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Objectives
· Explain the phenomena of mass, momentum and energy transport.

· Explain the concept of a diffusion velocity and explain the different phenomena that result in diffusion velocity in equation 5.2.5.
· Describe the process of molecular collisions and the intermolecular potential energy function.
· Calculate binary diffusion coefficients Dij, viscosity and thermal conductivity using the results of Chapman-Enskog theory.

0. Brief Introduction to the Course

MECH 658 builds upon the concepts presented in MECH 558 Combustion, focusing on development and solution of the transient-convective-diffusive-reactive equations for chemically reacting flow systems.   These governing equations will be used to solve a variety of steady premixed and non-premixed flames, as well as unsteady phenomena such as ignition and extinction.   Consider, for example, the following examples of steady, laminar flames:

Non-Premixed “Diffusion” Flame: Microgravity Candle Flame
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Premixed Flame: Low Pressure Flat Flame Burner
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The same governing equations will be used to solve both diffusion flames and premixed flames.  In steady diffusion flames, we will assume that the chemical reactions are infinitely fast compared to mass diffusion, which results in an infinitely thin flame sheet.   In premixed flames, we cannot make that assumption and the mathematics becomes more difficult.  In both cases, molecular transport of species and energy is of critical importance.  Accordingly, we will begin our discussion with a brief discussion on transport phenomena (Ch. 4, Law). 
1.0  Review of Transport Phenomena

In chemically reacting flows, there can exist gradients in temperature, velocity, species mass fractions and pressure.   These gradients result in transport of thermal energy (i.e. heat flux), momentum (i.e. stress) and mass.   These transport phenomena occur at the molecular level due to collisions between molecules and the rate at which these phenomena occur are governed by transport parameters such as thermal conductivity (), viscosity () and mass diffusivity (Dij).    

1.0.1 Heat Flux.  For example, consider the temperature profile in the steady premixed flame above.   At any location in the flame, the local heat flux, q, is related to the local temperature gradient, dT/dx, and the transport parameter is the thermal conductivity.  
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1.0.2 Shear Stress.  Consider, for example, the gradient in velocity that exists in the combustion that occurs in the boundary layer of a solid rocket motor.   In this case, there is a transport of shear stress, t, which is related the gradient in velocity, du/dy, and the transport parameter is the viscosity, .  
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1.0.3 Mass Transport.  Consider the gradients in species mass fraction in the microgravity candle flame.  On the fuel side there is a gradient in fuel (dYF/dx) and on the oxidizer side of the flame there is a gradient in oxidizer mass fraction (dYO/dx).   These gradients create a local velocity of these species (called the diffusion velocity, Vi) with respect to the rest of the mixture, which results in transport of those species.  In this case, the relevant transport property is the mass diffusivity, Dij.  
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1.1 A Deeper Look at Diffusion Velocity
In Ch. 5 of Law, we will derive the conservation equations for the transient-convective-diffusive-reactive system.   A key component to these governing equations is the diffusion velocity, Vi, which is the velocity of the ith species in a gas mixture with respect to the bulk velocity, v.  Consider the following mixture of gases, moving with a bulk velocity, v:

The diffusion velocity, Vi, is the velocity of the ith species with respect to the overall bulk velocity:

(5.1.2)

This diffusion velocity, Vi, can arise from gradients in concentration, temperature, pressure, and body force, according to the following equation:

(5.2.5)

where Di,j is the binary mass diffusion coefficient that describes the diffusion of species i into species j, DT,i the thermal diffusion coefficient due to the Soret effect, p the pressure, T the temperature, Xi the mole fraction of the ith species, Yi the mass fraction of the ith species and fi a body force acting on the ith species.  

In chemically reacting flows, the concentration gradient term often dominates in equation (5.2.5).  The Soret effect term (also called thermophoresis) is sometimes important.   The pressure gradient term is only important for large pressure gradients acting on mixtures of species with a range of molecular weights.   The body force term is only important if body forces act differently on individual species (i.e. electromagnetic forces acting on ions and electrons in a gas mixture).  When gravity is the only body force, this term vanishes.
As will be discussed later in the course, for situations in which the Soret effect, pressure gradient and body force terms can be ignored and if all species are dilute in the mixture, equation 5.25 reduces to the more familiar Fick’s law of diffusion:
(5.2.17)

Since mass transport is so important in combustion, before we begin our derivation of the conservation equations, we begin in this chapter with a discussion on how we calculate the binary diffusion coefficients, Dij, as well as viscosity and thermal conductivity of mixtures.
2. The Effect of Molecular Collisions on Gas Phase Transport
The binary diffusion coefficients, Dij, viscosity and thermal conductivity can be derived through the rigorous development of the kinetic theory of gases.  Since this subject is the topic of an entire course in non-equilibrium gas dynamics, a brief summary of the results are given here.  Since molecular transport of energy, mass and momentum is fundamentally controlled by collisions between molecules, we need to understand how these collisions take place.
2.1.1 The Collision Integral

The collision integral represents the number of molecules of type i that are removed or added to a volume element (dr)(dvi) by collisions with molecule j during a time interval dt.   Consider a molecule of type i, located at position r and having a velocity vi.   

We wish to find the probability that this molecule will experience a collision with a molecule of type j in the time interval dt.  If molecule j approaches molecule i with a relative velocity gij, any j molecules located within the cylinder 2b(db)gij(dt) will undergo a collision with molecule i during the time interval dt.  The distance b is called the impact parameter, which defined as the distance of closest approach during a collision between i and j.   The distance A is the minimum distance at which intermolecular forces take hold.
2.2 Intermolecular Forces and Intermolecular Potential Energy Functions
Solution of the collision integral requires some knowledge of the intermolecular forces that occur when molecules come into contact.   Generally speaking, the attractive/repulsive force, F(r), between two molecules is a function of intermolecular distance.   For most purposes, it is more convenient to define a potential energy of interaction, (r) as follows:

(n1.4)

Evaluation of the collision integral in the RHS of the Boltzmann equation requires some form of model for the potential energy function.   Examples include the hard sphere potential, the Lennard-Jones 6-12 potential, and the Stockmayer potential.

2.2.1 Hard Sphere Potential.   The hard sphere potential assumes that the molecules behave like billiard balls in that they do not interact until a collision occurs.   








(4.2.3)

2.2.2 Lennard-Jones 6-12 Potential.    The Lennard-Jones model takes into account that molecules have a slight attractive force due to an induced dipole interaction at larger distances and a repulsive force at smaller distances:








(4.2.4)

where  is the characteristic collision energy and  the effective molecular diameter. 

2.2.3 Stockmayer Potential.   The Lennard-Jones model is only strictly valid for non-polar molecules.   For polar molecules, the Stockmayer potential model is used:

(4.2.6) 

where di and dj are the dipole moments of the interacting molecules and  is now a function of orientation between the two molecules during a collision.

2.3 Molecular Trajectories during a Collision

Having selected a molecular model for potential energy during a collision, it is possible from classical particle mechanics to calculate the deflection angle between two molecules during a collision.   Consider molecule i approaching molecule j during a binary collision, with an initial intermolecular distance, r, as follows:

In this representation, m represents the angle between the two molecules at the distance of closest approach and b the distance of closest approach in the absence of any intermolecular potential energy.

This two-body collision can be represented as an equivalent one-body problem, in which a single particle of mass mi,j were moving in a potential energy field (r) as shown in Fig. 4.2.1.

where  is the angle of deflection, b the impact parameter, g the relative approach velocity and rm the minimum approach distance.  The reduced mass is given as follows:

(n.1.5)

From classical mechanics, the deflection angle is calculated as follows:

(4.2.1)

where (r) is the potential energy function given by (4.2.3), (4.2.4) or (4.2.6)

2.4  Final Form of the Collision Integral
The final form of the collision integral is obtained by summing over all possible collision events characterized by g and b in the “collision cylinder” of section 2.1:

(4.2.2)

where 
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 is a normalized approach velocity:

(n1.6)
Notes on equation (4.2.2):

· The term   = ((r),T) is from equation (4.2.1).

· The indices k and l depend on the mode of transport (i.e. mass diffusion, momentum diffusion, etc.).

The collision integrals (4.2.2) for more sophisticated potential energy functions such as the Lennard-Jones or Stockmayer potential are typically normalized by the hard sphere collision integral and tabulated as a function of non-dimensional temperature T* according to the following:

(4.2.5)

where the non-dimensional temperature T* is defined as follows:

(4.2.5a)

For collisions involving polar gases, the normalized collision integrals also depend on the parameter *, which is a function of the dipole moment of the molecule.

(4.2.7)

Most problems of interest entail binary collisions of unlike molecules.  For collisions involving different molecules i and j, it is necessary to define the following effective force constants for potential energy functions:

(4.2.8)

which are valid for polar-polar collisions or nonpolar-nonpolar collisions.   For collisions between polar and non-polar molecules, the force constants must be calculated as follows:

(4.2.9)

where

(4.2.10)

and n the polarizability of the nonpolar molecule.  Table 4.3 of Law contains the parameters needed to calculate the collision integrals for a variety of different molecules.   These are the same parameters that are listed in the tran.dat files used by CHEMKIN to calculate all of the necessary transport parameters for premixed and non-premixed flame calculations.

3. Calculation of Transport Coefficients from the Collision Integrals

So, here is the key from a computational standpoint: The collision integrals (4.2.2) can be used to evaluate transport coefficients such as binary diffusion coefficients Dij, viscosity  and thermal conductivity,.   For a single component gas, the viscosity is given by:

(4.2.13)

The thermal conductivity is related to the viscosity by the following formula:

(4.2.18b)

where  is the specific heat ratio for the gas. 

The binary diffusion coefficient between species i and j are given by:

(4.2.21)  

where p is the pressure.

3.1 Tabulation of (1,1)*(T*,*) and (2,2)*(T*,*)

To evaluate the transport properties from equations (4.2.13), (4.2.18b) and (4.2.21) the collision integrals (1,1)*(T*,*) and (2,2)*(T*,*) are tabulated as a function of T* and * in tables 4.1 and 4.2, respectively.    For nonpolar gases (*=0), the following empirical curve fits for  (1,1)*(T*) and (2,2)*(T*) are very accurate:

(4.2.11)

(4.2.12)

3.2 Properties of Multi-Component Mixtures

For multicomponent mixtures, the viscosity and thermal conductivity for the entire mixture can be calculated as follows:

(4.2.23)

(4.2.24)

where:

(4.2.25)

For a species that is very dilute with respect to all of the other species in a mixture, it is possible to approximate the diffusion coefficient of that species with respect to the mixture as follows:

(4.2.26)

Example 1.1  Calculation of Transport Properties Using Chapman-Enskog Theory

For a stoichiometric mixture of propane and air, calculate the viscosity, thermal conductivity and mass diffusivity of propane into air as a function of temperature for 300 < T < 1000 K.  

Homework #1

Due Date:  

1.  For a stoichiometric mixture of methane and air, calculate the viscosity, thermal conductivity and mass diffusivity of methane into air as a function of temperature for 300 < T < 1000 K.  

2. Calculate the mixture viscosity, mixture thermal conductivity and mass diffusivity of H2O into air for fully saturated (100% relative humidity) humid air at 25 °C, 50 °C and 75 °C and 1 atm.
3. Consider a binary mixture of H atom and O2, in which XH varies linearly in 1-D Cartesian coordinates from 1 to 0 over a thickness of 1 mm.   Assuming a binary mass diffusivity DH,O2 = DO2, H = 0.7 cm2/s and standard atmospheric conditions at x = 0 mm (300 K, 1 atm), calculate diffusion velocities VH and VO2 at x = 0. 5 mm using equation 5.2.5 under the following conditions:

a) assume that dT/dx and dP/dx = 0.

b) add a pressure gradient of dP/dx =  1 atm/mm and recalculate the diffusion velocities.
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