
1 Einführung

Im vorliegenden Fall sollten die zur Auslegung erforderlichen Windlasten für einen großen Container-Kran mit neuartiger Ausleger-Struktur bestimmt werden. Den Windkanalversuchen waren sowohl theoretische Lastabschätzungen auf der Grundlage von Erfahrungen mit konventionellen Container-Kranen sowie Windkanalversuche mit verschiedenen, ähnlichen Entwürfen vorausgegangen, die jedoch keine eindeutigen Aussagen lieferten.

Die im Folgenden vorgestellten Messungen wurden im “Meteorological Wind Tunnel” (MWT)
an der Colorado State University (CSU), Fort Collins, Colorado durchgeführt (vergl. **Abbildung 1**, aus [1]). Der für die Modellierung atmosphärischer Grenzschichtströmungen konzipierte Windkanal verfügt über eine 29 m lange Anlauf- und Meßstrecke mit einem freien Meßstreckenquerschnitt von 1,83 m x 2,0 m, die zur Simulation verschiedener Windprofile bzw. Anströmverhältnisse unter anderem mit Wirbelgeneratoren und Bodenrauhigkeiten versehen werden kann. In der Meßstrecke des Windkanals sind Strömungsgeschwindigkeiten von etwa 0,1 m/s bis 38 m/s stufenlos einstellbar.

Abbildung 1: "Meteorological Wind Tunnel" - MWT der Colorado State University.

2 Versuchstechnische Realisierung
2.1 MODELL UND GRENZSCHICHT
Unter Berücksichtigung des freien Meßstreckenquerschnittes und der Hauptmaße des Container-Kranes wurde der Modellmaßstab auf 1:150 festgelegt. Da lediglich die statischen, mittleren Windlasten sowie turbulenzinduzierte Spitzenlastwerte, nicht aber die dynamische Reaktion des Kranes selbst Gegenstand der Untersuchung waren, wurde ein starses, aerodynamisches Modell gefertigt. Der Modell-Grundkörper wurde aus gefrästen Aluminiumteilen aufgebaut, die im Sinne starrer Verbindungen verschweißt wurden. Eine Übersichtszeichnung des Kranmodells zeigt **Abbildung 2**.

Drei Einzelkomponenten des Kranes weisen im Entwurf des Originals Kreisquerschnitte aus und waren mit Blick auf die korrekte Reproduktion des Lastanteiles im Bezug auf die unterschiedlichen Widerstandsbeiwerte bei unterschiedlichen Reynoldszielen der Umströmung zu korrigieren. Für die Seitenstreben und die Hauptstrebe auf der Landseite des Kranes wurde entsprechend dem C_w-Wert Verhältnis von Modell zu Original der Modell-Durchmesser auf 1/3
reduziert (vergl. [2]). Der Querschnitt der Tragstreb zur Unterstützung des Auslegers auf der Wasserseite des Kranes wurde im Sinne verbesserter Steifigkeit des Modell-Auslegers geringfügig vergrößert, wobei der Einfluß der Vergrößerung des Querschnittes auf das Gesamtwindlastverhalten als vernachlässigbar nachgewiesen werden konnte. Alle Details, die im Rahmen einer konservativen Lastabschätzung einen Summenanteil von 0.5% an der prognostizierten Gesamtlast nicht überschritten, wurden nicht modelliert (frei umströmte Kabel, Hydraulik-Leitungen etc.).

Abbildung 2: Hauptkomponenten des Kranmodells (schematisch).

Um die Übertragbarkeit der Modellergebnisse auf die Grobführung zu gewährleisten, müssen die Anströmverhältnisse im Windkanal strömungsmechanisch ähnlich nachgebildet werden. Im Einzelnen ist nachzuweisen, daß das zeitgemittelte vertikale Windprofil, die vertikale Verteilung des Turbulenzgrades sowie die spektrale Verteilung der Turbulenzzenergie maßstäblich nachgebildet wird. Abbildung 3 faßt die Ergebnisse von Strömungsmessungen mit Hitzdrahtanemometer zusammen. Die zur Evaluierung der im Windkanal modellierten Grenzschicht durchgeführten Messungen zeigen sehr gute Übereinstimmung mit Vorgabewerten aus der Natur. Entsprechend dem geplanten Aufstellungsort des Kranes und den Vorgaben des Auftraggebers war eine Grenzschicht gemäß ASCE 7-95, Exposure D zu modellieren [3], die der Anströmung über See mit mindestens 5 km freiem Vorlauf entspricht.
Abbildung 3: Im Windkanal modellierte Grenzschicht.

2.2 KRAFT- UND MOMENTEN-MESSEINRICHTUNGEN
Zur meßtechnischen Erfassung der am Kran auftretenden Windlasten wurden zwei separate Meßsysteme genutzt. Für die Messung der beiden Horizontalkomponenten der Windkraft wurde eine 2-Komponenten-Meßeinrichtung auf der Basis von mit Dehnmeßstreifen bestückten Biegebalken konzipiert und aufgebaut, die im Meßbereich optimal an die am Modell zu erwartenden Windkräfte angepaßt wurde. Abbildung 4 zeigt einen Ausschnitt aus der Zusammenbauzeichnung des 2-Komponenten-Systems. Das Meßsystem wurde aus zwei
separaten Meßebenen für je eine Kraftkomponente aufgebaut, die durch geeignete Querschnittsgestaltung der Biegebalken das Messen von zwei senkrecht zueinander ausgerichteten Einzelkomponenten \(F_X \) und \(F_Y \) ohne meßtechnisch nachweisbares Übersprechen der Einzelkanäle ermöglichen. Pro Meßebene bzw. Kraftkomponente wurden vier mit Dehnmeßstreifen bestückte Biegebalken eingesetzt, deren Meßsignale einzeln erfaßt und im Meßrechner nach Überprüfung der Konformität zu einem mittleren Kraftmeßwert pro Komponente zusammengefaßt wurden. Die Biegebalken waren einzeln leicht wechselbar, so daß der Meßbereich der Kraftmeßeinrichtung auch während der Meßkampagne leicht an unterschiedliche Lastfälle angepaßt werden konnte. Zur Vermeidung von Resonanzschwingungen mit signifikanter Amplitude im interessierenden Frequenzbereich und einer daraus resultierenden, gegebenenfalls fehlerhaften Bestimmung der Standardabweichung bzw. Streuung des Meßsignals wurde in die Meßeinrichtung ein Flüssigkeitsdämpfer eingebaut, für den experimentell eine obere Grenzfrequenz von etwa 100 Hertz bestimmt wurde. Als Kalibriergenauigkeit wurden maximale Fehler von 1.57% für \(F_X \) und 0.45% für \(F_Y \) bestimmt. Die im Rahmen der Messungen erreichte Reproduziergenauigkeit der Meßergebnisse lag bei ±1% für die Komponente \(F_X \) und ±2% für \(F_Y \).

![Diagram](attachment://deckrahmen.png)

Abbildung 4: 2-Komponenten-Kraftmeßeinrichtung zur Bestimmung von \(F_X \) und \(F_Y \) (schematisch).

Die für die Momente-Messungen \((M_X, M_Y, M_Z)\) verwendete Meßeinrichtung ist in **Abbildung 5** dargestellt. Das ursprünglich für dynamische Untersuchungen an Bauwerksmodellen konzipierte System ist mit Halbleiter-Dehnmeßstreifen (SPB3-20-35) ausgerüstet und weist ein maximales Übersprechen der Kanäle von 0.4%, 1.5% und 0.5% für \(M_X, M_Y \) und \(M_Z \) aus. Im Sinne genauer Meßergebnisse wurde das Übersprechenverhalten der Meßeinrichtung während der Kalibrierung erfaßt und im Zuge der Berechnung von Meßwerten aus den Einzelsignalen kompensiert. Die Kalibrierung erfolgte für Einzelkomponenten und kombinierte Lastfälle und wurde während der Messungen mehrfach wiederholt, um Fehler durch Drift der Meßaufnehmer zu minimieren. Ein Vergleich der Kalibriergüte für die erste und letzte Kalibrierung des Systems zeigte sehr kleine Abweichungen von 0.35% für \(M_X \), 0.65% für \(M_Y \) und 1.69% für \(M_Z \). Als Reproduziergenauigkeit wurde durch Wiederholungsmessungen für ausgewählte Lastfälle eine maximale Streuung der Ergebnisse von ±2% für \(M_X \) und \(M_Y \) sowie ±6% für \(M_Z \) bestimmt.
Abbildung 5: Momenten - Waage zur Messung der Momente M_x, M_y und M_z (schematisch).

3 Versuchsdurchführung und Ergebnisse
Vom Auftraggeber wurden 5 Betriebskonfigurationen und ein Vergleichsfall vorgegeben (vergl. Tabelle 1), für die Meßergebnisse in einem Anströmwinkelbereich von $\alpha = 0^\circ \ldots 180^\circ$ in 10°-Schrägen geliefert wurden (siehe Abbildung 6). In Vorversuchen wurde zunächst die mindestens zu realisierende Anströmgeschwindigkeit bzw. Reynoldszahl bestimmt, ab der die Umströmung der Modellkomponenten transkritisches Verhalten zeigt und dimensionslose Kraft- und Momentenbeiwerte einen konstanten Wert ausweisen. Wie Abbildung 7 zeigt, ergibt sich für Strömungsgeschwindigkeiten U_{REF} größer etwa 15 m/s keine Reynoldszahl-Abhängigkeit der dimensionslosen Momentenbeiwerte.

<table>
<thead>
<tr>
<th>Testfall</th>
<th>Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nur Tragrahmen, kein Ausleger</td>
</tr>
<tr>
<td>B</td>
<td>Tragrahmen mit landseitigem Ausleger, Hebevorrichtung Mitte Landseite</td>
</tr>
<tr>
<td>C</td>
<td>Tragrahmen mit Ausleger aufgeklappt, Hebevorrichtung Mitte Landseite</td>
</tr>
<tr>
<td>D</td>
<td>Tragrahmen mit Ausleger horizontal, Hebevorrichtung Mitte Landseite</td>
</tr>
<tr>
<td>E</td>
<td>Tragrahmen mit Ausleger horizontal, Hebevorrichtung am Maschinenhaus</td>
</tr>
<tr>
<td>F</td>
<td>Tragrahmen mit Ausleger horizontal, Hebevorrichtung maximal ausgefahren</td>
</tr>
</tbody>
</table>

Tabelle 1: Untersuchte Kran-Konfigurationen.
Abbildung 6: Untersuchter Anströmwinkelbereich und kranfestes Koordinatensystem.

Abbildung 7: Gemessene Momentenbeiwerte für unterschiedliche Anströmgeschwindigkeiten (Re-Test).

Während der Messungen wurde kontinuierlich die mittlere Windgeschwindigkeit U_{REF} in 30 cm Höhe (45 m im Original, Unterkante Ausleger) unmittelbar vor dem Modell gemessen und den entsprechenden Kraft- und Momenten-Meißwerten zugeordnet. Pro Meßpunkt wurden 5 Zeitserien ausreichender Länge für die 5 Meßgrößen F_x, F_y, M_x, M_y und M_z erfaßt, die off-line nach jeder Messung analysiert wurden.

Obwohl das Modell des Container-Kranes so starr wie möglich gefertigt wurde, zeigte die in Vorversuchen durchgeführte, experimentelle Analyse der Eigenfrequenzen des Modellkörpers einen Resonanzpunkt bei etwa 21 Hz, verursacht durch Schwingungen des Auslegers am Modellkran. Um die kleinste Eigenfrequenz deutlich zu erhöhen, hätte ein sehr viel kleinerer Modellmaßstab gewählt werden müssen. Ein kleinerer Modellmaßstab hätte jedoch gleichzeitig kleinere Absolutwerte der gemessenen Windkräfte und in Folge eine geringere Meßgenauigkeit.

Die gemessenen, mittleren Kräfte und Momente für die 6 Testfälle, umgerechnet auf die Absolutwerte der Großausführung (Auslegungsfall mit \(U_H = 40 \) m/s in einer Höhe von \(H = 45 \) m), sind in Abbildung 8 zusammengefaßt. Als kritischer Lastfall erscheint die Konfiguration mit aufgeklapptem Kran ausleger, für die zum Teil tendenziell abweichende Windlastverteilungen und erwartungsgemäß, mit Ausnahme des Torsionsmomentes \(M_Z \), auch die größten, mittleren und mittleren Lastwerte gemessen wurden. Die unterschiedlichen Positionen der Hebevorrichtung am Ausleger zeigen deutliche Wirkung im gemessenen Torsionsmoment \(M_Z \). Für alle weiteren mittleren Werte der Meßgrößen wurde eine nur geringe Abhängigkeit von der Position der Hebevorrichtung festgestellt. Die vom Auftraggeber mit der Wahl der Testkonfigurationen beabsichtigte Unterscheidung von Einzellantopen der Hebevorrichtung bzw. des Auslegers im Vergleich zur Gesamtlast wird für relevante Windrichtungen deutlich.

4 Formelzeichen und Abkürzungen

\[
\begin{align*}
C_W & \quad \text{Strömungswiderstandsbeiwert eines umströmten Körpers (aus [2])} \\
C_M & \quad \text{Momentenbeiwert (aus [2])} \\
F_X, F_Y & \quad \text{mittlere Windkraft am Kran in X- und Y-Richtung des Modellkoordinatensystems} \\
M_X, M_Y & \quad \text{Kippmomente um die Horizontalachsen des Modellkoordinatensystems} \\
M_Z & \quad \text{Torsionsmoment um die Vertikalachse des Modellkoordinatensystems} \\
\alpha & \quad \text{Anströmwinkel (Windrichtung)} \\
I & \quad \text{Turbulenzintensität (siehe auch [6])} \\
U_{REF} & \quad \text{Referenz- bzw. Bezugswindgeschwindigkeit in Hauptströmungsrichtung} \\
U_H & \quad \text{Strömungsgeschwindigkeit in der Höhe H in Hauptströmungsrichtung} \\
H & \quad \text{Höhe über Grund} \\
\text{RMS} & \quad \text{root-mean-squared (siehe auch [4])}
\end{align*}
\]
Abbildung 8: Mittelwerte der gemessenen Windlasten, umgerechnet auf die Verhältnisse im Original ($U_H = 40 \text{ m/s}, H = 45 \text{ m}$).
Abbildung 9: RMS der gemessenen Windlasten, umgerechnet auf die Verhältnisse im Original ($U_H = 40 \text{ m/s}, H = 45 \text{ m}$).
5 Literatur

[1] Fluid Dynamics and Diffusion Laboratory - Research Facilities and Instrumentation, compiled by A.E. Lee, Colorado State University, College of Engineering, Fluid Dynamics and Diffusion Laboratory, Fort Collins, Colorado

