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Technical Objectives:

· Qualitatively describe the nature of the turbulent boundary layer, including the viscous sub-layer and the fully turbulent zones.
·  Describe the concept of wall coordinates and develop the velocity profile for the viscous sub-layer and fully turbulent regions in wall coordinates.
· Develop an approximate solution for the momentum equation in a turbulent boundary layer.
In the next 2 chapters, we return to the turbulent flow equations developed in Chapter 6, to solve external turbulent flow momentum and heat transfer problems.  We will begin with a qualitative discussion of the properties of a turbulent boundary layer, followed by a discussion of Prandtl  mixing-length theory.  The concepts of a viscous laminar sublayer are introduced to develop the “law of the wall”.    
1. Transition of a Laminar Boundary Layer to a Turbulent Boundary Layer
For a flow that begins laminar and encounters a flat plate, the viscous forces from the presence of the flat plate work to keep the flow laminar, whereas the inertial forces have a destabilizing effect and magnify any disturbance that the flow might encounter.  The Reynolds number is defined as the ratio of inertial forces to viscous forces:
Based on the definition of the Reynolds number for flow over a flat plate, as the length of the flat plate increases, the viscous forces decrease due to the growth of the boundary layer.  Accordingly, at some point along the flat plate, the flow will transition from laminar to turbulent:
Under very controlled laboratory conditions, for a smooth flat plate, the transition from laminar to turbulent flow occurs somewhere in the range of:
If the flow is subjected to some sort of disturbance (a bump, for example) the transition will occur at a much lower Reynolds number:

2.  Qualitative Structure of a Turbulent Boundary Layer

After the transition region (which is typically approximately the same length as the laminar region), the boundary layer becomes completely turbulent.   In the turbulent boundary layer, two different regions are observed: the viscous sub-layer and the fully turbulent region.  

Viscous Sub Layer

In this region, heat transfer and momentum transfer are governed predominantly by the molecular diffusion:
Fully Turbulent Region

Comprises the majority of the boundary layer thickness and velocity is nowhere independent of time.   Heat and momentum are transported by “eddy motion”.
3.  Concept of Eddy Diffusivity 
Recall equation (6-28),which was the momentum boundary layer equation (constant properties, negligible body forces):

(6-28)

The u’v’ term is called the turbulent shear stress.  If it assumed that the turbulent shear stress is proportional to the gradient in the average velocity, it is possible to define an eddy diffusivity as follows:

Resulting in the following turbulent boundary layer equation:

(11-3)

Note:  in the viscous sub-layer, it is assumed that:

In the fully turbulent region:
It is also sometimes convenient to define an eddy viscosity as:

(11-4)
4.  Prandtl Mixing-Length Theory
In order to solve the turbulent flow momentum equation (6-28), it is necessary to incorporate some sort of theory or model to evaluate the turbulent shear stress term -
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.  Treatment of the turbulent shear stress, is typically called the turbulence “closure” problem.  The Pradtl Mixing-Length theory is the simplest and oldest turbulence closer model.   
Assume for the time being that the fluctuating velocity components, u’ and v’ were simple harmonic functions with the same period, t1, but different amplitudes and phase angles:

Mathematically, the fluctuating velocity components could therefore expressed as follows:

(11-5a)

Given this assumed form of u’ and v’, the turbulent shear stress can be evaluated as follows:

(11-5b)

This simplified result suggests that if u’ and v’ are nearly in phase (i.e. if 1 → 0), then the turbulent shear stress approaches a constant, finite value:
(11-5c)
Obviously, we have no idea how to evaluate u’max and v’max, but since the fact that the turbulent shear stress should approach a constant value is a very useful result, assuming we had some way to evaluate u’max and v’max.

Consider now the following velocity profile for the average u-velocity, as might be encountered in a turbulent boundary layer, for example:

At any given point on the 
[image: image2.wmf])

(

y

u

 curve, we can superimpose the local amplitude of the fluctuating component of the velocity, u’max.   We define the mixing length, l, as the y-distance required for the average velocity to increase by the amount, u’max.     For small values of l, the figure above suggests that:

Next, we assume that v’max and u’max are related by a local constant, C, such that:
And, as suggested by equation (11-5c) above, if 1 → 0, then the turbulent shear stress approaches the following constant value:

And, since we don’t know what l is anyway, we might as well absorb C/2 into l2, resulting in the following “closure” for the turbulent shear stress:
(11-5)

And, using the eddy diffusivity or turbulent viscosity definitions defined above, we can express these quantities in terms of the mixing length as well.
(11-6)
Of course, we have no idea what the value is for this mixing length, l.  But, since it is a distance, we might expect that it will scale with a physical distance in the system.  In the boundary layer, it is reasonable to expect that it will scale with the distance from the surface, y, such that:

(11-7)

Where  is a proportionality constant called the von Karman constant.
The validity of the Prandtl Mixing Length theory, therefore, rests on whether the mixing length (defined by equation 11-5), is found to vary proportionally with distance from the wall, as proposed by (11-7).   Figure 11-2 shows that this model works fairly well in the region close to the wall (but outside the viscous sublayer), wherein the von Karman constant appears to be 0.41.
At a given distance (y/d > 0.7), the mixing length becomes independent of y and instead becomes proportional to the boundary layer thickness:
(11-8)
5.  The Viscous Sublayer
Even in turbulent flow situations, in the region very close to the wall, viscous shear stress still dominates over turbulent shear stress in a region called the viscous sublayer.

5.1 Wall Coordinates

Before discussing the viscous sublayer, it is convenient to develop a new coordinate system for the region close to the solid surface.  This coordinate system is called the wall coordinate system.

For systems in which turbulent shear stress and molecular diffusive shear stress are present, we can express the total shear stress as:

(11-9)
With this definition, the momentum equation (11-3) becomes:

(11-10)

In regions close to the wall, the term udu/dx can be neglected and u = u(y) alone, and v = vs (which is zero unless there is blowing or suction at the surface).  This is called the Coutte flow assumption.  With this assumption, the momentum equation becomes:

(11-11)

This equation can be integrated from the surface, to any location y, resulting in:

(11-12)

Next, we define the friction velocity, u as follows:

And we use the friction velocity to non-dimensionalize equation 11-12 as follows:

Substituting the non-dimensional quantities into (11-12) results in:

(11-13)

This equation shows how the shear stress varies in the wall coordinate system. 

5.2 The Law of the Wall
For flow over a flat plate (P+ = 0) with no suction of blowing at the surface (vs+=0), equation (11-13) reduces to:
(11-13a)

This equation suggests that the shear stress is equal to the surface shear stress everywhere in the Couette Flow Region!   Under these conditions, the total shear stress (11-9) becomes:

(11-14)

Now, as discussed above in section 2 of this week’s notes, we will treat the turbulent boundary layer as two distinct zones:  the viscous sublayer, wherein  >> m and the fully turbulent zone wherein m>>.  

For the viscous sublayer, (11-14) becomes:
(11-15)

This equation is valid from the surface to the edge of the viscous sublayer, which is found to occur at y+=10.8 for this two-zone model.

In the fully turbulent region, (11-14) becomes:

By reintroducing the Prandtl mixing length theory for the eddy diffusivity, we get:

Which, in non-dimensional form becomes:

(11-16a)

Integrating from the outer edge of the viscous sub-layer (y+ = u+ = 10.8), results in:

(11-16)
Equation (11-16) is called the Law of the Wall.  Figure 11-3 in Kays and Crawford shows a comparison between experiments and equations (11-15) and (11-6):

An approximate form of the law of the wall is often employed in practice, which is called the 1/7 power law:

(11-17)  

6.  An Approximate Solution for the Friction Coefficient for a Turbulent Boundary Layer

The 1/7 power law approximation (11-17) for the law of the wall, can be used to develop an approximate solution for the friction coefficient on a flat plate in turbulent flow.   The major assumption in developing this approximate solution is that equation (11-17) is valid throughout the entire boundary layer.  

We begin by transforming equation (11-17) back into its dimensional form:

(11-17a)

For the approximate solution, we assume that u = u∞ at a finite boundary layer thickness, y= ,  which we can substitute directly into (11-17a):

(11-18a)

And we can solve directly for the wall shear stress as follows:

(11-18)

Recalling, once again the integral form of the momentum equation for a flat pate (dP/dx=0) with constant properties (5-6):

(5-6)

Substituting (11-18) into the left hand side for s, and u/u∞ = (y/d)1/7 into the right hand side yields:
(11-23a)

(11-23b)

This results in an ordinary differential equation for  with respect to x.  Rearranging and integrating, yields:
Now, the weird thing is that, since the turbulent boundary layer does not begin at the beginning of the plate, we have to define a “virtual origin”, which would be the location where the boundary layer would have begun if it were not preceded by a laminar boundary layer.  Accordingly, we can apply =0 at x =0 to eliminate the integration constant, keeping in mind that x= 0 is not the start of the plate. 
(11-23c)

Equation (11-23c) gives us the boundary layer thickness as a function of distance from the “virtual origin” of the turbulent boundary layer.   Substituting (11-23c) into (11-18) yields the wall shear stress:

(11-23)

Equation (11-23) works well for Reynolds number up to several million.  For larger Reynolds number, the following approximation agrees better with experiment:

(11-24)

Example 11-1.   Air at 300 K, 1 atm, flows at 10 m/s over a 2 meter long plate with a width of 1 m.   Assuming that the flow becomes turbulent at Rex = 60,000, and ignoring the laminar entry region, calculate the drag on the plate [lbf] and plot the velocity profiles u(y) at x = 0.5, 1 and 2 meters along the plate.

7.  The Van Driest Model (A Continuous Model for the Law of the Wall)

Although the 2-layer turbulence model works OK for momentum transport, it has its limitations for heat transfer.  Specifically, because it assumes zero turbulence at all in the viscous sublayer (i.e. u’v’=0 everywhere in the viscous sublayer), it underpredicts that actual heat transfer rate.  

The Van Driest hypothesis is that u’v' →0 only y=0, but not in the entire viscous sublayer as was assumed in the 2-layer model.  Mathematically, Van Driest proposed the following model for the mixing length, which would was assumed to be valid all the way down to the wall:

(11-25)

Where A+ is an empirically derived constant which has been found to = 25 for flow over a solid, flat plate.
By following the same development as previously, evaluating the total shear stress from equation (11-9), but without separating it into two zones, it is possible to derive a law of the wall using the Van Driest Model as shown in Figure 11-5 of Kays and Crawford:

8.  Numerical Modeling with Mixing Length Theory

Although we were able to solve a simple approximate flat plate solution, generally speaking the mixing length models described in this chapter are usually used as a means of “closure” of the Reynolds-averaged transport equations developed in Chapter 6.   Specifically, the momentum equation is solved as follows:
But, for mixing length theory, we have developed a closed form for the eddy diffusivity:

Substituting, we have:

Where the mixing length is evaluated using (11-25), resulting in:
This is the momentum equation that is solved by TEXSTAN if the Van Driest Mixing Length Model is chosen.

Example 11-2.   Using the Van Driest equation for the mixing length, determine u+ as a function of y+ by numerically integrating the equation for the surface shear stress.  Compare the results with equation (11-16).

8.  Turbulent External Boundary Layers: Heat Transfer

We now begin our discussion of turbulent external boundary layers.  Assuming constant properties, steady flow, no viscous dissipation or chemical source terms, the Reynolds Averaged energy equation (6-34) was found to reduce to:

(6-34)

This equation is identical to the laminar energy equation, with the exception of the turbulent heat flux vector, [image: image4.png]


.  So, as was the case for the momentum equation, solution of the energy equation rests on finding some sort of “closure” for the turbulent heat flux term.
Once again, we can define an eddy diffusivity (but in this case it is a thermal eddy diffusivity) as follows:

(12-1)

Substituting (12-1) into (6-34) yields the form of the turbulent heat transfer equation analogous to momentum equation (11-3):

(12-2)

It is also sometimes convenient to define a turbulent Prandtl number as the ratio of the momentum eddy diffusivity to the thermal eddy diffusivity:
(12-5)

In which case, the energy equation becomes:

(12-6)

The hope here is that there is some similarity between the turbulent shear stress and turbulent heat flux, such that a simple model might be developed for the turbulent Prandtl number.

8.1 Experimental Measurements of Turbulent Prandtl Number
In principle, it is possible to measure turbulent Prandtl number, by measuring the following properties of a flow:

Figure 12-3 shows the results of such measurements for air and water:

The results for air suggest that Prt→0.7 at the edge of the boundary layer, but the data also suggests two separate zones in the thermal boundary layer (a sub-layer and a fully turbulent layer).   For flow over a flat plate, the transitions are found experimentally to occur at the following non-dimensional distance:
9.  Law of the Wall for the Thermal Boundary Layer

In a manner very similar to the development of the law of the wall for the momentum boundary layer, we can proceed as follows.  Defining the total heat flux at any point in the boundary layer as:

(12-9)

The energy equation can be written as follows:

(12-8)  

Now, as was the case for the momentum law of the wall, we invoke the Couette flow approximation, wherein v = vs and dT/dy >> dT/dx, resulting in the following energy equation in the Couette flow region:
Integrating from the surface (at which T = Ts and q” = q”s) to any point y:

Introducing a non-dimensional Temperature T+ and non-dimensional surface velocity vs+as:

Results in the following equation for the heat flux in the region near the wall:

(12-11)

Note the similarity between this equation and (11-13).

(11-13)

Consider now a solid surface in which vs+=0.  In this case, (12-11) becomes:
(12-11a)

Or, q’’ = qs’’ everywhere in the Couette flow region.  Substituting qs’’ into the definition of the total heat flux, and integrating:

Non-dimensionalizing T+ and y+, results in:

(12-12)

Once again, we will consider a two-zone region.  In the sublayer, M→0 and, therefore the solution for the viscous sublayer becomes:
(12-12a)

Note the similarity to u+=y+.

For the remainder of the boundary layer, we integrate it as follows:

(12-13)

For air, y+crit was found experimentally to occur at y+=13.2, so that the integral becomes:

(12-13a)

Employing the simple Prandtl mixing length theory, M=y+ and recognizing that for Pr > 0.5, we can ignore the 1/Pr term in the second integral, the integrals become:
(12-13b)

Integrating yields the Law of the Wall for a turbulent boundary layer (air, flat plate), where Prt was assumed to be a constant in the outer region.

(12-15a)

Experimentally, (e.g. Fig 12-3), a value of 0.85 is reasonable for Prt for air, and along with k=0.41, we get the following thermal law of the wall:

(12-15)
Figure 12-9 shows that the law of the wall for air agrees well with experiments.
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