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Objectives
· Use a phenomenological description to derive an approximate solution for the premixed laminar burning velocity.

· Formulate the governing equations for a premixed laminar flame.

· Perform an approximate solution of the governing equations to solve for the laminar burning velocity using an integral approach.

· Perform an approximate solution of the governing equations to solve for the laminar burning velocity using the Frank-Kamenteskii solution.

· Solve of the governing equations for the laminar burning velocity using asymptotic analysis.

· Describe the various techniques used to experimentally measure laminar burning velocity and the strengths and weaknesses of each technique
HW: HW:  Chapter 7, problems 4, 6 and 8.
1. Combustion Waves in Premixtures
As described in the previous chapter, nonpremixed flames, once ignited, will situate themselves somewhere between the fuel an oxidizer sources in order to satisfy the stoichiometric counterdiffusion of fuel and oxidizer.   In a combustible fuel-oxidizer mixture, however, once ignition is achieved, a wave will propagate through the mixture and consume the mixture.   Depending on the conditions, such a wave might propagate as a subsonic deflagration (i.e. a premixed laminar flame) or supersonically as a detonation wave.   
1.1 Detonations (Supersonic) vs. Deflagrations (Subsonic)
Consider the following steady, 1-D, planar wave propagating to the left into a quiescent combustible gaseous mixture with a propagation velocity of uu: 
The above figure can be transformed into wave-stationary coordinates as follows:
Since diffusion and reaction vanish in the far upstream and downstream locations, we can readily formulate the conservation of mass, momentum and energy between the upstream and downstream conditions, without any knowledge of the internal structure of the propagating wave (i.e. T(x), etc.).   These equations are as follows:

Mass:

(7.1.1)

Momentum:

(7.1.2)

Energy:

(7.1.3)

where f is the constant mass flux through the wave and the subscripts u and b refer to the unburned and burned equilibrium states upstream and downstream of the wave, respectively.

Equations (7.1.1) through (7.1.3) govern all the possible solutions for such a propagating wave.  For example, if the system is non-reactive, these equations can be used to determine the jump conditions through a normal shock wave. In the more general case of a combustible mixture, however, chemical reactions can occur within the propagating wave and other solutions exist. Depending on the conditions, such a wave might propagate as a subsonic deflagration (i.e. a premixed laminar flame) or supersonically as a detonation wave.   
Detonation Wave (Supersonic)

Deflagration (Subsonic, Premixed Laminar Flame)

This chapter deals exclusively with weak deflagrations (i.e. premixed laminar flames).   Detonations are covered in Chapter 14 of Law.

2. Phenomenological Description of Premixed Laminar Flames

In this chapter, we will be considering in detail a 1-D steady, planar propagating laminar flame (i.e. weak deflagration).  In flame-stationary coordinates, the system is shown below, in which the upstream mixture approaches the flame with a velocity of uu = suo and temperature of Tu, and leaves the flame with a veloicity of ubo and temperature Tbo: 

Assuming that the system is either fuel rich or fuel lean, its reaction will be governed by the mass fraction Y of the deficient reactant, which will go to zero downstream of the flame zone.  Upstream of the flame, the mass fraction of the deficient species is Yu and downstream the mass fraction is Yb=0.    

2.1 Premixed Laminar Flame Structure
The flame structure can be considered at three levels of detail.   
1. At the hydrodynamic level , the flame can be considered as simply and interface between the unburned and burned mixtures:

2.  Diffusive Transport Level. At the next level of sophistication the hydrodynamic flame sheet is expanded to reveal a preheat zone of characteristic thickness lDo which is governed by heat and mass diffusion, and an infinitesimally thin reaction zone:
In this level of sophistication, dT/dx and dY/dx have discontinuities at the infinitesimally thin reaction sheet.   Description of the premixed flame at the diffusive transport level is similar to that of the reaction sheet limit of a non-premixed flame, however, since we cannot prescribe stoichiometric requirements at the reaction sheet for a premixed flame, there is no way to solve this problem without considering the chemical reaction occurring within the flame zone!

3. Detailed Flame Structure.  The most detailed level of description the reaction sheet is expanded to reveal a finite reaction rate profile that occurs within a region that has a finite characteristic length, lRo << lDo.    
In the outer transport zone, convection and diffusion are present, but no reaction.  In the inner reaction zone, chemical reaction is present and diffusive transport, which is governed by d()/dx2 is more dominant than convective transport, which is governed by d()/dx.   
Returning to the figure above, we see that the premixed laminar flame structure can be considered to consist of two distinct zones:

In the preheat zone, convection and diffusion are present, but no chemical reaction.  In the reaction zone, reaction and diffusion are present, but convection is ignored. 
Formulating the conservation of mass for this steady, 1-D, planar system, we have:
(7.2.2)

where fo is the constant mass flux, which will be referred to as the laminar burning flux.  Note that the propagation velocity of the unburned mixture (i.e. suo = uuo) is what is measured and historically referred to as the laminar flame speed.  However, equation (7.2.2) rightfully suggests that the fundamental parameter the characterizes the rate of flame propagation is, in fact, fo. 
Assuming no heat loss, an energy balance across the flame from -∞ to  -∞ requires that:
(7.2.3)

This equation merely states that, in the absence of heat loss, all of the chemical heat liberated is used to heat the incoming gas from Tu to Tbo.   Moreover, Tbo is the adiabatic flame temperature:

(7.2.4)  
Without considering the internal structure of the flame, we have shown that the laminar burning flux, fo, is constant throughout the and we have shown that the flame temperature Tbo is the adiabatic flame temperature.   To determine the laminar burning flux, fo, and the flame thickness, lDo, one must consider the non-equilibrium processes of diffusion and reaction within the flame structure.   We will solve this problem with increasing mathematical rigor in the following sections.  

2.2 Phenomenological Derivation of the Laminar Burning Velocity

The overall dependence of the laminar burning flux on the diffusive and reactive properties within the flame zone can be determined with a simple phenomenological analysis described in this section.    Assuming no chemical reaction occurs in the preheat zone, the species equation for the deficient species results in the following:
Integrating from --∞ to the flame zone:

where the slope of the mass fraction at the flame front is approximately equal to (-Yu/ lDo).  Solving for the laminar burning flux results in the following:

(7.2.6)

Next, we note from an overall mass balance that the mass rate of delivery of the deficient reactant to the flame zone must be equal to mass rate of consumption within the flame zone:
(7.2.7)

where wbo is the reaction rate of the deficient species evaluated at T = Tbo.  Multiplying equations (7.2.6) and (7.2.7) and solving for fo results in the following:

(7.2.8)  

which shows the familiar result that the laminar burning flux is proportional to the square root of the reaction rate and thermal diffusivity.   

Equation (7.2.8) includes the ratio of the reaction zone thickness to the preheat zone thickness lRo / lDo .   As mentioned above, we expect this ratio to be << 1.   This can be shown as follows.  The characteristic temperature change across the reaction zone can be estimated as follows:
Next, since the slope of the temperature profile at the location separating the preheat and reaction zones must be equal, we have:

(7.2.5)
This result shows that lRo / lDo is on the order of the inverse of the Zeldovich number.   Recall from Chapter 5 that as Ze→∞, the reaction zone becomes infinitely thin.

With the definition of the Zeldovich number, the laminar burning flux can be approximated as:

(7.2.8)

In addition, since the laminar burning velocity, scales with the flame thickness and thermal diffusivity as follows:

Then, the flame thickness can be approximated as:

(7.2.9)

Equations (7.2.8) and (7.2.9) show that the laminar burning flux depends on both the reaction rate wbo and the transport properties /cp.   Also note that the burning flux for premixed flames has a weaker dependence on transport properties (square root) compared to the non-premixed flames, which vary linearly with the transport properties.

Lastly, from MECH 558 recall that the overall reaction rate varies with pressure and temperature as follows:

(7.2.12)

where  n is the overall order of reaction.   Combining (7.2.12) with (7.2.8) results in the following for the laminar burning flux:

(7.2.13)

and, in terms of the laminar burning velocity, suo, this equation becomes:

(7.2.14)

This equation shows for an overall second order reaction, the flame speed should be independent of pressure.   Typical values for flame speeds and flame thicknesses for hydrocarbons in air at 1 atm are as follows:

3.  Mathematical Formulation 

In this section we develop the governing equations for a 1-D, planar, propagating deflagration (i.e. premixed laminar flame), which we will subsequently attempt to solve with varying levels of complexity.

3.1 Governing Equations

Consider the following 1-D planar premixed laminar flame in flame-fixed coordinate system:

In dimensional form, the governing equations of mass, energy and dilute species:
(7.2.2)  
(7.3.1)

(7.3.2)

where:

note that the pre-exponential Bc can be treated as a constant, assuming that the mass fraction of the abundant species remains constant.

Next, we define the following non-dimensional parameters:

Non-dimensionalizing the energy equation, results in the following:

(7.3.4)

where, we have defined the collision Damkohler number as:

(7.3.6)  

After non-dimensionalizing the species equation, we can eliminate the reaction term by combining it with the energy equation as follows:

(7.3.5)

The boundary conditions for (7.3.4) and (7.3.5) are:

(7.3.7)

(7.3.8)

Also, since the temperature and species are constant at x = ±∞, then it is also evident that:

(7.3.9) 

Integrating equation (7.3.5) once, results in:

(7.3.10a)

Applying the boundary conditions at x =  -∞ results in:
(7.3.10)  

Evaluating (7.3.10) at x = +∞ results in:

(7.3.11)  

which is the equation for the adiabatic flame temperature.  It is interesting to note that, unlike the non-premixed case wherein the flame temperature deviated from the adiabatic flame temperature for non-unity Lewis number, for planar 1-D premixed flames the flame temperature does not vary with the Lewis number.   

If we make the further assumption of unity Lewis number, we can readily integrate (7.3.10) once more to yield:

but, since the solution has to be bounded as x→∞, then c1 must be equal to zero.  Therefore, for unity Lewis number flames, we have the result that:

(7.3.12)

This is a big deal, believe it or not, because this allows us to eliminate Y from the energy equation.   Returning to the energy equation:

(7.3.13)

Equation (7.3.13) is the equation that can now be solved subject to boundary conditions (7.3.7) to (7.3.9).    The left hand side of equation (7.3.13) represents diffusion and convection of thermal energy, the right hand side represents production of thermal energy from chemical reaction.   Note the behavior or the reaction term as a function of temperature:

The (Tbo – T) term represents the mass fraction of the dilute species, which decreases linearly with T and vanishes at Tbo.  The temperature sensitive Arrhenius factor, exp (-Ta/T) starts to rapidly increase only when T is close to Tbo.  The product of these two factors produces the thin reaction zone.

3.2 The Cold Boundary Difficulty

Before solving equation (7.3.13), an important mathematical property of this equation must be addressed.   Consider equation (7.3.13) as x→ -∞ 
As x→ -∞, both terms on the LHS or equation (7.3.13) vanish, but the RHS of the equation does not go to zero!   Rather, the RHS yields a finite value at x→ -∞ of -Dacoexp(-Ta/Tu), which makes sense physically because, even at room temperature, a fuel/air mixture would have some finite reaction rate.   Mathematically, however, a problem with (7.3.13) arises because, if chemical reaction were occurring at x→ -∞, the reactants would have an infinite amount of time to react…therefore no flame would exist!

Fortunately, the cold boundary difficulty can be readily handled mathematically, by imposing the chemical reaction term to be zero, below some arbitrary ignition temperature, Tig.  Mathematically, we state the ignition temperature as follows:
(7.3.14)   

In the following sections, we will present solutions to the premixed laminar flame using the Frank-Kamenetskii solution, followed by a more general approach using activation energy asymptotics.   

4.  The Frank-Kamenetskii Solution

For the Frank-Kamenetskii solution, we will separately solve the governing equations in the preheat zone (-) and the reaction zone (in) and apply some matching conditions between the two solutions.  Consider again the following schematic diagram for the steady, planar 1-D premixed laminar flame, where we define the origin (x=0) at the boundary between the reaction zone and equilibrium zone; and the boundary between the preheat zone and reaction zone at x  = xig, wherein T = Tig:

For this solution, we will return to the non-unity Lewis number formulation and solve equations (7.3.4) and (7.3.10)
(7.3.4)

(7.3.10)

In the preheat zone (-), T < Tig and therefore w = 0 and equation (7.3.4) becomes:

(7.4.17)

subject to boundary conditions:

(7.4.18)

Integrating (7.4.17) once and applying the boundary conditions at x = -∞, results in the following:

(7.4.19)

In the downstream equilibrium zone (+), the solution is known:

(7.4.20)
In the reaction zone (in), we assume that the convection term is negligible (dT/dx << d2T/dx2) and the energy equation (7.3.4) inside the reaction zone becomes:

(7.4.21)


Next, we formulate (7.3.10) inside the reaction zone by assuming that Yin ≈ 0 and Tin ≈ Tbo:

(7.4.22)

Integrating (7.4.22) once and applying the boundary conditions at the interface between the reaction zone and the equilibrium zone (Tin = Tbo, Yin = 0):

(7.4.23) 

Comparing equation (7.4.23) to (7.3.12) shows that, in the Frank-Kamenetskii solution (and asymptotic analysis solution in the subsequent section), we have retained the effect of the non-unity Lewis number on the flame.   Specifically, the non-unity Lewis number results in a modification of the deficient reactant mass fraction within the flame zone.  

Substituting (7.4.23) into equation (7.4.21), yields the following second order ODE that can be solved inside the reaction zone:
(7.4.25a)

Next, we do a little mathematical trick:

(7.4.24)

Substituting (7.4.24) into (7.2.25a) results in:

(7.4.25b)

Integrating from downstream conditions (+) to any arbitrary temperature inside the reaction zone (in), results in:

(7.4.25)

where the matching condition at the (in) and (+) interface requires that dTin/dx = dT+/dx = 0.  

Although, equation (7.4.25) is not easily integrated, we can simplify it further by noting that the reaction term (Tbo-Tin)exp(-Ta/Tin) results in a thin reaction zone such that Tig is much closer to Tbo than it is to Tu.  

In fact, we can define the small parameter, , as the difference between the ignition temperature and the equilibrium temperature as follows:
(7.4.27)

Substituting  into the exponential term:

(7.4.28)
where we note the definitions of the Arrhenius number and Zeldovich number:

Substituting (7.4.28) and (7.4.27) into (7.4.25):

(7.2.29)

The RHS of equation (7.2.29) can be integrated (by parts!) to yield the following:

(7.4.30)
Next, we evaluate (7.4.30) at the upstream boundary of the reaction zone (xig):

And, by definition, we have defined xig as the location in which the reaction term goes to zero, therefore at the upstream boundary exp(-Ze) → 0.   Therefore, evaluating (7.4.30) at the upstream boundary results in:

(7.4.31)

Recalling the solution to the temperature gradient in the preheat zone (7.4.19) and evaluating the slope at the matching location, xig :
(7.4.32)

Therefore, equation (7.4.31) becomes:

(7.4.34)

Recalling the definition of the collision Damkohler number in (7.3.4), equation (7.4.34) can be solved for the laminar burning flux:

(7.4.34a)

5.  Asymptotic Analysis of the Planar, 1-D Premixed Laminar Flame
The Frank-Kamenetskii solution required some physical arguments to support an assumption that the Arrhenius term in the reaction rate constant → 0 at the upstream boundary of the reaction zone.   Mathematically, however, there was little basis for this argument.   In this section, we introduce the mathematical treatment called activation energy asymptotic analysis in which the assumption of the chemical reaction term → 0 is a natural consequence of the mathematics.

5.1 The Distinguished Limit

The Frank-Kamenetskii solution relied on the concept that the reaction zone was much narrower than the preheat zone.   To formalize this argument, we should recognize that for a fixed amount of heat release, the key parameter that controls the thickness of the reaction zone is the activation energy of the chemical reaction:

…the higher the activation energy, the thinner the reaction zone!

To demonstrate this fact, consider the effect of increasing activation temperature Ta on reaction rate term:

For chemical reaction to be important in a chemically reacting flow system, the reaction term must be on the same order as the other terms (diffusion, convection, etc.) in the governing equations.   So, for simplicity, let us consider what must happen to this chemical reaction term so that it remains O(1) for cases of increasing activation temperature:

An increase in Ta leads to an exponential decrease in the magnitude of the exp(-Ta/T) term.  Therefore, in order for the reaction rate term to remain O(1), this requires that the collision Damkohler number must increase exponentially:
In the “distinguished limit” as Ta→∞ then DaC→∞, the latter occurring exponentially in Ta. 

To formalize this argument mathematically, lets assume that DaC varies exponentially as follows, where Tbo is the relevant characteristic temperature in the reaction zone:

Therefore, the reaction rate term can be expressed as:

Where, we have assumed that T is close to Tbo in the reaction zone and we recall the Zeldovich number as Ta/(Tbo)2.    So, for the reaction rate, w, to remain an O(1) quantity, as the Zeldovich number gets large, T→Tbo, which means that the reaction zone gets thinner.  In the limit as Ze→∞, the reaction zone collapses into a reaction sheet with T = Tbo.  
5.2 The Asymptotic Solution
Activation energy asymptotic analysis is based on the concept that for Ze→∞, there is a “leading order” solution for the preheat zone and equilibrium zone in which the reaction zone collapses to a reaction sheet.   For large, but finite Zeldovich number, the reaction sheet is broadened revealing an internal structure.   The internal structure modifies the preheat and equilibrium zone solutions by a small amount.  In asymptotic analysis, we therefore seek “perturbation” solutions which differ from the leading order solution by powers of small parameter  <<1:
Leading Order Solution (Ze→∞)



Asymptotic Solution (large Ze)

To develop the asymptotic solution, solutions are separately obtained in the three zones and then asymptotically matched, as described below.
5.2.1 The Upstream Preheat Zone.  For solutions of all orders, by definition, we will seek solutions outside the reaction zone in which chemical reaction is negligible.  In this case, the energy equation in the preheat zone becomes:

(7.5.1)

Subject to the boundary condition:

Since (7.5.1) is a second order ODE, we will require a second boundary condition.  This will be obtained later by matching conditions with the inner solution.  
As mentioned above, we will seek solutions for the preheat zone in the following form:

(7.5.2)

Substituting (7.5.2) into (7.5.1) and collecting the terms that are O(1), O(), O(2), etc. results in the following:

(7.5.3)

(7.5.4)

The latter boundary condition results from the fact that if To(-∞) = Tu, then T1(-∞) must be equal to zero.

Solutions to ODE’s (7.5.3) and (7.5.4) are readily determined:

(7.5.5)

(7.5.6)

where the constants co- and c1- need to be determine via matching with the inner solution.  
The species equation for the dilute species in the preheat zone can be written as follows:

(7.5.7a)
subject to the boundary condition:

Again, we seek solutions to the species equation in the preheat zone of the following form:

(7.5.7)

Substituting (7.5.7) into (7.5.7a) and collecting the terms that are O(1), O() and solving the two resulting differential equations for Yo-(x) and Y1-(x) results subject to the boundary conditions at x = -∞ result in the following:

(7.5.8)

(7.5.9)

where do- and d1- need to be determine via matching with the inner solution.

5.2.2 The Downstream Equilibrium Zone.   In the downstream equilibrium zone, we seek perturbation solutions for the temperature and dilute species as follows:
(7.5.11)

(7.5.16)

Generally speaking, one would follow the same procedure as that which was done in the preheat zone.   However, assuming that all of the dilute species is fully reacted and assuming that there is no heat loss in the downstream region (this is after all an adiabatic, premixed laminar flame solution), the perturbation solutions are simply:

This result suggests that, in the absence of heat loss, the presence of an inner flame zone structure does not perturb the downstream solution.

5.2.3  The Inner Reaction Zone.  Since the reaction zone is exceedingly thin, to adequately resolve the inner zone structure, the spatial coordinate is magnified or “stretched” by defining a stretched inner variable as follows:
(7.5.19)

The solution to the inner reaction zone will assume the following form:

(7.5.20)

(7.5.21)

where o and o are the leading order solutions and o() and 1() are the perturbation solutions.  The boundary conditions necessary to solve the inner solution are based on matching conditions with the preheat and equilibrium zones, respectively
5.2.4 Matching.  To match the inner and outer solutions at the downstream boundary of the reaction zone, we let →∞ for a fixed x >0 as →0 and match the inner and outer solutions under those conditions.  The downstream matching conditions for the energy equation are as follows:
(7.5.22)

(7.5.24)
Equation (7.5.24) results in the following matching requirements:

(7.5.26a)

(7.5.26)

(7.5.27)

The downstream matching conditions for the species equation are as follows:

(7.5.23)

(7.5.25)

Equation (7.5.25) results in the following matching requirements:

(7.5.28a)

(7.5.28)

(7.5.29)

Next, we perform the upstream matching.  First, we express the outer solutions for the species and energy equations in terms of the inner variable,   and then apply matching at x << 1 which corresponds to the upstream boundary.   The energy equation at the upstream boundary can be expressed as:
(7.5.30)

Similarly, the species equation at the upstream boundary can be express as:

(7.5.31)

Next, we apply matching between the outer solution and inner solution at the upstream boundary by letting →0 for a fixed x < 0, which results in →-∞.  The upstream matching conditions for the energy equation are therefore:
(7.5.32)

(7.5.34)

Collecting the leading order terms results in:

(7.5.36a)

Collecting the O() terms results in:

(7.5.36)

(7.5.37)

The upstream matching conditions for the species equation are therefore:

(7.5.33)

(7.5.35)

Collecting the leading order terms results in:

(7.5.38a)

Collecting the O() terms results in:

(7.5.36)

(7.5.37)

5.2.5  Structure Equation and Solution.  We are now ready to solve for the inner solution andTo do this, we substitute the perturbed inner solutions for temperature (7.5.20) and mass fraction (7.5.21) into the “coupled” species-energy equation (7.3.10):

(7.5.20)

(7.5.21)

(7.3.10)
In the stretched inner coordinate system, equation (7.3.10) becomes:
Therefore, to O(), the inner solutions for species and energy must satisfy the following equation:

(7.5.40)

Equation (7.5.40) already satisfies the gradient boundary conditions at →±∞.  Integrating equation (7.5.40) once and applying the boundary conditions at (∞) and (∞) = 0 results in the following equation, which is the perturbed local coupling function in the inner region:
(7.5.41)

Equation (7.5.41) shows how the temperature and dilute species are related within the inner zone.  However, we still need to return to the energy equation to include the effect of the chemical reaction term.   Accordingly, we substitute Tin from (7.5.20) into the LHS of the energy equation (7.3.4) and eliminate Yin from the RHS using (7.5.41):

(7.3.4) 

(7.5.42)

Note that the convection term is O(), which shows that we can neglect it for small .  Although the reaction term has a multiplicative factor of 2, we cannot neglect it.  Rather, we say that the remainder of the reaction term must be O(-2).  Lastly, we note that in order for our reaction term to be effective, we need Ze to be O(1).   This, in fact, results in a logical choice for our small parameter of expansion,  as follows:

(7.3.43)

So, by neglecting convection in (7.5.42) and with our small parameter  equal to the 1/Ze, our energy equation in the inner reaction zone is of the form:

(7.5.44)

where:

(7.5.46)

Using the same mathematical trick that we used for the Frank-Kamenetskii solution, equation (7.5.44) becomes:

(7.5.46)

Integrating (7.5.46) results in:

(7.5.47)

Applying the boundary conditions →∞, where 1 = d1/d = 0, results in cin = o:

(7.5.48)
Finally, we evaluate (7.5.48) at →-∞:  

(7.5.50)

Which results in the following solution:

(7.5.51)

Which is identical to the Frank-Kamenetskii solution.  

HW:  Chapter 7, problems 4, 6 and 8.

6.  Experimental Determination of Laminar Flame Speeds
The Laminar Burning Velocity, suo, is a fundamental property of all flammable gas mixtures.   However, measurement of this fundamental parameter is quite difficult because all experiments deviate from the purely 1-D, adiabatic, doubly infinite domain that constitutes the true laminar burning velocity.  But, many experiments have been developed that attempt to measure flame speed.  The experimental techniques can be broadly classified as propagating flame vs. stationary flame techniques.

Measuring the flame speed is difficult for several reasons:

1.

2.

3. 

4.
There are several ways to experimentally determine laminar flame speed.  However, each of the methods has its own strengths and weaknesses.  Methods of measurement include:  Bunsen Burner, Flat Flame Burner, Spherical Bomb Method, Stagnation Flame Method.

6.1 Bunsen Burner Method

In this method, the flame speed can be approximated by dividing the measured volume flow rate by the area of the flame.








(7.6.1)
This method is pretty simple, although not very accurate, since the flame is curved, resulting in a flame speed which actually varies along the flame front.  Furthermore, accurate determination of the flame front area, Af is difficult.    
If an aerodynamically contoured nozzle is used, to produce a roughly constant uo, then a nearly straight cone is produced and the half cone angle, u can be used to define the flame speed. 








(7.6.2)

If laser Doppler velocimetry (or particle image velocimetry) is used to measure the velocity along the flame front, it is possible to measure the local flame speed upstream of the flame.   The unburned velocity along the flame front, su, is constant along much of the flame front, but decreases at the burner rim due to heat loss and approaches uo at the centerline.
6.2 Flat Flame Burner Method    

The problem of the curved flame front can be alleviated by constructing a flat flame burner.  In this device, the flow is passed through a cooled, porous plug.  The result is a completely flat flame:

However, the flame is actually stabilized by the heat loss to the burner rim.  Therefore the flame temperature is not Tbo and the flame speed is not the fundamental adiabatic flame speed.  A plot of temperature through the flat flame burner flame zone vs. an adiabatic flame shows this result clearly:

The adiabatic laminar flame speed, suo, can be determined experimentally running the experiment with various cooling water flow rates and extrapolating the following curve back to zero heat loss:

6.3 Spherical Bomb Method

Another way to measure flame speed is to ignite a mixture in an enclosed spherical vessel of radius, R, as shown below:

The problem with this method is that the expanding flame actually compresses the unburned gas such that the pressure and density of the unburned gas varies with time.  By assuming that the unburned gas is compressed isentropically, it can be shown that the instantaneous flame speed, sL(t) is given as:

Where the flame radius rf(t) and pressure in the vessel p(t) are measured during the experiment and  is the ratio of specific heats of the unburned mixture.  The nice thing about this experiment is that you can get flame speed as a function of unburned temperature and pressure in a single experiment.
6.4 Stagnation Flame Method

Arguably, the most accurate means of measuring flame speed is the stagnation flame method.  In this method, two identical combustible flow streams are impinged upon each other as shown.  In this case, a flat flame results because of the stagnation flow field.  In stagnation flow, the velocity along the center line is plotted on the left:







Velocity along center line
The plot of the center line velocity as a function of position shows that initially the velocity decreases as expected due to the stagnation flow field (u = a x).  It then increases as it enters the laminar flame preheat zone and then decreases again as it approaches the stagnation surface.   In this case, the min and max velocity are su and sb, respectively.
In this configuration (as compared to the flat flame burner), heat loss is minimized.  However, the measured flame speed varies as a function of the imposed stagnation velocity gradient, a, because of a phenomenon called flame stretch.  Therefore, to measure the fundamental laminar flame speed, suo, a plot of flame speed vs. stretch rate, a,is extrapolated back to zero stretch rate: 

