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Objectives
· Derive the species conservation equation for a reacting or non-reacting gas mixture.

· Use the principles of mass transfer to solve the Stefan Problem and the evaporating droplet problem.
1. The Important Role of Molecular Mass Diffusion in Combustion 
To date, we have learned how to determine the chemical composition and final temperature of a chemical reacting system under conditions where the reactants have an infinite time to react to their final equilibrium state.   Then, we introduced the concept of finite rate chemical kinetics, followed by an overview of the detailed chemistry of hydrogen, carbon monoxide and alkane oxidation.  Next, we used detailed chemical kinetic mechanisms to solve 0-dimensional chemically reacting systems in which mass transfer is assumed to be negligible.   In this chapter, we introduce the concept of mass transfer (i.e. molecular diffusion and bulk convective transport of gaseous chemical species) because mass transfer is a key component in both premixed and non-premixed combustion.  
2. The Concept of Mass Transfer

Consider the following bottle of methanol.  If you open the bottle, eventually someone nearby might be able to smell the alcohol.  At a later time, someone on the other side of the room might be able to smell it.
The principles of mass transfer will allow us to determine how long it might take before you can smell the alcohol and, along with some information on physiology whether you will be able to smell it at all (and whether it would kill you).

Examples of why these same processes important in combustion:
Premixed Flames






Non-Premixed Flames
Droplet and Spray Combustion



Flame Spread over Liquid Pools
3.Fick’s Law of Diffusion
Consider the following non-reacting binary mixture of two gases (species A and B).  The gas mixture flows along, with a bulk mass flow rate 
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 as shown:
According to Fick’s Law of Diffusion, the mass flux (mass flow rate per unit area) of species A due to convection and molecular diffusion can be expressed as follows:

(3.1)

where 
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is the mass flux of species A in kg/m2-s, YA the mass fraction of species A, 
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the total mass flux of the gas mixture (= 
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), and DAB the binary diffusivity, which is a property of the gas mixture and has units of m2/s.    For most mixtures, binary diffusivity values are on the order of 0.1 cm2/s.  
Equation 3.1 shows that mass transfer of a species in a mixture is a caused by two different phenomena:

1.

2.

Note that the  molecular diffusion component of equation (3.1) suggests that molecular mass diffusion is proportional to the gradient of the mass fraction, which is analogous to the diffusion of heat:

Fick’s Law for Molecular Mass Diffusion

Fourier’s Law of Heat Conduction
(3.3b)






(3.4)

It should be noted that equation (3.1) is only valid for one-dimensional diffusion in Cartesian coordinates.  More generally, equation (3.1) can be written as follows:

(3.5)

where 
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is the gradient of the mass fraction.  
4. Net Mass Diffusion of All Species in a Mixture

Consider again the binary mixture of species A and B.  The total mass flux of the mixture can be calculated as the sum of each individual mass flux as follows:

(3.8b)

Since, by definition, Y=1, equation (3.8b) can be rewritten as follows: 
(3.9)

Equation (3.9) shows that mass diffusion does not result in any net mass flow of species A and B.  This makes sense, when you think about it!  Consider again the bulk flow of a gas mixture (like air, for example):
5. Species Conservation

We have already learned that species can be produced and/or destroyed via chemical reactions and we can derive equations for species production using the law of mass action.  However, what we did not discuss is the fact that species can also diffuse in and out of a control volume as they are being created and destroyed.  It is possible to derive a “species conservation” equation that takes into account production and diffusion of a species.

Consider the following one-dimensional control volume, with a thickness x:

Species A enters and exits the control volume and is produced (e.g. from chemical reactions) within the control volume at a rate of 
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A species conservation equation can therefore be written as follows:

(3.28)

where 
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 is the mass production rate of species A in kg/m3-s, which is a function of the chemical reactions that produce species A, according to the Law of Mass Action.
Recognizing that the total mass of species A in the control volume is equal to:

(n3.1)

And, substituting equation (3.1) for the mass flux of species A into and out of the control volume yields the following:
(3.29)

Dividing through by Ax and taking the limit as x→0 results in the “species conservation” equation in Cartesian coordinates:
(3.30)

Note that equation (3.30) was derived assuming a one-dimensional Cartesian coordinate system.  A more general form of the species equation is as follows:

(n3.2)

Where the mass flux has been replaced by u, which is, in fact, the mass flux and 
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 is the mathematical operator called divergence.  In 1-D, spherical coordinates, n3.2 becomes:
(n3.2a)
6. Application of Mass Transfer Theory to Solve Non-Reacting Flow Problems

While the primary motivation for learning about mass transfer is to apply equation (n3.2) to combustion problems such as premixed and non-premixed flames, there are also a variety of non-reacting mixture problems of interest, including the Stefan Problem and the Evaporating Droplet Problem.  The latter problem will be revisited later on in the semester when we learn about droplet combustion.  
7. The Stefan Flow Problem

Consider once again the alcohol bottle from the beginning of the class.  It is possible to use the principles of mass transfer, along with vapor-liquid equilibrium at the liquid surface to determine the evaporation rate of the alcohol.  Consider the following system:

Schematic Diagram



Control Volume for Gas Phase
Assuming that species B is insoluble in the alcohol, 
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= 0 at the gas-liquid interface.  Moreover, since we are assuming that there is no chemical reaction in the gas phase, this means that 
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= 0 everywhere in the gas phase.
Therefore, the total mass flux through the control volume is:

(3.33)  

We can now formulate the species equation (3.30) for species A, which is valid everywhere within the gas phase control volume above:

(n3.3)
Integrating equation (n3.3) with respect to x yields the following:

(n3.4)

Comparing (n3.4) with equation (3.1) suggests that the integration constant must be
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.  Moreover, since 
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= 0 everywhere in the gas phase, equation (n3.4) now becomes:
(3.35)

This equation can now be solved to determine the mass evaporation rate of the alcohol,
[image: image13.wmf]'

'

A

m

&

.  

Rearranging equation (3.35) yields the following:
(3.36)

Equation (3.36) can be integrated as follows, assuming that D is a constant (not a bad assumption for the evaporation problem since temperature does not vary dramatically with x):

(3.37)

We can evaluate the integration constant by imposing the mass fraction of the gas at the liquid surface, which as we will learn shortly is strictly a function of the liquid temperature based on vapor-liquid equilibrium:

(3.38)
(n3.5)

Substituting (n3.5) into (3.37) yields the following:

(n3.7)

Which can be solved for YA(x), which is the mass fraction of the alcohol inside the bottle as a function of distance from the liquid surface:

(3.39)

Finally, we can solve for the mass flux of the alcohol by imposing a value for the mass fraction of alcohol at the top of the bottle:

(n3.8)   

For example, if we were blowing air over the top of the bottle, we might assume that YA,∞ = 0.
Substituting (n3.8) into (3.39) and evaluating (3.39) at x=L yields the mass evaporation flux of alcohol:
(3.40)

Note that YA,∞ is a prescribed value and YA,i = f(Tliq).
So equation (3.40) suggests that the following will promote evaporation:

1.  

2. 

3. 
7.1 Vapor-Liquid Equilibrium

As mentioned above, the gas phase mass fraction of the alcohol at the vapor-liquid interface is a function of the liquid temperature.  This result is a consequence of assuming equilibrium between the vapor and liquid phase alcohol at the surface.  

The assumption of vapor-liquid equilibrium, along with the gas phase ideal gas assumption of results in the following:

(3.41)
Equation (3.41) states that the partial pressure of the gas phase alcohol at the vapor-liquid interface is equal to the saturation pressure of the alcohol at the given liquid surface temperature.
For ideal gases, the mole fraction of a species is equal to the partial pressure of that species divided by the total pressure, so equation (3.41) can be used to calculate the mole fraction of the alcohol at the interface as follows:

(n3.9)

Converting from mole fraction to mass fraction yields:

(3.42)

Generally, the surface temperature is an unknown, which has to be solved for using the energy equation.  (The surface temperature of a liquid typically drops as the liquid evaporates!)

7.2The Clausius-Clapeyron Equation

Assuming that we know the liquid surface temperature, equation (3.42) is only useful if we know how the saturation pressure varies with liquid temperature.  For water, we can get this information directly from the steam tables.  For many other fluids, the data has been formulated into empirical formulas.  Once such simple formula is the Clausius-Clapeyron equation:
(n3.10)

where PREF and TREF are a reference pressure and temperature (typically 1 atm and the boiling point at 1 atm), hfg is the heat of vaporization in J/kg at the reference conditions and R the specific gas constant J/kg-K.

Example 10.1:  The jar of methanol is left open in this room.  Assuming that the methanol liquid surface temperature remains at 300 K and there is a wind blowing at the top of the jar, find the following:

a) mass evaporation rate of the methanol

b) estimate how long it would take for the methanol to evaporate.

Given: Tb = 338 K at 1 Atm

hfg = 1102 kJ/kg

liq = 790 kg/m3 
8.  Droplet Evaporation

Consider a spherical liquid droplet, evaporating in a quiescent environment as shown:

This problem is quite similar to the Stefan problem that was solved earlier, however, the spherical geometry of the problem allows you to solve the problem without having to artificially specify the mass fraction of the evaporating species at some location.  Rather, the spherical geometry results in YA→YA∞as r→∞.
For the gas phase surrounding the evaporating droplet, the conservation of mass in spherical coordinates requires the following:

(n3.11)

Assuming steady state and spherical symmetry results in the following

(n3.12)
which can be integrated to yield:

(n3.13)

Noting that 4r2 is the surface area at any location r in the gas phase, we can multiply equation (n3.13) by 4Furthermore, assuming that species B is insoluble in the evaporating liquid, we can evaluate (n3.13) at the droplet surface:
(3.46)

Next, we can evaluate the species conservation equation for the evaporating species in spherical coordinates:

(n3.14)

Noting that 4r2
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 is equal to 
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, integrating once and recognizing that the integration constant is equal to 
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yields the following:
(n3.15)

Solving for the evaporation rate:

(3.50)
Equation (3.50) can be integrated, and the following boundary conditions can be applied:

(n3.16a)
(n3.16b)

Resulting in the following equation for the mass evaporation rate (kg/s) of a spherical liquid droplet:

(3.53)

where rs is the droplet radius and B is the called the “transfer number” for evaporation: 

(3.52b)

We will find a similar result for droplet combustion.

8.1 The d2 Law for Droplet Evaporation
For an evaporating droplet (or a burning droplet as we will find later) if you were to plot the square of the diameter of the droplet as a function of time, you would find that it would vary linearly with time as shown below:
Indeed, the slope of the d2 vs. time plot is often called the “evaporation rate constant” or for droplet combustion, the “burning rate constant”.  Conservation of mass for the liquid droplet, along with equation (3.53) can be used to show that:

(n3.17)

The conservation of mass for the liquid droplet suggests the following:

(3.54)

But, at any given time, the mass of the liquid droplet is a function of the droplet radius:
(3.55)

Taking the derivative of (3.55) with respect to time results in:

(n3.18)
Substituting into (3.53) results in:

(3.57)

Equation (3.57) shows that the derivative of the droplet diameter squared with respect to time is a constant, which we call the “evaporation constant, K”.
Example 10.2.  For a methanol droplet in air at 300 K, evaluate the evaporation rate constant, K.  Estimate the total evaporation time for a 1 mm droplet.

HW:  3.9, 3.10, 3.11
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