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Differential Equations of the Turbulent Boundary Layer  
Text: Ch. 6   

Technical Objectives:

· Describe the concept of Reynolds Decomposition and why it is possible to solve turbulent flow problems using this technique. 
·  Develop the Reynolds averaged transport equations for turbulent flow: mass, momentum, energy, turbulent kinetic energy and turbulent dissipation
·  Describe the physical interpretation of the components k and e in a k-e turbulence model.
1. The Concept of Turbulence
The full, unsteady Navier-Stokes Equations (for example, the x-momentum equation (4-12)) are valid for laminar or turbulent flow.  In turbulent flow, the entire flow field is inherently unsteady so that the velocity and temperature vary with time everywhere in the flow field:

With increasing computational power, it is possible to solve the full Navier-Stokes equations numerically for some turbulent flow problems.  These solutions are called Direct Numerical Simulation, or DNS.   Here is an example of a snapshot in time of a DNS solution for external flow around a square cylinder at Re =22,000.  

For further examples, including some movies of DNS simulations, see the following web site:
http://www.math.rug.nl/~veldman/cfd-gallery.html#DNS
As discussed in the previous week’s notes, while such solutions are valuable for some applications, they are costly to develop.  Fortunately, it is possible to solve a wide variety of turbulent flow problems by employing a time-averaging process, which converts the unsteady Navier-Stokes equations into equations that are similar to the steady, laminar flow equations. These equations are called Reynolds-averaged equations.  These equations rely on the development of new parameters called Reynolds stresses and turbulent heat flux.
2. Nomenclature
The following nomenclature will be used for variables in this section of the notes.  We will consider the following Cartesian coordinate system with coordinates (x1, x2, x3) and the velocity vector, v, will have velocity components (u1, u2, u3):
In turbulent flow, thermodynamic properties, such as T, and the velocity components, will vary with position and time:

By employing time-averaging, we will average-out the time variation and define mean values of properties, which are a function only of position:

The mean property values are related to the instantaneous properties by introducing fluctuating portions of the same property:

3.  Newtonian Stresses and Fourier Heat Flux Models
The stress tensor and heat flux vectors will be similar to those defined in Chapter 3.  We will use indicial notation.

The stress tensor will be written as follows:

(6-6)

Where Sij is the strain rate tensor:

(6-3)

The heat flux vector can be written as follows:
(6-7)

4.  Governing Equations: Navier-Stokes Equations

To develop the Reynolds Averaged turbulent flow differential equations, we need to start with the full, unsteady Navier-Stokes equations since turbulent flow systems are inherently time-dependent and 3-dimensional.   Here, we will neglect body forces, Xi and energy source terms (such as chemical reactions), S.  Accordingly, we will start with the following equations:

Conservation of Mass:

(6-8)

Expanding the indicial notation results in:
(6-8a)

Conservation of Momentum (formulated for each xi dimension)

(6-9)

For example, consider the x-momentum equation:
(6-9a)
Where, recalling the definition of the stress tensor in indicial notation (6-6):

The components of the stress tensor become:

Conservation of Energy

(6-11)

where ho is the stagnation enthalpy, defined as follows:

5.  Reynolds Decomposition

In most situations, the time-dependent portion of a turbulent flow is the result of a comparatively small-scale, random structure called a turbulent eddy.  Since these small scale, random velocity disturbances are small with respect to the bulk velocity, the approach that is used is to split the velocity (and temperature and pressure) into a sum of average and fluctuating terms:

The Reynolds Decomposition into the average and fluctuating components can be visualized by considering the following velocity vector, V, in a turbulent flow field as shown schematically below in 2-D for simplicity:
In this representation, the total velocity, V, is made up of the average velocity 
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(which varies with position, but not time) and the fluctuating velocity, V’, which varies with time, but when averaged over time, it must equal zero.
So, the approach will be to develop steady governing equations for the average quantities, which will vary with position, taking into consideration that the fluctuating quantities will average out to be zero in many cases.  Note, however that not all of the effects of the fluctuating quantities will be zero.  Consider the turbulent kinetic energy:

This term will NOT average out to be zero over time.

Formalizing the Reynolds decomposition, for velocity, we have:

(6-13)

For scalar quantities, pressure and temperature, we have:

(6-14)

And, for enthalpy and stagnation enthalpy:
(6-15)

6.  Time Averaging and Turbulent Statistics

Consider once again the u-velocity component (or any other quantity) at a point in space in a turbulent flow field.  We will define time-average u-velocity as follows:

(6-20)

The entire process of Reynolds Decomposition requires that this time-average velocity (and all other variables) converges to a constant value regardless of the time of the start of the averaging process, to.  

Applying this definition of time-average u-velocity to the fluctuating component of the u-velocity, shows that the time-average of the fluctuating component, 
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averages out to zero:
So, the time-average of all of the fluctuating components is equal to zero!

It should be noted, however, that the average of the square of the fluctuating component of the u-velocity
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 is not equal to zero:
Using equation (6-20), it is possible to show that each of the following averaging rules is valid.  They will help in deriving the Reynolds averaged transport equations:

7.  The Reynolds Averaged Transport Equations

Having defined the Reynolds decomposition variables and the time-averaging function, we can now develop the Reynolds-Averaged Transport equations.  We do this by substituting the decomposition variables into the Navier-Stokes equations (6-8) to (6-11) and then operating on the equations with the time-averaging function.  For simplicity, we will assume that density fluctuations are small so that  ≈ constant.
7.1 Conservation of Mass

We start with equation (6-8a):

With constant density, this equation becomes:

(6-8b)

Substituting in the Reynolds decomposition velocities:

Next, we average the entire equation over time:

(6-21)

Equation (6-21) is the Reynolds-averaged conservation of mass.

While the fluctuating components, ui’,will time-average out to zero, they must also obey the conservation of mass.  This is evident by looking again at equation 6-8b):

Rearranging, this equation:

By invoking (6-21), this equation shows that the fluctuating components obey their own conservation of mass, which makes sense when you think about it:

(6-23)

7.2 Conservation of xi-Momentum

Here, we begin with equation (6-9) and assume constant density:
Next, we substitute in the Reynolds decomposition variables for both the velocity components and the stress tensor:

Next, we time-average the equation:

(6-25)

Rearranging (6-25), results in the definition of a new quantity, called the Reynolds stress tensor:

(6-26a)
The Reynolds Stress Tensor quantifies the strength of the turbulence in the flow field.  As ui’→0, the Reynolds-averaged xi-momentum equation approaches the laminar flow momentum equation.

Substituting in the definition of the stress tensor (6-6) into equation (6-26a) results in the following:

(6-26)

7.3 Momentum Equation for the Turbulent Boundary Layer

To develop the turbulent boundary layer momentum equation, we consider (6-26) in the x-direction:
By invoking the boundary layer approximations, for a 2-D boundary layer this equation becomes:

(6-27a)

Invoking the Reynolds averaged conservation of mass, (6-27a) becomes:

(6-27)

And, substituting in for the shear stress (invoking the Boundary Layer assumptions once again), yields the following:

(6-28)

So, this equation looks a lot like the laminar boundary layer momentum equation (4-10), except for the addition of the Reynolds Stress term.

 7.4 Stagnation Enthalpy Transport Equation
Here, we start with equation (6-11) and substitute the Reynolds decomposition variables:

Next, we time-average the above equation:

(6-29)

Which, by invoking the definition of the fluctuating component of stagnation enthalpy, can be written as follows:
(6-31)

Examining equation (6-31), suggests the following physical interpretations:
7.4.1 Energy Equations for the Turbulent Boundary Layer

Equation (6-31) can be further simplified by invoking the boundary layer approximations and combining it with the conservation of mass:

(6-32)

The physical significance of each of these terms is as follows:
For perfect gases at low Mach number, equation (6.32) reduces to the following:

dividing by Cp yields:

(6-34)  

This equation is very close to the laminar boundary layer energy equation, with the exception of the 
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term, which is the y-gradient in turbulent heat flux.

8.  Turbulent Kinetic Energy Transport Equation
Thus far, we have developed mass, momentum and energy transport equations for turbulent flow, which have contain both Reynolds averaged quantities and fluctuating quantities.  Accordingly, we need some additional governing equations to solve turbulent flow problems.   Without going through all of the details, by starting with the momentum equation, and multiplying through by ui’, it is possible to derive a turbulent kinetic energy transport equation:

(6-37)

Where the term:
is defined as the turbulent kinetic energy.
Equation (6-37) can be further manipulated to yield the following:

(6-38)

where  is defined as the turbulent dissipation rate:

So, even though it is easy to get lost in the math, equation (6-38) is the transport equation for the turbulent kinetic energy and has the same form as the other transport equations:

9. k and e Transport Equations for the Turbulent Boundary Layer

Last, but not least, equation (6-38) can be simplified using boundary layer approximations to:

(6-40)
HW:  problem 6-7
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