity defect law proposed by Stevenson,
equation (14), is considered accurate. The derived formulation is considered convenient,
however, for matching to the new expression for the law of the wall with injection, equation
(10); and useful for shear stress calculations as noted in the following section. Together,
equations (10) and (27) provide a continuous velocity distribution from the wall to the free
stream. This condition has historically been found toprovide more accurate results when the
velocity distribution is used to calculate shear stress distributions through the boundary layer
or the wall skin friction variation with local Reynolds number.

SHEAR STRESS DISTRIBUTION IN A TRANSPIRED TURBULENT BOUNDARY LAYER

One of the most productive assumptions utilized in conventional non-transpired turbulent
boundary layer theory has been that the shear stress is constant across the boundary layer at
its wall value. From thisassertion have been generated the various Law of the Wall relations
of von Karman, Van Driest, Martenelli, and others, and various equations relating skin fric-
tion and heat transfer to the local Reynolds number. Even the most casual glance at the tran-
spired turbulent boundary layer problem reveals that the assumption of a constant shear stress
is no longer satisfactory. The shear increases from its wall value to a broad maximum and
finally drops to zero at the edge of the boundary layer for the transpired case.

Early investigators of the shear stress across the transpired boundary layer thought it ade~
quate to make a simple adjustment for the injection of gas at the wall of the form:

r Tw

—s=—+v u
PP w (31)

Thisrelation isonly agood assumption to the edge of the laminar sublayer, i.e., approximately
y/8=0.1; beyond this point the shear stress falls rapidly to zero at the boundary layer outer
edge. Amore precise shear stress distribution may be generated by the following consideration
of the momentum integral equationand the application of the velocity lawsderived previously.

For an incompressible constant property and uniform free stream the momentum equation
can be expressed as,

ou du _ 0 du -
2= A -— - 32
p“ax+pvay ay(“ay pva (32)
Integrating the above relation from 0 to y one obtains
y A r
~ U ~ du ~ o~ T w
— - | 2 | —n — 33
f Zuaxdy u ] 8xdy+ku 5 > (33)
o o Pug Pl
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where

<)
[0
<
S—
[

b
/’ ou
v = -—-y+v

QJ

If one introduces askin friction coefficient and adimensionless coordinate system, then equa~
tion (33) becomes

+
y
A IS UMY £V <1
\/'C—fif'Z' 3Re dRe
o
y
u+ ( 1 du + 9%2/C av’ + STy
\\CI/2 BRe 3Re A
(34)
where
+ = ct w
u = - \/Z/Cf N T = —uz-
e pu_
uy ~ + T
y+=___ \Cilz 9u du’  dV2/Cf )

’ 'c'f7'" 3Re ORe  dRe

Now, from experimental data and from consideration of the velocity defect law results, we
may assume 3 ut/3Re= 0. This assumption isexact near the wall for the zero and finite mass
transfer cases when v}, = constant. In the outer region, the assumption implies 3ut/3Re=0,
and hence, Cf/2 = constant; however, this is reasonable since the general effect of injection
might be considered equivalent to a situation where there is such a large roughness that the
flow is inertially dominated and the wall shear isconstant. Inany event, in turbulence anal~
ysis the incompleteness of various models or assumptions has not detracted greatly from their
practical usefulness which must be judged aposteriori. Hence, equation (34) may be express-
ed as

- v

T fdvy2/Ctf [ w2+ +layz/er [ +

™ 1 2t TRe ).’ {(u)"dy +u \ ) u” y v u
[¢]
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When y* = 5+, then T =0; therefore,

. — 1 .4-
§ 2/Ci .. " e (38)
1 dRe | -1 1
v i - + 2 - +
26 (u) " de-u_é u d§
‘o -0
Inserting equation (36) into equation (35) reveals
-y/5 y/é
+ 2 = +
2 (WM)%dz -y U dz
—:—=(1+ u+—1++~+ ’o )
Tw Vw ) ( the) -1 42 U (37)
20 (u)“de-u 0 udg
J e,
o o

Hence, the shear stress may be expressed as a function of the blowing parameter v\':',, the skin
friction u‘: = J2/Cf, and a boundary layer distance parameter £ = y/8.

When the velocity distribution near the wall in the form of equation (10) is introduced
into equation (31), the following equation is determined,

+2 +3
. Il V il V A
L R A T e v+3 v Uy (38)
— =1+ o +— J cees
T : wy 2! 3t - w 4y

This expression is, of course, only true near the wall surface. The insertion of equation (26)
into equation (37) yields the shear stress distribution in theregions from the edge of the lami-
nar sublayer to the outer edge of the boundary layer. Thesenumerical steps have been carried
through for one of the velocity profifes of Mickley and Davis,? and the results are compared
with the experimental data in figure 3. The conditions of the analytical.and experimental
results are only approximately the same since the experimentaldataare for - =0, 00062 and the
analytical curve is for 3= .00060. Nevertheless, the data agree well in the turbulent core
region from y/5=0.116 1.0, The difficulty encountered in measuring the velocity profile
in the laminar sublayer produces questionable experimental results in that region; hence, dis-
crepancies which oceur for y/5<0.1 are not decisive.

Precise measurements of shear stress through a franfspired turbulent boundary layer have
recently have reported by Smith, Goodwin, and Fraser. 17/ 15 Their data are representative,
however, of only the outer turbulent boundary due to a three-dimensional tunnel flow defect
near the wall. Figure 4 compares the results of equations (37) and (26) with some data of
Fraser.” A series of curves for agiven skin friction butseveral different blowing rates is also
displayed on figure 6.

SUMMARY

On the basis that any substantial improvement in current design formulations for heat trans-
fer and skin friction froma turbulent boundary layer in the presence of mass transfer will de-
pend on a better picture of the velocity and shecr distributions near the wall, the structure
of the transpired turbulent boundary layer has been considered. A semi-empirical expression
has been developed for the velocity profile in a transpired turbuient boundary layer which
possesses a smooth, continuous distribution from the wall to the free steram. In the wall region
the new formulation also satisfies the equation of motion near the wall--a quality not neces-
sarily true of many of the law of the wall expressions previously proposed for non-transpired
flows.

Amore precise shear stress distribution hasbeen obtained by the introduction of the derived
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velocity laws into an expression determined from the momentum integral equation including
mass transfer. The agreement between the curves so obtained and the sparse experimental data
available on the shear stress distributions through transpired turbulent boundary layers is con-
sidered very good.
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