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Technical Objectives:

· Derive from first principles the integral equations of the boundary layer.
· Explain in words the physical meaning of each term in each equation.

· Explain the concepts of displacement thickness and momentum thickness.
·  the simplifications made in developing the boundary layer equations from the full Navier-Stokes equations. 
1. Significance of Integral Boundary Layer Equations

In Chapter 4, we derived the differential laminar boundary layer equations of mass, momentum and energy.   Along with an equation of state, and a prescribed pressure variation P=P(x), these equations can be solved exactly to determine the velocity components u and v and temperature field T = T(x,y) within the boundary layer.  Unfortunately, closed form analytical solutions exist for only certain classes of problems.  

However, these equations can be solved numerically with little difficulty these days, and then our job would be done.  Why are analytical solutions important?  Why not just solve these equations numerically?
In many cases, we can develop simplified analytical solutions by employing an integral formulation of the governing equations.   Typically, when we solve the integral equations, we assume a form of the velocity profile within the boundary layer:
The entire solution of the problem depends only on the shape of the velocity curve.  In approximate formulations using the integral approach, we typically assume a velocity profile and then proceed to solve the problem using the integral equations.  Note that the integral equations themselves are not approximations, they are exact.
2. The Momentum Integral Equation
Consider the flow over an axisymmetric body, over which a thin boundary layer develops, such that the momentum boundary layer thickness, , is much less than the radius of curvature of the body,  << R(x). 
Consider now a stationary control volume along the surface of this axisymmetric body.  The control volume has an infinitesimal thickness, dx, but a finite height, Y.  The finite height Y is chosen so that it might extend to the surface of the boundary layer.  But, since the boundary layer is thin, Y <<R.  Assume that u∞=u∞(x) and, since the boundary layer is thin, assume that we can solve for u∞(x) using potential flow theory.  Following the book’s formulation, assume that there is fluid flow through the body surface (injection of a fluid or evaporation), resulting in a velocity component at the surface, vs.  The velocity out of the top of the control volume is vY.
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Zooming in on the control volume, we can get started by formulating the conservation of mass in integral form:

Formulating the conservation of mass results in the following:
(5-1)

This equation makes sense.  The change in the integrated mass flux in the x-direction is equal to the mass flowing in and out in the y-direction.

Next, we take a look at all of the momentum flux terms and external forces acting on the same differential control volume:

The conservation of x-momentum can now be formulated using equation (2-4):
Simplifying all of the terms results in the following equation:

(5-2a)

Next, we pick a height of the control volume, Y, to be greater than the boundary layer thickness, .   If this is the case, then the following is true:

In this case, equation (5-2a) becomes:

(5-2b)

Which can be combined with the conservation of mass equation (5-1):

(5-2)

Next, we recognize that, outside the boundary layer, u∞ is related to P from the Bernoulli equation:

(5-3)
Substituting (5-3) into equation (5-2), we get the final form of the momentum integral equation for the boundary layer:

(5-4)
Equation (5-4) can be used to solve for the viscous drag on an axi-symmetric body.   Indeed, as we will see next, applying equation (5-4) to flow over a flat plate, results in a good physical understanding of how the velocity defect in the boundary layer can be equated with the drag on the plate.  

3.  The Displacement and Momentum Thickness
Mathematically speaking, it is impossible to define an exact location of the boundary layer because the velocity will gradually merge with the free stream velocity, rather than abruptly at a well defined location.   We can, however, define several boundary layer thickness parameters that are completely unambiguous.  We will define these parameters as the displacement thickness, 1, and the momentum thickness, 2.  
Consider once again, the case of flow over a flat plate, over which a boundary layer is developing, starting at x=0.  Draw a finite control volume, ABCD as shown:

The conservation of mass through control volume ABCD requires that:

The mass flow rate into the control volume through surface AB and out of the control volume through surface CD can be formulated as follows:

Solving for 
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 results in the following:
(5-5a)
Next we let Y→∞, thereby guaranteeing that boundary layer is enclosed within our control volume ABCD:

We use this equation to define the displacement thickness, 1:

(5-5)

The physical interpretation of the displacement thickness is the distance that the presence of a boundary layer appears to displace the flow outward.  In other words, the displacement thickness is the apparent thickening of a body shape due to the presence of the boundary layer.
Next, we define the momentum thickness by considering the conservation of x-momentum on control volume ABCD.   The x-momentum flux entering surface AB and exiting surface BC can be formulated as follows:
The x-momentum flux exiting surface BC is equal to 
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, as long as we assume that Y→∞:

Note that, in the equation above, 
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was calculated from (5-5a).
Now, given these three momentum flux terms, we can calculate the net rate of loss of x-momentum on the control volume:

(5-6a)

Note that equation (5-6a), which is the change in x-momentum due to the presence of the boundary layer, must be equal to the net external force on the control volume ABCD, which is in fact the viscous drag on the plate!

Equation (5-6a) is also used to define the momentum thickness, 2:

(5-6)

where it is assumed that Y→∞.
The physical interpretation of the momentum thickness is that it is a measure of the momentum flux decrement caused by the boundary layer.  

4. Alternative Forms of the Momentum Integral Equation

Recalling equation (5-4), and comparing some of the terms in (5-4) with the newly defined momentum thickness (5-6) and displacement thickness (5-5), it is evident that we can develop a new form of the momentum integral equation in terms of these new parameters.  It can be shown that (5-4) can be expressed as follows:

(5-7)

Note that this equation is simply an ODE for 2 as a function of x.  So far the equation is exact.  The approximations come in when we assume a certain velocity profile for u(y) in the boundary layer .

Recall that equation (5-4) was originally developed for an axisymmetric body with a radius of curvature R=R(x).  For a 2-D surface with no suction or blowing (vs=0) where R→∞ or a surface in which R does not vary with x, equation (5-7) can be simplified to:

(5-7a)

For incompressible flow, ∞= constant, and equation (5-7a) reduces to the following:

(5-8)

Finally, for a flat plate, P∞ = constant and therefore u∞ =constant, resulting in the following:

(5-9)

Equation (5-9) once again shows the physical significance of the displacement thickness.   For a flat plate, the rate of change of displacement thickness, d(2)/dx, is directly proportional to the surface shear stress (i.e. viscous drag) on the plate.  
5.  The Energy Integral Equation
We now develop the integral energy equations for the boundary layer in a similar manner by, once again, considering the flow over an axisymmetric body of revolution. Again we consider the general case where there could be fluid flow through the body surface (injection of a fluid or evaporation), resulting in a velocity component at the surface, vs.  
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Recalling the definition of the stagnation enthalpy ho = h + u2/2, we will assume that the free stream stagnation enthalpy is a constant:

Once again, we will consider a control volume of infinitesimal thickness x, infinitesimal width , but a finite height, Y.  We can begin to formulate the conservation of energy by considering all of the energy terms that cross the control surface:
The conservation of energy for this control volume can be formulated as follows:

(5-12)

Next, since we have already assumed that the free stream stagnation enthalpy, h∞, is a constant, we can take it one step further and define the free stream enthalpy as the reference enthalpy, and set it equal to zero:

We can now formulate all of our terms in the energy equation:

Next, we require that Y is large enough so that the all of the fluid properties at the top of the control volume are equal to the free stream velocity:
Substituting all of these terms into the conservation of energy (5-12) yields the following:

(5-13)

This equation makes perfect sense physically.  The conduction of heat to or from the surface along with the convection of to or from the surface( if vs is present) is balanced by a convective flow of enthalpy along the surface.
6.  The Enthalpy and Conduction Thickness

Analogous to the displacement thickness, 1, and the momentum thickness, 2, we can define two thicknesses with respect to the thermal boundary layer.  These two length scales are the enthalpy thickness, 2, and the conduction thickness, 4.  
The enthalpy thickness is defined as follows:

(5-14)

for constant density, constant specific heat, perfect gas, the definition of enthalpy thickness reduces to:

(5-15)

The conduction thickness is defined as follows:

(5-16a)

Recalling the definition of the heat transfer coefficient:

Shows that the conduction thickness is merely the thermal conductivity divided by the heat transfer coefficient:
(5-16)

7.  Alternative Forms of the Energy Equation

Using the definition of enthalpy thickness (5-14), we can substitute into the energy equation (5-13) if we consider the case where Y→∞.
(5-17)

Recall that the energy equation was developed for an axisymmetric body, in which R = R(x).  For a 2-D Cartesian system, or a system in which R does not vary with x, equation (5-17) becomes:

(5-17a)

For a perfect gas, with constant specific heat, the energy equation becomes:

(5-17b)

Finally, we consider the case of flow over a flat plate with constant density and no surface blowing or suction.  In this case, equation (5-17b) becomes:
(5-21)

Recognizing that the local heat transfer coefficient, h, is defined as qs/(Ts-T∞), equation (5-21) becomes:

(5-22)

The left hand side of equation (5-22) is actually the definition of the Stanton number. 

Homework 





Due Date:  

1. Kays and Crawford (Problems 5.1, 5.2)
2. Starting with equation (5-4), derive equation (5-7) by letting Y→∞ and inserting the definitions of displacement and momentum thickness.
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