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An analysis has been performed of penetrative convective instabilities arising from the
combined action of thermal and centrifugal buoyancy forces. The objective has been to
examine the effect of various mean temperature and velocity profiles on the critical limit
and convective penetration of the disturbances. The linearized perturbation equations
have been solved employing an approximate technique. The close analogy between stream-
line curvature and thermal stratification effects has been demonstrated. It is found that
for parallel layers of fluid along curved heated walls, a unique stability curve for neutral
disturbances may be obtained if the quantity plotted along the abscissa is Ra 4+ «Vg*
where Ra is the Rayleigh number, V¢ is the Gortler number, and « is a constant which
expresses the relative importance of the mean temperature and velocity profiles.

I. INTRODUCTION

This discourse considers penetrative convective insta-
bilities resulting from the combined action of thermal and
centrifugal buoyancy forces. These instabilities are assumed
to take the form of steady three-dimensional vortices
oriented in the streamwise direction and are similar to the
disturbances observed in the flow between rotating con-
centric cylinders. The latter instability manifests itself
in the formi of regularly spaced toroidal vortices stacked
around the inner cylinder. This phenomenon was first ex-
amined by Taylor! who formulated the motion in mathe-
matical terms, analyzed its stability, and verified the analy-
sis in quite conclusive fashion. Gortler? and later Smith?
investigated the vortex mode of motion along a plate with

-concave curvature and indicated the presence of a system

of parallel counter rotating vortices aligned in the mean flow
direction. Furthermore, their analyses clearly indicated that
only flows with concave curvature were susceptible to this
type of instability. Experimental verification was subse-
quently obtained by Gértler,? Liepmann,* and Tani The
parameter governing the stability of the flow is the Gortler
number R;(kd)2, where R; is the Reynolds number based
on the boundary layer thickness 8, and % is the curvature
of the wall.

The analogy between flows with concave curvature and
buoyancy due to unstable stratification was pointed out by
Gortler® and more recently by Yih’ and by Bradshaw.?
Terada® and Sparrow et al.,'° have observed the vortex mode
of motion in the flows of liquids down inclined heated
plates.

The occurrence of a closely analogous phenomenon in the
atmosphere is fairly well documented. The large-scale cloud
streets frequently observed in satellite photographs are
now accepted as direct evidence of the presence of longi-
tudinal vortex instabilities in the earth’s atmosphere. The
clouds are formed as a result of the convective action of
the rolls in lifting moist air to its condensation level. Further
direct evidence is supplied by the experience of glider pilots,*?
who have made use of these “invisible highways” in the air
to soar over large distances. Kuo'® analyzed the stability
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of plane Couette flow with a suitable gradient of potential
temperature so as to model the atmospheric boundary layer.
However, his boundary conditions required the physically
unrealistic situation of a rigid upper bounding surface.

The present study allows for the fact that convective
instabilities arising in an unstable layer may penetrate into
a neighboring stable region. The analysis presented herein
assumes that the disturbances are small, thereby permitting
the linearization of the equations of motion. Strictly speak-
ing therefore, this study deals not with fully developed
penetrative convection in the true sense of the word but
with the onset of convection or ‘“‘marginal” convection.
The penetrative action of the instabilities into the stable
region may be due to two causes, viz., (a) the nonvanishing
of the vertical velocity components of the disturbances at
the interface causing inertial penetration or (b) momentum
being transferred into the upper layer by viscous interaction
of the perturbations with the adjoining stable fluid. In
Taylor’s experiments with counter rotating cylinders, the
fluid adjoining the outer cylinder was in stable equilibrium,
since the square of the circulation increased outwards. This
is the condition for equilibrium according to the well-known
Rayleigh criterion. Nevertheless, Taylor' observed a weak
secondary system of vortices in the stable region driven by
the primary system of vortices through viscous traction.

Inertial penetration has been studied extensively (see,
for example, Stix,"4 and Whitehead and Chen), while pene-
tration by viscous entrainment has been studied recently
by Rintel.® The linear analysis described herein, assumes
that the penetration is of the second type and follows closely
the work of Rintel. In this approximation, the instabilities
generated in a fluid layer of thickness §, penetrate to a total
height ¢ into neighboring stable fluid. A quantity ¢ called
the penetration coefficient and defined as ¢ = d/8 provides
an estimate of the degree of penetration.

Solutions have been obtained for a variety of flows along
heated curved walls with stable fluid overhead. In this con-
text ‘“‘stable” refers to stability with respect to velocity
gradient, (i.e., where Rayleigh’s inviscid stability criterion
is satisfied) as well as to the conventional interpretation

1661
CEP73-74RAK~RNM7 3

Copyright © 1974 American Institute of Physics



ble temperatt
is to demonstrate more clearly the analogy existing between

" flows with concave curvature and unstable stratification.

Consequently, the Tollmien-Schlichting wave-type disturb-
ances pertinent to transition are not accounted for in this
analysis. However, for heated or curved flow-fields the
Squire theorem does not necessarily hold"; hence, three-
dimensional disturbances may be the more unstable mode.
Furthermore, these stationary convective motions have been
observed to persist in turbulent fluid by Tani® where the
problem of transition does not arise. The specific cases of
the parallel flows whose stability are examined herein are:

(a) Parallel flow with free surface along curved heated
walls; (b) boundary layer type flow with wall curvature and
heating from below bounded above by a fluid with differing
stable gradients of temperature and velocity.

Details of the cases examined will be discussed later.

Il. THEORETICAL DEVELOPMENT

Consider an unstably stratified parallel low over a curved
surface. The unstable layer is considered to be bounded
above by fluid of neutral or arbitrarily specified stability.
It is assumed that the disturbances generated in the lower
laver of thickness § penetrate to a height d. The penetration
coefficient is then defined as ¢ = d/5. The parameter ¢ thus
provides a measure of the extent of penetration as indicated
in Fig. 1. In this respect it is closely allied to the “effective
depth”’ defined by Kuo.?

We start with the Navier-Stokes equations of motion
and the energy equation, expressed in a curvilinear coordi-
nate system (Fig. 1). Using the Boussinesq approximation,
one can derive the following equations for the perturbations
P, T, @i; of pressure, temperature, and the three components
of velocity, respectively,

o U oU o*n &% an

o T, TRUFD L ”(ayﬂ a2 ay>’

a7 2

2,
B——ZkuU gBT—-I-@+ <”+ + k- ) (1
im0, 70 )
o paz+ ay2+ o+ dy
o oW
5;+3;+kﬁ=0’ (2)

3y a2 ay

where % denotes the curvature, v is the kinematic viscosity,
8 is the volume expansion coefficient, and g is the gravita-
tional acceleration. U and T refer, respectively, to the tan-
gential velocity component and temperature of the primary
flow. One can analyze an arbitrary disturbance into a set
of normal modes, '

—+7 —+~——— 3)

of  or  _oT (322" T aT>
at 9z  Pr ’

vp(y) cosaz exp(Bil),
T,(y) cosaz exp(fuf)

% = 2,(y) cosez exp(Bul),
U = wy(y) sinaz exp(But),
B = pp(y) cosaz exp(But),

b=
T =

. where a is a lateral wavenumber.
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“The aim of this work

FIG. 1. Orthogonal curvilinear coordinate system.

Since we only consider neutral disturbances, we sub-
stitute the above perturbations into Egs. (1)~(3) with
B1 = 0. The justification for this step lies in the validity of
the principle of the “exchange of stabilities” for such
flows.!®® The primary or “mean” flow is taken as being
two dimensional, hence dU/3z = 3T /3z = 0. This results
in the following system of differential equations:

1,(3U /3y + kU) = v(D*u, + kDu, — ofu,), (4)
—2kUu, = g8T»— Dpy/p + v(D?p + kDvy— a,), (5)
0 = a(ps/p) + v(D*w, + kDw, — o*wy), (6)
0= Duv, + kv, + o, (7
15(3T/3y) = (v/P,) (D*T, + kDT, — oT,); (8)

here, D = d/dy. By eliminating p, and w, and discarding
higher-order curvature terms, Eqgs. (4) to (8) may be re-
duced to

(D? — o), = (¥/v) (2kUu, — gBT,), (9
(D — a®)u, = (—v,/v) (8U /3y + kU), (10)
(D?— o®) T, = (Pr/v)(8T/y)vp. (11

Defining dimensionless quantities ¢ = o, v = v,(8/v),
%= u(8/v), w= wy(8/v), Gr= gBSBAT/, Rs = U, /v,
f=U/U,, T =08T/3y /AT, K = ks, y, = y/8, where
AT is the temperature difference across the fluid layer 8,
Eq. (9). (10), and (11) become

(DP — ¢)% = ¢*(2KfRyu — GIT), (12)
(D = ¢ )u = —oR(f + Kf), (13)
(D2 — )T = v PrTy. (14)

D now denotes d/dy; and primes denote 8/

As stated earlier, the penetration coefficient ¢ is defined
as the ratio of the penetrated height d to the thickness &
of the unstable layer. We therefore define a new dimension-
less coordinate

t¢=m/c, ®=ce, K.=cK, Gr.= &Gr,

and a modified Reynolds number R = cR;. Eliminating
the second term on the right-hand side of Eq. (13), since
the product Kf is small in comparison with f’, one obtains,
with the above dimensionless parameters, the final form of
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the differential equations for the perturbations, viz.,

(D? — &% = ®[2K. fRasu — (Gr./c)T], ~ ¢5))

(D — &%) u = vRas f'(ch), (16)

(D — )T = vc PrT"(cf), (17)
where

D = d/dt.

The boundary conditions assumed for Egs. (15) to (17)
are the “fixed-free” boundaries as explained in Chandra-
sekhar.’® That is, the lower boundary is assumed to be a rigid
plane with infinite thermal conductivity, while the upper
boundary exerts no stress although possessing infinite
thermal conductivity. With these boundary conditions
we must have that at

Additionally, from the continuity equation (7) we may
obtain the auxiliary boundary conditions Dv = 0 at £ = 0
and D% = 0att= 1,sincew=0att=0andDw=u= 0
at £ = 1.

Equations (15)-(17) are solved approximately using a
technique devised by Chandrasekhar.’® The parallel and
normal to the wall components of the perturbaticn velocity
are expanded in a series of functions satisfying the boundary
conditions for a rigid wall at £ = 0 and a free surface bound-
aryat = 1:

o o
u= 2, Bn, v =2 Ann.

n=1 n=1

(18)

The temperature perturbation, since it satisfies similar
boundary conditions as # is written as

T= Z Cnxn,

n=l1

(19)

where we choose

A, = sinnwé,

M2, = Ao + [ 207/ (sinh2® — 2®) ] sinh®t
— £sinh® cosh (Pt — P),

An = nin? 4 P2

It may be readily verified that the functions chosen satisfy
the boundary conditions and also that

(D? — ¥ x, = —Ann, (D? — 3%z, = At
When these expressions are substituted into the differential
equations and the coefficients B, and C, are eliminated, the
following eigenvalue system is obtained for A4,;

2 Xom' & A1V’
A, = @ (SNG yEmy

mal Am ot Al

1 2 A
+2Ra— > ;\-—Y,,.,.“),

An mml Am
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where Ng = R;(k3)1? is the Gortler number and Ra =
Gr x Pr is the Rayleigh number with

1
anl = >\n>\m/ fxmxn dEv
0
1
Yln, = )\an/ f,zlxn dE)
0

1
Ymno = >\m>\n/ T,zmxn ds.
0

The standard method of evaluating the Fourier coefficient
has been used to arrive at the previous equation. It may
now be rewritten as .

An, = 3P Z A:(8NG*Pwm + 2 Ra.Q;,.) = 3P? Z A R;..

I=1 [l
(20)
Here,

Pln = Z (Xnmlylm,/klkm)-

m=1

Om = Y12/ N\,

In matrix notation we have the familiar eigenvalue prob-
lem

[A4] = ®*[R][4].
The equation of neutral stability is then
| 8am — P2 Rom | = 0.

To simplifv the numerical evaluation of Eq. (20), it is
rewritten in the form

An = 2N Y 4:(8P1 + 2RwQin),

I=1

(21)

where Ry is defined as Ra/Vg2.It therefore expresses the
relative importance of buoyancy forces to centrifugal
inertial forces with viscous damping as an over-all effect.
Equation (21) was solved for various values of the Ry
number.

I1l. OUTLINE OF SOLUTION PROCEDURE

Numerical evaluation of the eigenvalue problem was per-
formed on a CDC 6400 computer. The method consisted

"of minimizing the Gortler or Rayleigh number as a function

of the wavenumber & and penetration coefficient ¢. The
method is well described by Rintel.’® A complete neutral
stability curve may be generated by varying & keeping ¢
at its critical value. The results thus obtained are scaled
with the critical ¢ value. A more accurate representation
would be obtained if ¢ is minimized at each point on the
stability curve. This, however, ceases to be economical in
terms of computer time. For cases of combined heating with
wall curvature, Eq. (21) was used with Ry being treated
as a parameter. For purposes of numerical evaluation, the
infinite series expansion in Eqs. (18) and (19) was trun-
cated to thirty terms and the matrices were limited to fifth
order. For the cases where penetration was into neutrally
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stable fluid, the order of the matrices used was increased
to nine. A check, performed by increasing the truncation
order of both the series and the matrices, revealed that this
provided sufficient accuracy.

The mean flow profiles for the cases examined are listed
below.

(a) Parallel flow with free surface along a curved heated
wall

f@ =y2—=1y), Ts(y) =y
was assumed for the mean velocity and temperature pro-
files, respectively, with unit Prandtl number. Since the

fluid layer was assumed to have a free surface, the penetra-
tion was taken as zero implying ¢ = 1.

(b) Boundary layer type flow with combined wall curva-
ture and heating

fO) =y2—-y), 0ZEL 1/

fO) —xQ2—y+1—-x et L

The same mean temperature profile was assumed except
that x was taken as one for the velocity profile and three for
the temperature profile. A value of 0.7 for the Prandtl
number was used in evaluating this case. A semi-empirical
adjustment for this was made in evaluating the integral
V." by defining a new variable & = £ Prl/3 according to
Eckert and Drake.” Hence, when the integration of £ is
carried over the range 0 to 1, the entire thermal profile is
integrated across simultanecusly.

IV. DISCUSSION OF RESULTS

The cases for which the critical conditions were evaluated
have been listed earlier. Figure 2 illustrates the results ob-
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FIG. 3. Case (a), neutral stability curve.

TABLE I. Comparison of « values obtained in case (b)

No Ry Ra Per Cer «
21.76 0 0.0 2.6943 1.4512 i
11.57 4 536.23 2.7123 1.356 0.633
8.83 8 623.35 2.7153 1.344 0.634

tained for case (a), i.e., the stability of a parallel free sur-
face flow along a curved heated wall with zero penetration.
The curve for Ry = O represents the case of pure centrifugal
instability in a boundary layer along a concave wall with
no heating. Increasing values of Ry, or in other words, in-
creased heating at the wall results in a downward destabiliz-
ing shift of the neutral stability curve. The critical wave-
number at the onset of instability is relatively unaffected
by the increased heating.

The analogy between curvature and buoyancy is well
displayed in Fig. 3 which is a composite neutral stability
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curve obtained by plotting ®, the disturbance wavenumber,
vs Ng* 4+ xRa. This result was arrived at as follows: A
previous simple analyses, by the authors, of curved flows
with thermal stratification, had yielded the parameter
Ng* + Ra as a stability criterion for linear profiles. It was,
therefore, intuitively expected that nonlinear profiles would
perhaps vield the slightly more general parameter N¢*
x Ra, where « now, would account for the differences be-
tween the thermal and velocity profiles. Consequently, a
number of calculations of the stability boundaries for
various values of the parameter Ry were performed. It was
then easy to calculate x and establish that V¢ 4- k Ra was
indeed a unique parameter by checking several points on
the calculated curves. A similar result was arrived at by
Lindberg® who found that the thermal Rayleigh number
and an analogously defined “‘concentration Rayleigh num-
ber” added linearly to form a stability parameter.
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A secondary dependence of x would be on the degree of
penetration into the stable fluid, a limiting factor in estab-
lishing this dependence being the computer time available.
To examine this effect, a small number of calculations was
run on case (b) and the critical values obtained in a first
approximation in the minimization are given in Table I,
where the values of V¢ and Ra are based on the thickness
of the unstable layer 4. Since the deviation in « is not large,
it appears that the same type of relation holds so that one
may write Vg,2 = Nga? |Ramo — & Ra. The difference in the
first value of ¢ is probably due to the absence of Prandtl
number effects. The eigenfunctions obtained are plotted
in Fig. 4 together with the eigenfunctions of the second
modal instability with Pr = 1. The neutral stability curves
for Ry = 5 and 10 and Pr = 1 are plotted in Fig. 5. They
are, of course, scaled with the critical value of ¢. Figure 6
contains curves of the variation of critical Gértler number
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FIG. 6. Variation of critical Gértler number with Rayleigh number for cases (a) and (b).

with Rayleigh number at the point of first instability. The
curves are, of course, parabolas.

V. CONCLUSIONS

The object of this analysis was to explore the stability
of parallel layers of fluid under the simultaneous influence
of curvature and heating. The simple linear theory indicates
that the two effects are additive, demonstrating the close
analogy between streamline curvature and buovancy.

Future work should include the interaction of thé Toll-
mien—Schlichting wave instabilities with truly three-dimen-
sional convective disturbances. The disturbances analyzed
here have been quasi-two-dimensional in that no variations
in the streamwise direction have been assumed. Further
calculations with infinite boundary conditions, i.e., where
the fluid is unbounded vertically, should provide addi-
tionally useful results.
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