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The Differential Laminar Boundary Layer Equations  
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Technical Objectives:

· Derive from first principles the laminar boundary layer equations of mass, momentum and energy.  
· Explain in words the physical meaning of each term in each equation.

· Discuss the simplifications made in developing the boundary layer equations from the full Navier-Stokes equations. 
1. The Concept of the Boundary Layer 
1.1 Historical Perspective
In August 1904 Ludwig Prandtl (1875-1953), a 29-year old professor of mechanics at the Technical University of Hanover, presented a remarkable paper at the Third International Mathematical Congress in Heidelberg.  In presenting a paper on flow over a flat plate, Prandtl was the first to propose division of the flow into two different regions in which the dynamics are different -- an outer inviscid flow, and a thin inner viscous ("boundary") layer next to the surface.
In each of these regions only the dominant terms in the Navier-Stokes equations were collected. The equations for each region were separately solved, but their boundary conditions were cleverly selected so that the solutions blended into each other to yield a "unified" approximation.
In that same paragraph, Prandtl showed how the governing boundary layer PDE’s that could be reduced to one ODE and he provided a rough value for the drag of the plate.  And he did all this using only roughly 25 lines!

1.2 Boundary Layer Thickness
The figure above shows two distinct regions.  Outside the boundary layer, the effects of viscosity can be ignored and the governing equations can be solved using Potential Flow Theory (i.e. inviscid flow theory).   Inside the boundary layer, viscosity is important, but the governing equations are still simplified because the boundary layer thickness, , is generally small with respect to physical length scales, L.  
1.3  The Boundary Layer Approximations

The momentum boundary layer can be defined as the region wherein the velocity varies from zero at the surface to the free stream velocity at the boundary.  Consider the following 2-dimensional boundary layer:

The thinness of the boundary layer ( <<L) results in the following approximations, which as we will show below, will greatly simplify the governing equations:

(4-0)
These approximations, which are typically quite valid, result in the following simplifications of the viscous fluid stress tensor:

(3-1a)

(3-4a)

The thermal boundary layer typically has a thickness on the same order of the momentum boundary layer.  Therefore T << L, resulting in the following approximations within the boundary layer:
(4-0a)

Resulting in the following simplification of Fourier’s Law:

(3-8a)

2.  The Continuity Equation (Conservation of Mass in Differential Form) 

Consider the following 2-D, infinitesimal control volume of length dx, height dy and unit depth dz:
Recalling the conservation of mass for this control volume:

Substituting in all of the inflow and outflow terms and canceling out terms:

Results in the following:
(4-1a)

In vector notation this equation can be written as:

(4-1b)

For steady flow, the equation becomes:

(4-1)

For constant density, steady flow conditions, equation 4-1 reduces to the following:

(4-7)

In cylindrical coordinates (which are necessary to solve boundary layer problems in circular tubes), it can be shown that the steady state continuity equation can be written as:

(4-8)

3.  The Conservation of Momentum 

Consider once again the steady flow along a 2-D surface with small curvature, with free stream velocity of u∞.  The coordinate x is measured along surface and y is normal to the surface.  The no-slip condition requires that u(x,0) = 0 along the surface:
To derive the conservation of momentum in the x-direction, we consider an infinitesimal control volume cut of width dx, height dy and unity depth from a location within the boundary layer.  For simplicity, we will assume that density is constant (although, it can be shown that the final result is valid for variable density).  Recalling equation (2-4), we need to keep track of all of the external forces acting in the x-direction, dFx, and all of the momentum flux terms, 
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Recalling (2-4) the conservation of momentum says that sum of the external forces is equal to the time rate of change of momentum + the momentum flux.

Momentum Flux in the x-direction 
Multiplying out all of the terms and neglecting some higher order terms, this simplifies as follows:

(4-10a)
External Forces in the x-direction 
Multiplying out all of the terms, this simplifies as follows:
(4-10b)

At steady state, the conservation of momentum requires that:

Therefore, we can equate (4-10b) with the negative of (4-10a):
(4-10c)

Finally, since the conservation of mass (4-7) requires that du/dx +dv/dy = 0, equation (4-10c) reduces to the following:

(4-10d)

Finally, recalling the boundary layer assumptions for the stress tensor:
(3-1a)

(3-4a)

We can substitute in for the stress terms and we get the boundary layer momentum equation:

(4-10)

This equation is valid for a 2-dimensional boundary layer.  Equations (4-12) to (4-17) in your book show the Navier Stokes Equations in full glory.

4.  The Conservation of Energy 

Consider once again the steady flow along a 2-D surface with small curvature, with free stream velocity of u∞ and a free-stream temperature of T∞.   Your book considers the general situation wherein there might be chemical reaction and/or mass transport from the solid surface.  Here, we will develop the equations for heat transfer without chemical reaction or mass transport from the surface.  

Consider, once again an infinitesimal control volume cut of width dx, height dy and unity depth from a location within the boundary layer.  The energy terms crossing the control volume include the flux of flow energy/flow work through the surface,
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, heat transfer, 
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 and work done on the control surface via shear stresses, 
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.  The rate of shear work is equal to the shear force multiplied by the velocity.  
Making the boundary layer assumptions and assuming that u2 >>v2, each of the terms crossing the control volume above can be written as follows:

Combining all of the above terms, via the conservation of energy for an open system:

And simplifying, we get:

(4-26a)

It can be shown that, by invoking the conservation of mass, equation (4-26a) can be rewritten as:
(4-26)
Equation (4-26) can be solved as is, or it can be combined with the momentum equation to put it into an even more useful form:

(4-27)  

This is the steady flow boundary layer energy equation.  Note the significance of each term:

Consider now the steady flow of a fluid inside a circular tube:

For axisymmetric flow in a circular tube with axisymmetric heating, the temperature inside the duct would be a function of x and r only, T = T(x,r).  Accordingly, the corresponding energy equation (4-28) is almost identical to (4-27), but in cylindrical coordinates:

(4-28)
If the flow is axisymmetric, but the heating is not axisymmetric, equation (4-28) is a bit more complicated as T = T(x,r,):

(4-35)

5.  Further Considerations: P = P(x), Thermodynamic and Transport Properties
Thus far, we have developed the differential laminar boundary layer equations for mass, x-momentum and energy.  In Cartesian coordinates, we have the following unknowns: 
Therefore, we have 6 unknowns and only 3 equations!  Accordingly, we need a few more equations.

P = P(x)

In boundary layer theory, we do not use the y-momentum equation at all.  Rather, we assume that we can get the P = P(x) from the inviscid flow solution outside the boundary layer.  For a flat plate for example, how does P vary along the surface?

In cases where the solid body is curved P = P(x), but we can get that information from the inviscid solution.  So, effectively, this eliminates P as an unknown.  

Equation of State

Another equation at our disposal is the equation of state.  The equation of state relates the thermodynamic properties T, P,  and h.  The equation of state for an ideal gas is:

Invoking the definition of constant pressure specific heat, we can eliminate h as an unknown, in favor of temperature:

Substituting dh = CpdT into equation (4-27) yields:

(4-37)
We know have 5 equations:

And five unknowns: u,v,,T,P

For liquids, Cv = Cp and  is constant.  In this situation, the pressure gradient term can be eliminated by replacing enthalpy with u + P/ :
Substituting back in to (4-27) yields:
(4-37a)
Finally, for situations in which the temperature variation is relatively small, it is often reasonable to assume constant thermal conductivity, k.  Assuming constant k, and dividing (4-37a) through by Cp yields the following:

(4-37b)

Defining the thermal diffusivity, , and the Prandtl number, Pr, as follows:

We can rewrite (4-37b) as follows:

(4-38)

For gases, the Prandtl number is approximately = 1 and as long as the free stream Mach number is low, the viscous dissipation term becomes negligible.  For high Prandtl number fluids, such as oil, the viscous dissipation term can be significant.
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