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Objectives
· Formulate the 1-D non-premixed chambered flame using the coupling function and reaction sheet methods.
· Formulate the Burke-Schumann flame solution using the coupling function method.

· Formulate the 1-D Stefan flow vaporization solution.

· Formulate the d2-law of droplet vaporization to solve for the vaporization rate of a liquid droplet.

· Formulate the d2-law of droplet combustion to solve for the burning rate and flame standoff ratio of burning droplet.

· Formulate and solve the 1-D counter flow flame.

1. The Structure of a Nonpremixed Flame
In a nonpremixed flame, the fuel and oxidizer are separated until they meet at the reaction zone.  Most combustion systems are nonpremixed.  Examples include wildfires, cookstoves, candles, diesel sprays, and burning metal particles when a metal surface is ablated.  The structure of a nonpremixed flame therefore consists of the following three zones:
In such a system, fuel is transported from the fuel rich side via diffusion and/or convection; oxidizer is transported from the oxidizer rich side via diffusion and/or convection and the fuel and oxidizer become heated and mix and react within the reaction zone a shown schematically below:

In general, as shown above, there is always leakage of fuel and oxidizer (and or fragments thereof in the case of multi-step chemistry) through the reaction zone.   However, as Da →∞, the reaction zone becomes infinitesimally thin and the fuel and oxidizer mass fractions go to zero at the flame front as shown below:
In the presence of finite rate kinetics, the reaction sheet broadens and reactants leak through the reaction sheet.  However, even in this case, many problems are still “diffusion controlled” such that the bulk combustion characteristics can be adequately modeling using the “reaction sheet limit”.    In situations where the reactant leakage becomes too severe, the flame temperature drops and extinction occurs.  In this chapter, we will confine our study to the reaction sheet limit.

2.  The One-Dimensional Chambered Flame

To illustrate the physical phenomena occurring in a nonpremixed in a geometrical configuration that is mathematically simple, we consider a 1-D Cartesian “chambered flame”. Such a flame is nearly impossible to obtain in real life, by the way.  In this system, we have fuel flowing from a porous wall at x=0 and oxidizer flowing from a porous wall at x=l. A The fuel and oxidizer meet at a reaction sheet located at x = xf.  For simplicity, we assume that there is no net flow through the chamber (i.e. v = 0).  Consider the following system:
(6.1.1)

2.1 Coupling Function Formulation

We begin by solving this problem using the coupling function formulation.   Assuming unity Lewis number, steady state, and v = 0, the governing equations (5.4.17) and (5.4.19) can be formulated for this system as follows:

Note that if cp = constant, then the normalized sensible enthalpy is equivalent to the normalized temperature, and therefore defined our coupling function as:

In 1-D Cartesian coordinates, these equations become:

(6.1.2)
(6.1.3)
Equation (6.1.2) is a 2nd order homogeneous ODE, which has the following solution, obtained by integrating equation (6.1.2) twice:
(6.1.4)

Note that each coupling function i has its own unique integration constants, which can be obtained by applying the boundary conditions (6.1.1) at x = 0 and x = l.  For example:

(6.1.5)

where x has been non-dimensionalized by the length, .  Similarly, for the oxidizer the coupling function is:

(6.1.6)

Note that these coupling functions are valid everywhere in the flow field and we have yet to say anything about the reaction, so at this point they are valid for a finite reaction rate wF.    
Next, we apply the reaction sheet approximation, whereby the fuel and oxidizer go to zero at the reaction sheet x = xf: 

(6.1.7)

Applying these conditions to (6.1.6) and (6.1.7) results in the following:

(6.1.8)

(6.1.9)

These equations represent the temperature profiles upstream and downstream of the reaction sheet, respectively, as shown below.   As the equations suggest, for the chambered flame, the temperature profiles are linear:
Note that we don’t actually know the flame location, xf, yet!

Next, we can substitute (6.1.8) into (6.1.5) and (6.1.9) into (6.1.6) to solve for the fuel and oxidizer mass fractions, respectively:
(6.1.10)

(6.1.11)

Finally, we can solve for the location of the flame by setting YF=0 in equation (6.1.10):

(6.1.12)

Note that by redimensionalizing this shows how the flame position will adjust based on the stoichiometry of the system.  Specifically, the flame location is pulled toward the reactant with lower stoichiometric mass fraction:
2.1.1 Flame Temperature.  For the chambered flame, we can calculate the flame temperature by evaluating (6.1.8) at the reaction sheet and substituting (6.1.12) in for the flame position:

(6.1.16a)

2.1.3 Fuel Consumption Rate.   The fuel consumption rate is equal to the mass flux of the fuel:
(6.6.17a)

2.1.4 Product and Inert Mass Fractions.  It is also possible to solve for the product and inert distributions.  Noting that the product mass fractions equal zero at both the fuel and oxidizer sides (YP = 0 at x = 0 and x= l), the coupling function for the products can be found as follows:
(6.1.19)

The mass fraction of the inert can be solved for noting that it does not participate in the reaction at all.   Therefore, the species equation for the inert has no reaction term and, for the case of the 1-D steady chambered flame, the inert species equation becomes:

(6.1.20)

This equation is valid throughout the entire flow field.   Integrating this equation twice and applying the boundary conditions:

Results in the inert mass fraction profile:

(6.1.22)

Example 3.1  For a chamber flame that consists of 100% methane on the fuel side and air on the oxidizer, with a chamber length of 25 cm, calculate the fuel, oxidizer mass fraction profiles and the temperature profile.   Re-calculate for an oxidizer mixture of 10% O2/90% N2 and 30%O2/70% N2.

2.2 Reaction Sheet Formulation

The problem with the coupling function solution for the chambered flame is does not work for situations with non-unity Lewis number and convection v ≠ 0.  For these situations, however, it is possible to solve the problem using the reaction sheet formulation using the following technique:
Methodology:

i)

ii)  

To demonstrate this approach, we will re-solve the unity Lewis number, v=0 problem of section 2.1 for simplicity.  But, this approach works for non-unity Lewis number and convection.  (See HW problem 2 in Law).  The governing equations for the non-reacting zones upstream and downstream of the reaction sheet are:

(6.1.23)
(6.1.24)

These equations can be readily integrated subject to the following boundary conditions to yield:

(6.1.25)

(6.1.26)

(6.1.27)

(6.1.28)

Note that we have shown that the temperature and mass fraction distributions outside the reaction zone are linear, but we have not yet solved for the flame location, xf or flame temperature Tf.  To complete the solution, we apply the jump relations at the reaction sheet:

(6.1.29)

(6.1.30)

Evaluating the derivatives of (6.1.25) and (6.1.27) and applying matching condition (6.1.29) results in the following solution for xf:
(6.1.12)

Similarly, we can evaluate the derivatives of (6.1.25), (6.1.26) and (6.1.28) and apply matching condition (6.1.30) to evaluate Tf:
(6.1.16b)

Substituting (6.1.12) into (6.1.16b) yields:
(6.1.16a)

HW:  Problem 2, Chapter 6, Law.   Due:
3. The Burke-Schumann Flame

The Burke-Schumann flame is a non-premixed flame that is developed from the steady state co-axial flow of a fuel and oxidizer as shown schematically below.  The flame is of historical significance because Burke and Schumann used this configuration to develop the first detailed analysis of non-premixed flames.   As shown in the diagram below, depending on the flow conditions and stoichiometry, the reaction sheet can be either closed at the tip (overventilated flame) or open (underventilated flame):

In this section, we will develop the solution for a 2-D, Cartesian slot burner type Burke-Schumann flame.   The solution for the 2-D annular case is governed by the same physics, but is mathematically more difficult.   

The presence of the outer walls results in the u component of the velocity to be negligible in comparison to the v component of the velocity.   Under these conditions, the steady state conservation of mass becomes:

(6.2.1)

Equation (6.2.1) implies that v is only a function of x.  

If, however, we impose the restriction that inlet mass flux of the oxidizer is equal to the inlet mass flux of the fuel, then we get the even simpler result that:

(6.2.2)

Here, we will solve the Burke-Schumann slot burner problem given (6.2.2), along with the assumptions of unity Lewis number using the coupling function formulation.   Under these conditions the species-temperature coupling function equation becomes:

(6.2.3)

With v= constant and /cp = constant, this equation becomes:

(6.2.4a)

Next, we non-dimensionalize the x and y variables by the outer slot radius xout, resulting in:

(6.2.4)

Where, we have defined a new dimensionless number called the Peclet number.   The Peclet number is a ratio of convective velocity to diffusive velocity:

The physical domain and associated boundary conditions for equation (6.2.4) are shown schematically below:
A solution to the differential equation (6.2.4) can be found using separation of variables:
(6.2.10)

Substituting into (6.2.10) into (6.2.4) yields:

(6.2.11)

Since the LHS is only a function of x and the RHS is only a function of y, both sides must be equal to a constant, which we will call –k2.  This results in 2 ordinary differential equations:

(6.2.12)

(6.2.13)

The solution to (6.2.12) is:

(6.2.14)

The solution to (6.2.13) is:

(6.2.15)
The constant c3 must be 0 due to symmetry requirements at x=0.   The constant d1 must be 0 so that the solution remains bounded as y→∞.   Based on these arguments, the solution i takes on the functional form:

(6.2.16)

Next, we impose the adiabatic and nonpermeable conditions at x = 1:

Therefore sin(k) must be 0, which implies that k must be equal to n for n = 0,1,2,3…   Therefore, a general form of the solution must be:

(6.2.17)

To determine the coefficients cn, we impose the known boundary conditions for fuel, oxidizer and temperature at y = 0.

(6.2.19)

(6.2.20)

The series solution (6.2.17), evaluated at y=0 is:

(6.2.18)

Starting with the F coupling function, we can use the boundary conditions (6.2.19) to solve for the coefficient co for the fuel by integrating from x = 0 to 1:

Since the second term on the RHS of the equation above is equal to zero, we can solve for co:

(6.2.21)

It is possible to solve for the rest of the coefficients, cn, by multiplying F by cos(mx) and integrating from x = 0 to 1 to obtain:

(6.2.22)

This results in the final solution for F, which is:

(6.2.23)

Similarly, it can be shown that O is given by:

(6.2.25)

So, we now have solved for the fuel and oxidizer coupling functions, which are valid everywhere in the flow.   To determine the flame temperature and flame location, we apply the reaction sheet approximation by setting T = Tf,, YF = 0, YO = 0, x = xf and y = yf in equations (6.2.23) and (6.2.25):
(6.2.26)

(6.2.27)

These two equations can be used to evaluate the flame temperature and flame location.    To evaluate the flame location, you can subtract the two equations, resulting in:

(6.2.28)

Where * is equal to:

This equation provides the coordinates (xf, yf) of the reaction sheet position and how they change depending on the Peclet number, slot radius (xin) and stochiometry (YF,O/YO,o).   

By eliminating the Gn term from the two equations, we obtain the familiar equation for the adiabatic flame temperature (identical to that which was found for the chambered flame!):

(6.2.29)

which can be re-written as:
(6.2.31)

which is identical to the 1-D chambered flame.  Thus, the flame temperature is again the adiabatic flame temperature and is independent of the system flow field as characterized by the Pe number.

Lastly, to determine the critical conditions at which transition occurs from an overventilated flame to an underventilated flame, let yf→∞ in equation (6.2.28).  As yf→∞, Gn→0, resulting in:

(6.2.30)
4.  The Stefan Flow Problem

For the Burke-Schumann flame, the convection term v is specified as an input to the problem based on the flow rate of the gaseous fuel and oxidizer species.   In problems involving gasification of a condensed fuel (e.g. evaporating liquid, gasifying solid fuel in a hybrid rocket motor, etc.) the convection is not externally imposed, but rather is generated by the gasification (i.e. evaporation) process.   This convection is called Stefan flow; examples include:

In these situations, vaporizing fuel continuously moves from the surface to the ambient causing a net transport of mass.

Since the fuel source in many non-premixed flames are initially present in the condensed phase (liquid droplets/sprays, wood, char), these problems are very relevant to nonpremixed combustion.   Before moving on to the droplet evaporation problem, we begin in this section by looking at the 1-D evaporation of a liquid species 1 (water, for example) into a chamber of height, l, filled with a mixture of species 1 and a non-condensable species 2 (air, for example):

Schematic Diagram





At the surface of the liquid pool (x=0), the boundary conditions for the gas phase as specified as:

Where Y1 is the gas phase mass fraction of the evaporating species and To the surface temperature. 

At the top of the chamber, we assume that a constant breeze fixes the gas composition so that it is constant and equal to that of the environment.   The boundary conditions at x = l are thus:

In 1-D, Cartesian coordinates, the steady state conservation of mass requires:
(6.3.1)  

Thus, the conservation of mass requires that u = constant = f everywhere in the gas phase.  Unfortunately, we cannot solve for f without solving the entire problem.  In fact, f is the mass evaporation rate of the liquid, so this is the major goal of solving this problem:

We begin by formulating the species equation in the gas phase of the chamber, assuming no chemical reaction:

since u= f = contstant, we can pull this term out of the derivative:

(6.3.2)

Note that since there is no chemical reaction anywhere in this problem, we can use the actual mass fractions (as opposed to the stoichiometrically weighted non-dimensional mass fractions).  Also, note that since this is only a binary system the binary diffusion coefficient is uniquely defined and Di = D.
Integrated (6.3.2) once yields:

Note, that the equation above is valid for both species i = 1 and 2.   Moreover, the left hand side of the equation is, by definition, the total mass flux (convective + diffusive) for each species, i.  Therefore the integration constant is simply fi: 

(6.3.3)

Next, we formulate (6.3.3) for the evaporating component 1:

(6.3.3a)

and the non-condensable species 2:

(6.3.3b)

Since species 2 is assumed to be insoluble into the liquid, its mass flux f2 must be equal to zero everywhere in the gas phase at steady state.  

(6.3.4)

Resulting in the final form for the species equation for the non-condensable species:

(6.3.5)

Moreover, since f2 = 0 everywhere in the gas phase, then total mass flux f, is equal to the mass flux of species 1, f1:

Therefore, the species equation for the evaporating species (6.3.3a) becomes:

(6.3.6)

This equation can now be solved to calculate Y1(x).   Note that, since Y1+Y2 = 1, once we calculate Y1(x), we also know Y2(x) = 1 – Y1(x).  Thus far, it is interesting to note that we have NOT assumed D = constant and equation (6.3.6) would be valid even if D were to vary with x due to, for example, T = T (x).   

To facilitate integration of equation (6.3.6), however, we will assume that D =  constant, which is not a bad assumption for an evaporating liquid in the absence of chemical reaction (i.e. T does not vary that much with x). Integrating (6.3.6) with the assumption of constant diffusivity:

(6.3.7a)

Which can be rewritten as:

(6.3.7)

Where we have defined Bm,v as the transfer number for evaporation:

(6.3.8)

Equation (6.3.7) shows that the vaporization flux, f, increases with increasing diffusivity and decreasing chamber length.   Note that if Y1,l < Y1,o then the mass flux is away from the liquid surface (i.e. evaporation).   If, however Y1,l > Y1,o, then the result is still valid, but the flux is toward the surface (i.e. condensation).

The problem is still not completed solved, however, since we do not know Y1,o.  We will later use the concept of vapor-liquid equilibrium to determine Y1,o = Y1,o(To), but since we generally don’t know To either, let us consider the energy equation in the gas phase.  Assuming constant cp, the energy equation can be written as follows:
(6.3.10)

Note the similarity to the species equation (6.3.2).  Integrating (6.3.10) once:

(6.3.11)

An energy balance at the liquid surface can be performed to evaluate the integration constant in (6.3.11).  

If we ignore the heat transfer into the liquid surface, then all of the heat conducted to the liquid surface is used to vaporize a certain amount of liquid:

(6.3.12)

Evaluating (6.3.11) at the surface, along with the information supplied by (6.3.12) results in the following equation, which can be integrated:

(6.3.13)

Equation (6.3.13) can be integrated from x = 0 to l, along with the boundary conditions at those locations, resulting in:

(6.3.14)

Where, we have now defined a second transfer number, which is a heat transfer number for vaporization:

(6.3.15)

Note that we have now independently derived TWO equations for the mass evaporation rate, f.  Thus, (6.3.14) and (6.3.7) must result in the same answer.   Moreover, with unity Lewis number this requires that Bh,v = Bm,v:

(6.3.16)

Solving for Y1,o results in:

(6.3.17)

Note, however, that we still do NOT know the surface temperature To.   To solve for the surface temperature we invoke vapor-liquid equilibrium at the vapor-liquid interface, which provides a relationship between To and Y1,o
4.1 Vapor-Liquid Equilibrium

The gas phase mass fraction of the species 1 at the vapor-liquid interface is a function of the liquid surface temperature, To.  This result is a consequence of assuming equilibrium between the vapor and liquid phase of species 1 at the surface.   Assuming vapor-liquid equilibrium at the surface, the partial pressure of the vaporizing species is equal to its saturation pressure at that temperature:







(6.3.19a)

For many vaporizing liquids of interest, analytical expressions (theoretical, empirical, semi-empirical) exist for the saturation pressure vs. temperature.   One such expression is the Clausius-Clapeyron equation:

(6.3.19)

where Tb,n is the boiling point of the liquid at the reference pressure Pn.  

Assuming that the gas phase component of the vaporized species behaves as an ideal gas, the partial pressure of that component is directly related to the mole fraction:

(6.3.20a)

where P is the total pressure.   

Combining (6.3.20a) with (6.3.19), we now have an expression for the gas phase mole fraction of species 1 as a function of liquid surface temperature To:

(6.3.20)
And, converting from mole fraction to mass fraction, yields an expression for the gas phase mass fraction of species 1 at the surface:
(6.3.20b)

Equation (6.3.20b) can be solved iteratively along with equation (6.3.17) to solve for Y1,o and To.  

5. Droplet Vaporization and Combustion
In many processes, it is desirable to gasify and combust a given mass of liquid in gaseous medium as fast as possible.   Since the heat and mass exchange rates between the liquid and gas phase are a function of the interfacial surface area, it is advantageous to break the liquid up into small droplets (this process is called atomization).   In most processes the atomized liquid droplets will vaporize completely upstream of an combustion process; under some circumstances, a flame might envelope a single droplet or group of droplets:
The problem of droplet gasification is a two-phase flow problem, which involves four interacting processes: liquid phase transport, phase change at the liquid-gas interface, gas phase transport and chemical reactions in the gas phase.   In this section, we will solve the simplified problem of spherically symmetric gasification of a liquid droplet, called the d2-law of droplet vaporization and combustion.
Assumptions of the d2-law:
1.  The droplet acts as a source of single component fuel vapor.   For now, we ignore heat and mass transfer inside the droplet.

2. Sphere symmetry.   No natural or forced convection.

3. Quasi-steady assumption.   Droplet surface regression rate and surface temperature change much slower than gas phase transport processes.

5.1 d2-Law of Droplet Vaporization
We begin by considering the vaporization of a spherical droplet in an infinite gaseous medium in the absence of any chemical reaction as shown below:

where rs is the radius of the vaporizing droplet, T∞ the ambient temperature, Y1,o the gas-phase mass fraction of the fuel at the droplet surface, Ts the droplet surface temperature and Y1,∞ the mass fraction of fuel in the ambient.  

The problem is analogous the previous vaporization problem, but in the spherical coordinate system the cross sectional area of the flow field, 4r2 continuously increases in the flow direction, r.  The conservation of mass for the gas phase surrounding the liquid droplet is:
(6.4.1)

The species equation for the vaporizing fuel in the gas phase surrounding the droplet is:

(6.4.2)

Recognizing that the conservation of mass requires that r2u is a constant:

(6.4.2a)

Next, we non-dimensionalize the distance and mass flow rate as follows:

which results in the following differential equation for the fuel species:

(6.4.2b)

Equation (6.4.2.b) can be integrated twice, along with the boundary conditions  Y1,o and Y1,∞ to determine the variation in fuel mass fraction as a function of distance:
(6.4.3)

Next, we can find the vaporization rate, mv, by recognizing the definition of the total flux of species 1:

But, since species 1 is the only species evaporating, then the mass flux of species 1 is the total mass flux:

(6.4.4a)

And, non-dimensionalizing (6.4.4a) yields:

(6.4.4)

This equation can be integrated from the droplet surface to infinity:

Resulting in the following:

(6.4.5)

Where Bm.v is the familiar mass vaporization transfer number.  Re-dimensionalizing the system, results in the equation or the mass vaporization rate of a liquid droplet:
(6.4.5a)

It can also be shown by starting with the energy equation that:

(6.4.7)

Where the heat transfer number for vaporization Bh,v is given as:

(6.4.8)

Note that, once again, Bh,v = Bm,v and since these transfer numbers are independent of geometry, the same technique can be used to iteratively solve for Ts and Y1,s.  

Expressing equation (6.4.7) in dimensional form yields:

(6.4.9)

This equation suggests that the total mass flow rate increases with increasing droplet radius, rs.  
Equation (6.4.9) can also be used along with the conservation of mass of the liquid droplet to determine the instantaneous droplet radius as a function of time for an evaporating droplet.  Conservation of mass of the liquid droplet requires the following:
(6.4.11a)

Assuming that the density of the liquid droplet (l) is constant, the mass of the droplet at any instant in time is:

(6.4.11b)

Substituting (6.4.11b) into (6.4.11a) results in:

(6.4.11)

Substituting (6.4.9) into the RHS of (6.4.11) and massaging the LHS results in the following:

(6.4.13a)

Which can be re-written as

(6.4.13)

Which is the famous d2 law for an evaporating droplet.   The RHS of (6.4.13) is called the evaporation constant, Kv, which suggests that the ds2 varies linearly with time for an evaporating droplet, which is what is observed experimentally.

Integrating equation (6.4.13) starting with the initial conditions of ds = ds,o at t = 0 yields the equation for the instantaneous droplet diameter for an evaporating droplet:

(6.4.14)

Example 3.2  Calculate the evaporation rate for a 1 mm methanol droplet evaporating in dry air at 300 K and calculate the total time necessary for complete evaporation.   Note: Ts does not necessarily equal 300 K.
HW: Complete Example 3.2.               Due:   
5.2 The d2 Law of Droplet Combustion

We now consider the case of the spherically symmetric combustion of a single isolated droplet in an infinite oxidizing medium.   In the absence of forced or natural convection, the gas phase surrounding the droplet represents a spherically symmetric system and, after ignition, a spherically symmetric flame will develop around the liquid droplet as shown below:

From the perspective of the droplet itself, the problem is virtually identical to the vaporization problem of the previous section, but the flame provides an additional heat source that increases the droplet vaporization rate.  Moreover, the location of the flame radius needs to be determined since the flame location will affect the rate of heat flux supplied to the droplet surface.  

Before solving the problem, a sketch of species and temperature profiles as a function of radius in the gas phase surrounding the droplet is provided here:

In this section, we will solve for the d2 law of droplet combustion using a coupling function formulation.   We begin with the conservation of mass for the gas phase, which yields a constant mass burning rate, mc.  

(6.4.17)

This equation shows that, at steady state, the evaporation rate at the droplet surface is equal to the fuel consumption rate at the flame.

The species-enthalpy coupling function (i = T+Yi) equations for this system are as follows:

(6.4.18)

Note that this formulation requires Le=1.   Assuming constant properties, and defining a non-dimensional mass burning rate and non-dimensional radius as follows:

We can non-dimensionalize (6.4.18) as follows:

(6.4.19)

Integrating equation (6.4.19) once yields:

(6.4.20)

Integrating a second time yield (show!):

(6.4.21)

The integration constants c1,i and c2,i can be evaluated by applying the boundary conditions at the droplet surface and infinity.
At infinity:

At the droplet surface:

where:

The boundary conditions at the surface and infinity to equations (6.4.20) and (6.4.21) results in the following solution for the coupling functions for the oxidixer and fuel, respectively:
(6.4.24)

(6.4.25)

Note that we have not yet invoked the reaction sheet limit, so these equations are still valid for single step, finite rate chemistry.   
To determine the mass burning rate, we invoke the reaction sheet limit:

(6.4.26)

Applying these conditions to (6.4.24) and (6.4.25) results in the following equations for the mass burning rate, flame radius and flame temperature:

(6.4.28)

(6.4.29)

(6.4.30)

Where we have introduced the heat transfer number for combustion, Bh,c, as:

(6.4.31)
Some notes on equations (6.4.28) to (6.4.21):

Example 3.3  Show that both the fuel mass fraction profile and temperature profile have inflection points at some location between the droplet surface and the flame, for quasi-steady droplet combustion

HW:  Law, Ch. 6, Problem 15, and complete Example 3.3


Due:
Equations (6.4.28) to (6.4.31) cannot be completely solved unless you know the droplet surface temperature.   To solve for the surface temperature, a similar procedure can be employed to that which was used for the pure vaporization case.  First, we evaluate the fuel-enthalpy coupling function solution (6.4.25) at the droplet surface, resulting in:

(6.4.32)

Equation (6.4.28) can be used to eliminate the mass burning rate from (6.4.32), resulting in:

(6.4.32a)

This equation provides a relationship between Yf,s and Ts, which can be solved iteratively along with the Clausius-Clapeyron equation (or other vapor-liquid equilibrium equation):

( 6.4.32b)  
Alternatively, for droplet combustion (as opposed to droplet vaporization!), the following assumption is often used for the droplet surface temperature in evaluating the mass burning rate, flame temperature and flame position for the d2-law:
(6.4.33)

This assumption works fairly well because the droplet surface temperature does indeed heat up to a temperature close to its boiling point and Tf >>Ts so that the d2 law predictions are not that sensitive to Ts.  

Note, however, that the assumption of Ts = Tb, results in the following (by definition):

which cannot be correct (why?) and falsifies that actual vapor-liquid equilibrium process at the surface.

5.2.1 Droplet Burning Rate Constant.  The final step in the d2 law analysis is the calculation of instantaneous droplet diameter given the mass burning rate.   Mathematically, the process is the same as that employed for the droplet vaporization case, but there is one key assumption that is being made in this case:
(6.4.36)
Specifically, the d2 law assumes that the instantaneous rate of gasification at the droplet surface is equal to the rate of fuel consumption at the flame.   In reality, even during quasi-steady droplet combustion, experiments show that this is not necessarily the case.   Rather, experiments show that early in the droplet lifetime vapor accumulates between the droplet surface and flame.  

But, continuing with this assumption, conservation of mass of the gasifying liquid droplet results in the following formulation for the time rate of change of liquid droplet mass:
(6.4.39a)
The mass burning rate in dimensional form is:

(6.4.39)

Equating (6.4.39a) with (6.4.39) results in the following:

(6.4.40)

with the RHS of (6.4.40) being the negative of the droplet burning rate constant:

(6.4.41)

Therefore, as was the case in droplet evaporation, the d2 law of droplet combustion results in the following prediction for droplet diameter vs. time:

The total burning time of a liquid droplet is therefore predicted to be:

(6.4.43)

Lastly, we can use equation (6.4.40) to evaluate the quasi-steady assumption:
So, evaluating this problem with the quasi-steady assumption is pretty good.  In summary, the d2-law of droplet combustion predicts the following:

6. Experimental Results in Single-Component Droplet Combustion
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The simplified d2-law does a decent job predicting the overall behavior of burning rate and flame position for droplet combustion.   However, the d2 law over-predicts the flame stand-off ratio by a factor of 3 to 10, and can only accurately predict the burning rate by artificially adjusting /cp to match experiments.
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Actual Results

For single component droplets, the droplet burning rate is indeed nearly constant in many cases over most of the droplet lifetime.  Also, the qualitative predictions are quite correct as experiments show that the burning rate increases with increasing  /cp and decreases with increasing l.  Quantitative agreement between experiment and equation 6.4.40 can also be achieved provided that appropriate selections of transport properties are made.  The flame temperature predicted by equation 6.4.30 is, essentially, the adiabatic flame temperature of the given fuel-oxidizer system assuming no dissociation.  Quantitative agreement, in this case, can be obtained by assuming a suitable specific heat to account for dissociated products.  The flame stand-off ratio, which under some experimental conditions can approach a constant value, is vastly over-predicted by equation 6.4.29.  That the quantitative agreement is much worse for the flame position than for the burning rate is easily explained. The assumptions incorporated into the d2-law analysis yield a flame position that is virtually independent of thermal/transport parameters (generally, Cp (T -Ts) << Yo,qC/).   Thus, there are no parameters to adjust to obtain quantitative flame temperature agreement.   In summary, while the d2-law has been shown to be useful in a qualitative sense, it cannot simultaneously predict the burning rate, flame position and flame temperature.   

6.1 The Effects of Droplet Heating and Vapor Accumulation.   By accounting for transient heating of the liquid droplet, it is possible to explain the experimentally observed initial period during which the droplet burning rate is low.  An energy balance at the droplet surface shows that heat conducted to the surface from the gas phase balances with heat lost by conduction into the liquid interior and heat lost from the surface due to vaporization phase change.  Initially, when the droplet temperature is low, much of the heat applied to the surface is conducted inward, resulting in a lower rate of vaporization.  Once the droplet heats up toward the liquid boiling point, little heat is conducted into the liquid interior and the vaporization rate reaches its quasi-steady value.  

Accounting for the accumulation of fuel vapor between the liquid droplet and the flame reproduces the observed variation in flame position with time.    In the d2-law formulation, it is implicitly assumed that the rate of vaporization at the droplet surface is directly equal to the rate of consumption of fuel at the flame sheet.  Initially, little vapor exists in the gas phase and the flame is positioned closer to the droplet surface to achieve stoichiometric consumption of fuel and oxidizer.  The close proximity of the flame to the droplet surface causes increased vaporization, resulting in an abundance of fuel vapor between the droplet and the flame which causes the flame to, ultimately, move away from the surface.  In environments with low oxygen concentration, the flame position continuously increases while, in environments with high oxygen concentration, the flame position reaches a quasi-steady value. 
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6.2 Finite Rate Chemistry and Flame Extinction

A major limitation of the droplet combustion theories discussed thus far is that the assumption of infinitely fast chemical reaction provides no ability to predict the transient phenomena of droplet ignition and extinction.  These effects can only be addressed by considering finite rate chemical kinetics. By considering single-step finite rate chemical kinetics with high activation energy,  it is possible to obtain an entire family of steady state droplet combustion and vaporization solutions.  As shown below, by plotting a parameter such as the droplet burning rate as a function of the system Damköhler number, a characteristic S-shaped curve is obtained. 
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The Damköhler number is a non-dimensional ratio of the characteristic flow time to the characteristic chemical reaction time of a given combustion system.   In the case of droplet combustion, the relevant Damköhler number is thus:








where the characteristic flow time has been defined as the droplet radius squared divided by the characteristic gas phase mass diffusivity. 

The upper right hand corner of the S-curve corresponds to infinitely fast chemistry and thus corresponds to the d2-law solution. During quasi-steady combustion the droplet diameter decreases resulting in a decrease in the system Damköhler number.   As the characteristic gas-phase transport time becomes comparable to the chemical reaction time an increase in the leakage of reactants through the reaction zone causes a decrease in flame temperature and, ultimately, extinction of the envelope diffusion flame.  
Below is a plot of instantaneous droplet diameter-squared for 1 mm methanol droplet in various oxidation environments (with N2 inert).   The figure includes experimental results (performed in a 2.2 second drop tower) and numerical modeling results.  Note that the model predicts a finite extinction diameter.
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The following figure shows the calculated instantaneous gasification rate, Kb(t), which shows that even though the d2 plots appear to be linear, the time rate of change of d2 is not a constant.  Also note extinction, as signified by the dramatic decrease in Kb(t).
[image: image4.png]Gasification Rate [mm?/s]

00

. 30%0,

24%0,
21%0,

— 18%0,

00

T
04

T T
08 12

time / d,? [sec / mm?]





6.2 The Effect of Radiation Heat Loss.
In the large droplet combustion experiments conducted in space, the effect of radiation may be of particular importance. In droplet combustion, the mass burning rate and thus the overall instantaneous heat release in the flame is proportional to the droplet radius:




where Hc is the heat release per unit mass of fuel consumed.  Conversely, the overall instantaneous radiative heat loss from the flame is, roughly speaking, proportional to the droplet radius cubed:




where Tf is the flame temperature, Af the surface area of the flame, and (g is the total engineering emissivity which, for a thin gray gas is roughly proportional to the droplet radius due to its dependency on the optical path length, L:





.

Thus, as initial diameter of the droplet increases, the assumption of negligible gas phase radiation becomes increasingly unjustified.  
The figure below is a plot of instantaneous droplet diameter squared for 1.3 mm (conducted in the 2.2. second drop tower) and 2.9 mm and 4.6 mm (conducted on the Space Shuttle) methanol droplets burning in air, along with modeling results that neglect radation.
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Below is a plot of measured extinction diameter as a function of initial diameter for methanol droplet combustion experiments, along with modeling results with and without gas phase radiative heat loss.
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Below are results for heptane droplet combustion conducted on the Space Shuttle (STS-83 and STS-94) along with numerical modeling results that include the effect of gas phase radiation:
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Instantaneous flame position, experiments and numerical modeling results (STS-83).
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Below is a plot of average burning rate vs. initial diameter for many experimental data sets, along with the numerical modeling predictions including radiation.  Note the two STS-94 data points, conducted in air.  These were the experiments that were not originally planned. 
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