
J Supercomput (2010) 53: 163–181
DOI 10.1007/s11227-009-0326-1

Robust task scheduling for volunteer computing
systems

Young Choon Lee · Albert Y. Zomaya ·
Howard Jay Siegel

Published online: 4 September 2009
© Springer Science+Business Media, LLC 2009

Abstract Performance perturbations are a natural phenomenon in volunteer comput-
ing systems. Scheduling parallel applications with precedence-constraints is emerg-
ing as a new challenge in these systems. In this paper, we propose two novel ro-
bust task scheduling heuristics, which identify best task-resource matches in terms of
makespan and robustness. Our approach for both heuristics is based on a proactive
reallocation (or schedule expansion) scheme enabling output schedules to tolerate a
certain degree of performance degradation. Schedules are initially generated by fo-
cusing on their makespan. These schedules are scrutinized for possible rescheduling
using additional volunteer computing resources to increase their robustness. Specifi-
cally, their robustness is improved by maximizing either the total allowable delay time
or the minimum relative allowable delay time over all allocated volunteer resources.
Allowable delay times may occur due to precedence constraints. In this paper, two
proposed heuristics are evaluated with an extensive set of simulations. Based on sim-
ulation results, our approach significantly contributes to improving the robustness of
the resulting schedules.

Keywords Scheduling · Volunteer computing · Robustness · Resource allocation ·
Distributed systems

Y.C. Lee · A.Y. Zomaya (�)
Centre for Distributed and High Performance Computing, School of Information Technologies,
The University of Sydney, Sydney, NSW 2006, Australia
e-mail: zomaya@it.usyd.edu.au

Y.C. Lee
e-mail: yclee@it.usyd.edu.au

H.J. Siegel
Department of Electrical and Computer Engineering and Department of Computer Science,
Colorado State University, Fort Collins, CO 80523-1373, USA
e-mail: HJ@ColoState.edu

mailto:zomaya@it.usyd.edu.au
mailto:yclee@it.usyd.edu.au
mailto:HJ@ColoState.edu

164 Y.C. Lee et al.

1 Introduction

A volunteer computing system (VCS) is a distributed computing platform in which
a large number of individually owned computing resources are voluntarily donated
to science projects. Many large-scale science projects (e.g., SETI@home [1], Fold-
ing@home [2], and Einstein@Home [3]) have been successfully deployed and tack-
led on these systems. Computing resources participating in VCSs are characterized by
their essentially autonomous, heterogeneous, distributed, and dynamic nature. Unlike
resources in grids, those in VCSs are typically not tied to any managed organization—
most of them are personal computers connected via the internet.

As this new computing paradigm gains more recognition for its high-throughput
and high-performance potential, many science and engineering problems are be-
ing deployed onto VCSs. While applications in most current volunteer computing
projects are independent or bag-of-tasks/parameter sweep applications (a series of
independent tasks with different input parameters), a considerable group of scientific
and engineering applications in practice are precedence-constrained parallel appli-
cations. The problem of scheduling applications in the latter model both on homo-
geneous and heterogeneous computing systems has been studied extensively over
the past few years (e.g., [4–11]). However, most efforts in task scheduling have
focused primarily on two issues, the minimization of application completion time
(makespan/schedule length), and reduction of time complexity; in other words, the
main objective of a task scheduling algorithm is the generation of the optimal sched-
ule for a given application with the minimal amount of scheduling time. It is only
recently that much attention has been paid to robustness in scheduling, particularly
on parallel and distributed computing systems [12–18].

Broadly, robustness can be defined as the capacity to function properly in the pres-
ence of variable conditions. In the context of task scheduling particularly for VCSs,
the definition may be narrowed down to a guarantee that the quality of a schedule is
assured in spite of a certain degree of performance fluctuation, such as incorrect es-
timates of task completion times and resource performance degradation. This perfor-
mance characteristic has a particular importance in the case of scheduling for VCSs
in which resources behave in a quite unmanaged fashion. For example, a volunteered
computer may be turned off or returned to personal use. In such circumstances, VC
project tasks on such a computer will be either suspended or terminated, or lowered
in priority (resulting in slower execution).

Robustness is closely related to fault tolerance. Fault tolerance is mostly asso-
ciated with task/resource failures. Rescheduling and task replication are two most
frequently used techniques to deal with those failures. While these techniques can be
applied for robust scheduling, robustness in “output schedules” (i.e., the assignment
and ordering of tasks on computers produced by a resource allocation heuristic) can
also be significantly improved if scheduling decisions are made taking into account
performance perturbations.

In this paper, we address the task scheduling problem in VCSs and propose two
novel scheduling heuristics (RMAX and RMXMN) that take into account robustness as
well as makespan. Our approach in the case of both heuristics is based on a proactive
reallocation (or schedule expansion) scheme enabling output schedules to tolerate a

Robust task scheduling for volunteer computing systems 165

certain degree of performance degradation. Schedules are initially generated focusing
on their makespan; this is used as the lower bound. These schedules are scrutinized
for possible rescheduling using additional VC resources to increase their robustness.
For a given schedule, rescheduling occurs only if a new task-resource match improves
the robustness without increasing the makespan. Let the “allowable delay time” of a
task in a schedule refer to the amount of time that can be delayed to start or complete
the task without incurring an increase in makespan; this may occur due to prece-
dence constraints. Specifically, rescheduling decisions in RMAX and RMXMN are
made aiming to maximize the total allowable delay time of all tasks in that schedule,
or maximize the minimum allowable delay time to computation time ratio over all
allocated VC resources. The two heuristics have been evaluated with an extensive set
of simulations. Based on simulation results, our approach significantly contributes to
improving the robustness of schedules.

The remainder of the paper is organized as follows. Section 2 describes the ap-
plication, system, robustness, and scheduling models used in this paper. Section 3
overviews related work. The RMAX and RMXMN algorithms are presented in Sect. 4
followed by results in Sect. 5. Finally, conclusions are provided in Sect. 6. We have
provided a table of acronyms used in this paper in Appendix.

2 Models

In this section, we describe the system, application, robustness, and scheduling mod-
els employed in this work.

2.1 System model

The target system used in this work consists of a set R of r heterogeneous computing
resources (VC resources) that are fully interconnected in the sense that a route exists
between any two individual resources (Fig. 1). Each VC resource is in an autonomous
administrative domain that has its own local users who access the resources provided
by it. Typically, the number of available VC resources at a given time is far larger than
the number of tasks to be scheduled. These resources are not entirely dedicated to the
VCS. In other words, they are used for both local and VC jobs. These resources are
connected to each other through a wide area network. The interresource communica-
tions are heterogeneous. All network links are assumed to work without substantial
contentions. It is also assumed that a message can be transmitted from one resource
to another while a task is being executed on the recipient resource, which is possible
in many systems.

The availability and capacity of resources, such as, VC resources and network
links, fluctuates. Therefore, the accurate completion time of a job on a particular
resource is difficult, if not impossible, to determine a priori. Moreover, the job may
fail to complete due to a failure of the resource on which it is running. However,
resource failures are not considered in this study.

2.2 Application model

Parallel programs, in general, can be represented by a directed acyclic graph (DAG).
A DAG, G = (N,E), consists of a set N of n nodes and a set E of e edges. A DAG is

166 Y.C. Lee et al.

Fig. 1 VCS model

also called a task graph or macro-dataflow graph. In general, the nodes represent tasks
partitioned from an application, and the edges represent precedence constraints. An
edge (i, j) ∈ E between task ni and task nj also represents intertask communication.
In other words, the output of task ni has to be transmitted to task nj in order for
task nj to start its execution. A task with no predecessors is called an entry task,
nentry, whereas an exit task, nexit, is one that does not have any successors. Among
the predecessors of a task ni , the predecessor which completes the communication
at the latest time is called the most influential parent (MIP) of the task denoted as
MIP(ni). The longest path of a task graph is the critical path (CP).

The weight on a task ni denoted as wi represents the computation cost of the task.
In addition, the computation cost of the task on a VC resource rj , is denoted as wi,j

and its average computation cost is denoted as wi .
The weight on an edge, denoted as ci,j represents the communication time be-

tween two tasks, ni and nj . For the purposes of this study, it is assumed that the
bandwidths between any pairs of resources are virtually the same. However, the time
to send a data set between any two tasks will depend on the size of the data sets, which
can vary. Thus, the time ci,j is based on the common bandwidth between all pairs of
resources (the same for all pairs) the size of the data set being moved between the
two tasks (which can differ for each pair of communicating tasks). However, a com-
munication cost is only required when two tasks are assigned to different resources.
In other words, the communication cost when tasks are assigned to the same VC
resource can be ignored, i.e., 0.

The earliest start time and the earliest finish time of a task ni on a VC resource rj
are defined as follows, where MIP(ni) is executed on machine rk :

Robust task scheduling for volunteer computing systems 167

Fig. 2 A simple task graph

EST(ni, rj) =
{

0 if ni = nentry

EFT(MIP(ni), rk) + cMIP(ni),i otherwise,
(1)

EFT(ni, rj) = EST(ni, rj) + wi,j (2)

Note that, the actual start and finish times of a task ni on a resource rj , denoted as
AST(ni, rj) and AFT(ni, rj) can be different from its earliest start and finish times,
EST(ni, rj) and EFT(ni, rj), if the actual finish time of another task scheduled on
the same resource is later than EST(ni, rj).

In the case of adopting task insertion, the task can be scheduled in the idle time
slot between two consecutive tasks already assigned to the resource as long as no
violation of precedence constraints is made. This insertion scheme would contribute
in particular to increasing resource utilization for a communication intensive task
graph with fine-grain tasks.

A simple task graph is shown in Fig. 2 with its details in Tables 1 and 2. The nodes
are the tasks and the edges are data set transfers between nodes. The values presented
in Table 1 are computed using two task prioritization methods, t-level and b-level,
frequently used in many list scheduling heuristics, e.g., [6, 8]. The weight on the
edge from node i to node j is the time ci,j. Note that computation costs are averaged
over all nodes and links, as shown in Table 2. The t-level of a task is defined as the
summation of the computation and communication costs along the longest (in terms
of time) path of the node from the entry task in the task graph. The task itself is ex-
cluded from the computation. In contrast, the b-level of a task is computed by adding
the computation and communication costs along the longest path of the task from the
exit task in the task graph (including the task). The b-level is used in this study.

The communication to computation ratio (CCR) is a measure that indicates
whether a task graph is communication intensive, computation intensive or moderate.
For a given task graph, it is computed by the average communication time between all
pairs of communicating tasks divided by the average computation time for all tasks
on a target system.

168 Y.C. Lee et al.

Table 1 Task priorities
Task b-level t-level

0 101.33 0.00

1 66.67 22.00

2 63.33 28.00

3 73.00 25.00

4 79.33 22.00

5 41.67 56.33

6 37.33 64.00

7 12.00 89.33

Table 2 Computation cost
Task r0 r1 r2 Average

0 11 13 9 11

1 10 15 11 12

2 9 12 14 12

3 11 16 10 12

4 15 11 19 15

5 12 9 5 9

6 10 14 13 12

7 11 15 10 12

2.3 Robustness model

In essence, our robustness metric is derived from latest start/finish times of tasks. The
latest start and finish times of a task ni on a VC resource rj are defined as:

LST(ni, rj) = LFT(ni, rj) − wi,j , (3)

LFT(ni, rj) =
{

EFT(ni) if ni = nexit

min
nk∈succ(ni)

{LST(nk, rm) − ci,k} otherwise

}
(4)

where succ(ni) is the set of successor tasks of task ni , and rm is the VC resource
executing task nk . For a given task, its LST/LFT may differ from EST/EFT if the
minimum EST in all of its successor tasks is later than the time it finishes its com-
munication (data transfer); once again, this may occur due to precedence constraints.
Note that, LST and LFT of a task have a cumulative effect on those of its parent tasks.
Similar to the case for AST and AFT, the actual latest start and finish times of a task
ni on a VC resource rj are defined as follows, where ALST(nnext, rj) is the actual
latest start time of the next task scheduled after ni on the same VC resource rj :

ALST(ni, rj) = ALFT(ni, rj) − wi,j , (5)

Robust task scheduling for volunteer computing systems 169

ALFT(ni, rj) =

⎧⎪⎪⎨
⎪⎪⎩

AFT(ni) if ni = nexit

min
{

min
nk∈succ(ni)

(ALST(nk, rm) − ci,k),ALST(nnext, rj)
}

otherwise

⎫⎪⎪⎬
⎪⎪⎭ (6)

The degree of robustness for a particular task-resource match can be measured based
on ALST and/or ALFT, since they enable the quantification of “allowable” delay in
the completion of the task. The late completion of a task does not affect the makespan
of a given precedence-constrained parallel application as long as the time of the com-
pletion is no later than the ALFT of the task; hence, the current task-resource match
in the schedule for this application is robust to a certain degree.

For a given schedule, the average robustness ratio (RR) associated with a particular
VC resource rj is defined as follows, where Nj is the set of tasks assigned on rj :

RR(rj) =
∑

ni∈Nj
ALST(ni, rj) − AST(ni, rj)∑

ni∈Nj
wi,j

(7)

The average robustness ratio of the schedule is then as follows, where R∗ is the set
of resources used in the schedule:

RR =
∑

r∗
j ∈R∗ RR(r∗

j)

|R∗| (8)

The maximization of RR is directly related to the improvement in robustness; how-
ever, this should be achieved without an increase in makespan.

2.4 Scheduling model

The task scheduling problem in this study is the process of assigning a set N of
n tasks to a set R of r heterogeneous VC resources—without violating precedence
constraints—aiming to minimize makespan with a robustness factor as large as pos-
sible. Traditionally, the former (the minimization of makespan) is the single most
important objective in the task scheduling problem.

In VCSs, this sole focus of makespan minimization is neither sufficient nor ap-
propriate due to performance perturbations of resources. Rather, the robustness of
output schedules should be explicitly taken into account. However, these two objec-
tives conflict with each other. In other words, the minimization of makespan is often
achieved by “compacting tasks” whereas the maximization of robustness is obtained
by increasing slack times between tasks. The scheduling model in this study can be
seen as a multi-pass (two-pass) model—the schedule generation pass and the robust-
ness improvement pass. Each of the two objectives in this study is attempted to be
optimized through the relevant pass. Specifically, the first pass is dedicated to the gen-
eration of schedules focusing solely on their makespan. In the second and last pass,
these schedules are inspected with an additional set of VC resources for possible
rescheduling to improve their robustness.

The makespan is defined as M = max{AFT(nexit)} after the scheduling of n tasks
in a task graph G is completed. Although the minimization of makespan is crucial,
tasks of a DAG in our study are not associated with deadlines as in real-time systems.
The improvement of robustness is measured based on RR as defined in Sect. 2.3.

170 Y.C. Lee et al.

3 Related work

Some of the common approaches that deal with performance fluctuations in dy-
namic environment, such as, VCSs and grids include robust scheduling, task replica-
tion/migration, and rescheduling. In general, the first approach implicitly and proac-
tively handles uncertainties in task/resource performance by generating robust sched-
ules that are insensitive to a certain degree of performance perturbations. On the con-
trary, the rest are reactive approaches; that is, when performance degradation (e.g.,
task/resource failures) is detected, they react by taking an appropriate step to mini-
mize negative effects from such an event.

Probably, the closest works to our study are static heuristics proposed in [15]. The
target system is a rather specialized platform (e.g., a military system) consisting of
heterogeneous sets of sensors, applications, machines, and actuators. Although such
a system model is specific to a particular environment, it can be easily generalized
for heterogeneous computing systems with dynamic performance fluctuations. Those
two heuristics are devised with the robustness metric developed in [12]. The met-
ric is used to identify the maximum amount of performance changes that a given
schedule can tolerate without violating performance constraints, e.g., the makespan
of the schedule is within 120% of the initial makespan. Initial schedules (chromo-
some or state) for those two heuristics are generated using a mixture of another two
heuristics—most critical task first (MCTF) and most critical path first (MCPF)—also
proposed in [15]. The evaluation was conducted based on a number of performance
criteria including robustness and failure rate (i.e., how often schedules cannot meet
or fail to meet performance criteria).

The authors in [19] introduced two different robust multiobjective optimiza-
tion procedures that can be applied to the task scheduling problem in our study.
While most other approaches developed for (evolutionary) multiobjective optimiza-
tion problems focus on finding the global Pareto-optimal solutions (frontier), these
procedures were intended to identify a robust solution/frontier. This means that one
or more solutions that are relatively more capable of tolerating variable perturbations
compared with other neighboring solutions. The first procedure achieves its perfor-
mance goal by minimizing the mean effective objectives; they are obtained by aver-
aging a finite set of neighboring solutions. The second procedure performs its search
for robust solutions with a user-defined limit (constraint) that restricts the change in
objective values within a predefined threshold.

There have been a large number of fault-tolerant scheduling algorithms—for
heterogeneous computing systems—proposed in the literature; however, most of
them are for applications consisting of independent tasks (e.g., [20]). Signifi-
cant previous efforts on scheduling precedence-constraint task graphs with fault-
tolerance/reliability include RHEFT in [21], RDSL and its variations in [22], and
FTSA and MC-FTSA in [23]. In the first two works, failure models (more precisely,
failure rates) were incorporated into their scheduling to ensure the successful com-
pletion of applications by increasing the reliability of output schedules. On the other
hand, FTSA and MC-FTSA adopt task replication to deal with resource failures.

Another interesting approach to note is the scheduling scheme based on dedica-
tion rate (SSDR) in [24]. Its scheduling decisions are made taking into account both
temporal-availability and spatial-availability rates of VC resources for VC jobs.

Robust task scheduling for volunteer computing systems 171

4 Robust scheduling heuristics

As in most multiobjective optimization problems, the goal in our task scheduling
problem is to find Pareto-optimal solutions since the performance objectives of the
problem most likely to be in conflict with each other. In other words, for a given
task graph, the heuristics presented in this study aim to minimize makespan, while
the robustness of the schedule is maximized with the makespan as a constraint. More
formally, a multiobjective optimization problem can be defined as

min
x∈S

[f1(x), f2(x), . . . , fn(x)] (9)

where S is the feasible search space and n ≥ 2.
Next, we present two robust scheduling heuristics, RMAX and RMXMN (Figs. 3

and 4), for which the main objective is to maximize the robustness of schedules to
minimize the increase—caused by resource and/or task performance fluctuations—in
makespans of those schedules.

4.1 RMAX

Since the number of VC resources typically far exceeds the number of tasks for a
given parallel application, it is quite necessary to select a certain number of resources
(possibly much fewer than the number of available resources) for scheduling. The
resource selection process in RMAX is enabled using a greedy method. Specifically,
for each available resource, the summation of execution times of all tasks is identified,

Fig. 3 The RMAX algorithm

172 Y.C. Lee et al.

Fig. 4 The RMXMN algorithm

and a predefined number of best resources are selected based on completion time.
These selected resources are divided into two sets, such that each set contains the
same number of resources. Although the number of resources to select is much larger
and they can be divided into more than two sets, it is impractical in terms of the
time complexity of the algorithm. Besides, the performance of selected resources
may vary significantly resulting in some resources are never used, but again they
just contribute to increase the time complexity. Note that resources in the first set
might be better in terms of processing speed than those in the second set. However,
this performance characteristic is measured based on the overall completion time;
that is, for a particular task, some resources in the second set may deliver superior
performance.

RMAX starts its scheduling with the first set only, concentrating on the minimiza-
tion of makespan (Steps 5–7). The first set is then expanded using the second set.
Now, this aggregated set is used to rearrange the current schedule to improve its ro-
bustness by increasing the total amount of allowable delay time (Steps 11–18).

The most significant effect of resource expansion and task rearrangement processes
using the second set is the recovery of LSTs or an increase of ALSTs. Specifically,
for a particular task with its ALST earlier than its LST due to one or more subsequent
tasks on the same resource, its ALST can be recovered or at least can be increased by
rearranging those subsequent tasks using the resources of the second set.

Robust task scheduling for volunteer computing systems 173

4.2 RMXMN

RMXMN adopts the same initial makespan minimization and resource expansion
processes as those used in RMAX. The main difference between RMXMN and RMAX
is in RMXMN’s task rearrangement method (or robustness improvement method).
The rationale behind this method is to maximize the minimum robustness rate (MRR)
over all allocated VC resources. Clearly, the resource with the MRR (or MRR re-
source) is most vulnerable to performance perturbations.

It can be said that a schedule is guaranteed on average to tolerate performance
perturbations to the limit of its MRR. RMXMN applies its robustness improvement
method to each task on the MRR resource (Steps 13–20). If the MRR resource has
changed after some tasks on the previous MRR resource are rearranged, RMXMN
performs the method with tasks on the new MRR resource; this repeats until no further
improvement on MRR is possible.

5 Performance evaluation

In this section, we describe experimental methods and settings including task graph
characteristics and their generation, and resource performance settings. Experimen-
tal results are then presented based on the makespan increase rate (MIR), i.e., the
percentage of makespan increase. More formally,

MIR = Ma − Me

Me
(10)

where Ma is the actual makespan after the execution of a given application with a
certain degree of performance perturbation, and Me is the makespan estimated with
an assumption that the performance information is accurate.

5.1 Experimental settings

The performance of RMAX and RMXMN was thoroughly evaluated with a large num-
ber of simulations using both random task graphs and real-world application task
graphs. Table 3 summarizes the parameters used in our experiments. These parame-
ters were chosen to ensure that the simulations are extensive enough and cover a wide
range of scenarios.

The number of experiments performed using different random task graphs on the
three different resource sizes with three resource heterogeneity settings is 9,000.
Specifically, the random task graph set consisted of 50 base task graphs generated
with combinations of 10 graph sizes and five CCRs. For each combination, 20 task
graphs were randomly generated, retaining the characteristics of the base task graph.
These 1,000 graphs were investigated with three different resource settings and three
resource heterogeneity settings; hence, the figure 9,000.

The computation and communication times of the tasks in each task graph were
randomly selected from a uniform distribution with the mean equal to the chosen
average computation and communication times. The out degree of each node in a

174 Y.C. Lee et al.

Table 3 Experimental
parameters Parameter Value

The number of tasks U(10,400)

CCR {0.1,0.2,1.0,5.0,10.0}
The number of resources {16,32,64}
Out degree of a node U(1,10)

Resource heterogeneity {100,200, random}
Avg. performance degradation rate {0.1,0.2,0.3,0.4,0.5,0.6,0.7}

task graph was random and uniformly distributed between 1 and 10. Specifically, for
a node, an out degree of one indicates that it has only one successor task. A resource
heterogeneity value of 100 was defined to be the percentage of the speed difference
between the fastest resource and the slowest resource in a given system.

The three real-world parallel applications used for our experiments were the
Laplace equation solver [25], the LU-decomposition [26], and Fast Fourier Trans-
formation [27]. A large number of variations (i.e., 1,350 task graphs for each appli-
cation) were made on these task graphs for more comprehensive experiments. These
variations were made using experimental parameters in Table 3. In addition, the ma-
trix sizes and the number of input points were varied, so that the number of tasks can
range from about 10 to 400.

To introduce resource performance perturbations (performance estimation errors),
we used a Gaussian random number generator with different average performance
fluctuation rates. An average performance degradation rate of 0.3 (or 30%) indicates
that resource performance is on average at 70% of its full capacity.

5.2 Results

Since our main focus is the robustness of schedules, the performance evaluation of
our heuristics is solely based on MIR. This metric is straightforward, yet important
for identifying and comparing the impact of performance fluctuation on schedules
generated by different scheduling algorithms accounting for robustness. Our simu-
lation results are summarized and presented in Figs. 5, 6, and 7. Note that, HEFT
(a well-known scheduling algorithm that does not consider robustness) [6] was used
in our comparisons to identify the extent of the contribution of our heuristics to the
improvement in robustness.

The overall performance comparisons for random task graphs and real-world ap-
plication task graphs are presented in Figs. 5 and 6, respectively. The results in each
of these two figures are a consolidation of results obtained with five different CCRs
(0.1, 0.2, 1.0, 5.0, and 10.0). Clearly, our heuristics show their capability to gener-
ate schedules that are relatively more robust compared to those produced by HEFT.
Specifically, schedules generated by RMAX and RMXMN were on average 5% and
7% more robust than those generated by HEFT, respectively. It is noted that robust-
ness of schedules for real-world application task graphs was slightly worse than that
for random task graphs due to the regularity of real-world application task graphs.
That is, (1) tasks in the same level (or with the same height) are often homogeneous

Robust task scheduling for volunteer computing systems 175

Fig. 5 Robustness of schedules
generated by different heuristics
with respect to different
resource sizes

in terms of both their computation and communication costs, and (2) the width of task
graphs is typically much larger than that of random task graphs. These two factors
tend to make tasks to be compacted. In many cases, it is also not quite possible to
reschedule tasks without increasing the original makespan.

Since the number of tasks to be scheduled at any one time tends not to over-
whelm the number of available resources in our simulation environments, the results
obtained from experiments with different numbers of resources do not significantly
differ; this is particularly true for HEFT. For example, the difference between average
MIRs of HEFT with 16 or with 32 resources is marginal.

Although the experiments were carried out with five different CCRs as stated in
Table 3, only experimental results obtained with three significant CCRs (0.1, 1.0
and 10.0) are explicitly presented in Fig. 7. This is because these results were suffi-
cient to represent the performance of our heuristics for three fundamental task graph
types (computationally intensive, moderate, and communication-intensive). The rest
of the test results obtained from the task graphs with CCRs of 0.2 and 5.0 tend to be
similar to those obtained from the task graphs with close CCRs. For instance, the test
result acquired from the task graphs with a CCR of 5.0 does not show significant dif-
ference from the test result acquired from the task graphs with a CCR of 10.0. Note
that Fig. 7 is plotted using results obtained with random task graphs, since results
obtained with real-world application task graphs showed similar patterns.

Because allowable delay times often occur due to precedence constraints, commu-
nication intensive applications tend to be scheduled with better robustness as shown
in Fig. 7c.

6 Conclusions

Resources in VCSs cannot be assumed to be reliable particularly in terms of perfor-
mance. Therefore, the robustness of output schedules is an important quality of ser-
vice consideration. We have addressed this issue in the context of task scheduling for
VCSs, and presented RMAX and RMXMN, robust scheduling heuristics for dynamic

176 Y.C. Lee et al.

Fig. 6 Robustness of schedules
generated by different heuristics
with respect to different
application types. (a) Laplace.
(b) FFT. (c) LU-decomposition

(a)

(b)

(c)

Robust task scheduling for volunteer computing systems 177

Fig. 7 Robustness of schedules
generated by different heuristics
with respect to different CCRs.
(a) CCR = 0.1. (b) CCR = 1.0.
(c) CCR = 10.0

(a)

(b)

(c)

178 Y.C. Lee et al.

VCSs based on a proactive reallocation scheme. The maximization of allowable de-
lay time for a given output schedule can be an effective technique to improve the
robustness of the schedule in the presence of performance perturbations. Our exten-
sive experiments verified this claim. Another significant characteristic of RMAX and
RMXMN is that their performance in terms of makespan is also quite competitive,
especially compared with HEFT.

We plan to extend the work in this study to more comprehensive robust scheduling
taking into account the availability of resources (e.g., resource failures), as resources
in VCSs can join and disconnect at any time without advance notice. Task replication
can be an effective technique to deal with this resource reliability issue and also to
ensure successful completion of applications. However, there are a number of com-
plex problems involved with this technique, such as identifying candidate tasks for
replication and determining the number of replicas.

Acknowledgements Professor H.J. Siegel’s work is supported by the USA National Science Founda-
tion (NSF) under grants CNS-0615170 and CNS-0905399, and by the Colorado State University George
T. Abell Endowment. Professor A.Y. Zomaya’s work is supported by an Australian Research Grant
DP0667266.

Appendix

Table 4 Table of acronyms
Acronym Full term

VC volunteer computing

VCS volunteer computing system

DAG directed acyclic graph

MIP most influential parent

CP critical path

EST earliest start time

EFT earliest finish time

AST actual start time

AFT actual finish time

CCR communication to computation ratio

LST latest start time

LFT latest finish time

ALST actual latest start time

ALFT actual latest finish time

RR robustness ratio

MCTF most critical task first

MCPF most critical path first

SSDR scheduling scheme based on dedication rate

MRR minimum robustness rate

MIR makespan increase rate

HEFT heterogeneous earliest finish time

Robust task scheduling for volunteer computing systems 179

References

1. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D (2002) SETI@home: an experiment in
public-resource computing. Commun ACM 45(11):56–61

2. Folding@home (2009) http://folding.stanford.edu/
3. Einstein@Home (2009) http://einstein.phys.uwm.edu/
4. Darbha S, Agrawal DP (1998) Optimal scheduling algorithm for distributed-memory machines. IEEE

Trans Parallel Distrib Syst 9(1):87–95
5. Zomaya AY, Ward C, Macey BS (1999) Genetic scheduling for parallel processor systems: compara-

tive studies and performance issues. IEEE Trans Parallel Distrib Syst 10(8):795–812
6. Topcuouglu H, Hariri S, Wu M-Y (2002) Performance-effective and low-complexity task scheduling

for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274
7. Lee YC, Zomaya AY (2008) A novel state transition method for metaheuristic-based scheduling in

heterogeneous computing systems. IEEE Trans Parallel Distrib Syst 19(9):1215–1223
8. Lee YC, Subrata R, Zomaya AY (2009) On the performance of a dual-objective optimization model

for workflow applications on grid platforms. IEEE Trans Parallel Distrib Syst 20(9):1273–1284
9. Shivle S, Sugavanam P, Siegel HJ, Maciejewski AA, Banka T, Chindam K, Dussinger S, Kutruff A,

Penumarthy P, Pichumani P, Satyasekaran P, Sendek D, Smith J, Sousa J, Sridharan J, Velazco J (2005)
Mapping subtasks with multiple versions on an ad hoc grid. Parallel Comput 31(7):671–690. Special
Issue on Heterogeneous Computing

10. Shivle S, Siegel HJ, Maciejewski AA, Sugavanam P, Banka T, Castain R, Chindam K, Dussinger S,
Pichumani P, Satyasekaran P, Saylor W, Sendek D, Sousa J, Sridharan J, Velazco J (2006) Static allo-
cation of resources to communicating subtasks in a heterogeneous ad hoc grid environment. J Parallel
Distrib Comput 66(4):600–611. Special Issue on Algorithms for Wireless and Ad-hoc Networks

11. Braun TD, Siegel HJ, Maciejewski AA, Hong Y (2008) Static resource allocation for heterogeneous
computing environments with tasks having dependencies, priorities, deadlines, and multiple versions.
J Parallel Distrib Comput 68(11):1504–1516

12. Ali S, Maciejewski AA, Siegel HJ, Kim J-K (2004) Measuring the robustness of a resource allocation.
IEEE Trans Parallel Distrib Syst 15(7):630–641

13. Smith J, Briceño LD, Maciejewski AA, Siegel HJ, Renner T, Shestak V, Ladd J, Sutton A, Janovy D,
Govindasamy S, Alqudah A, Dewri R, Prakash P (2007) Measuring the robustness of resource alloca-
tions in a stochastic dynamic environment. In: Proc international parallel and distributed processing
symposium (IPDPS 2007), Mar 2007

14. Chtepen M, Claeys FHA, Dhoedt B, De Turck F, Demeester P, Vanrolleghem PA (2009) Adaptive task
checkpointing and replication: toward efficient fault-tolerant grids. IEEE Trans Parallel Distrib Syst
20(2):180–190

15. Ali S, Kim J-K, Siegel HJ, Maciejewski AA (2008) Static heuristics for robust resource allocation of
continuously executing applications. J Parallel Distrib Comput 68(8):1070–1080

16. Sugavanam P, Siegel HJ, Maciejewski AA, Oltikar M, Mehta A, Pichel R, Horiuchi A, Shestak V,
Al-Otaibi M, Krishnamurthy Y, Ali S, Zhang J, Aydin M, Lee P, Guru K, Raskey M, Pippin A (2007)
Robust static allocation of resources for independent tasks under makespan and dollar cost constraints.
J Parallel Distrib Comput 67(4):400–416

17. Mehta AM, Smith J, Siegel HJ, Maciejewski AA, Jayaseelan A, Ye B (2007) Dynamic resource allo-
cation heuristics that manage tradeoff between makespan and robustness. J Supercomput 42(1):33–58.
Special Issue on Grid Technology

18. Shestak V, Smith J, Maciejewski AA, Siegel HJ (2008) Stochastic robustness metric and its use for
static resource allocations. J Parallel Distrib Comput 68(8):1157–1173

19. Deb K, Gupta H (2006) Introducing robustness in multi-objective optimization. Evol Comput
14(4):463–494

20. Qin X, Jiang H (2005) A dynamic and reliability driven scheduling algorithm for parallel real-time
jobs executing on heterogeneous clusters. J Parallel Distrib Comput 65(8):885–900

21. Dongarra J, Jeannot E, Saule E, Shi Z (2007) Bi-objective scheduling algorithms for optimizing
makespan and reliability on heterogeneous systems. In: Proc 19th annual ACM symposium on parallel
algorithms and architectures (SPAA’07), 2007, pp 280–288

22. Dogan A, Ozguner F (2002) Matching and scheduling algorithms for minimizing execution time
and failure probability of applications in heterogeneous computing. IEEE Trans Parallel Distrib Syst
13(3):308–323

http://folding.stanford.edu/
http://einstein.phys.uwm.edu/

180 Y.C. Lee et al.

23. Benoit A, Hakem M, Robert Y (2008) Fault tolerant scheduling of precedence task graphs on het-
erogeneous platforms. In: Proc international parallel and distributed processing symposium (IPDPS),
2008

24. Byun E, Choi S, Baik M, Hwang C, Park C, Jung SY (2005) Scheduling scheme based on dedica-
tion rate in volunteer computing environment. In: Proc 4th international symposium on parallel and
distributed computing (ISPDC), 2005, pp 234–241

25. Wu M-Y, Gajski DD (1990) Hypertool: a programming aid for message-passing systems. IEEE Trans
Parallel Distrib Syst 1(3):330–343

26. Lord RE, Kowalik JS, Kumar SP (1983) Solving linear algebraic equations on an MIMD computer.
J ACM 30(1):103–117

27. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge

Young Choon Lee received the Ph.D. degree in problem-centric
scheduling in heterogeneous computing systems from the University
of Sydney in 2008. He is currently with the Centre for Distributed and
High Performance Computing, School of Information Technologies.
His current research interests include scheduling strategies for hetero-
geneous computing systems, nature-inspired techniques, and parallel
and distributed algorithms. He is a member of the IEEE and the IEEE
Computer Society.

Albert Y. Zomaya is currently the Chair Professor of High Perfor-
mance Computing and Networking in the School of Information Tech-
nologies, The University of Sydney. He is also the Director for the
newly established Sydney University Centre for Distributed and High
Performance Computing. Prior to joining Sydney University he was a
Full Professor in the Electrical and Electronic Engineering Department
at the University of Western Australia, where he also led the Paral-
lel Computing Research Laboratory during the period 1990–2002. He
is the author/co-author of seven books, more than 350 publications in
technical journals and conferences, and the editor of eight books and
eight conference volumes. He is currently an associate editor for 16
journals, the Founding Editor of the Wiley Book Series on Parallel and
Distributed Computing and a Founding Co-Editor of the Wiley Book
Series on Bioinformatics. Professor Zomaya was the Chair the IEEE
Technical Committee on Parallel Processing (1999–2003) and currently

serves on its executive committee. He also serves on the Advisory Board of the IEEE Technical Commit-
tee on Scalable Computing and IEEE Systems, Man, and Cybernetics Society Technical Committee on
Self-Organization and Cybernetics for Informatics, and is a Scientific Council Member of the Institute for
Computer Sciences, Social–Informatics, and Telecommunications Engineering (in Brussels). He received
the 1997 Edgeworth David Medal from the Royal Society of New South Wales for outstanding contri-
butions to Australian Science. Professor Zomaya is also the recipient of the Meritorious Service Award
(in 2000) and the Golden Core Recognition (in 2006), both from the IEEE Computer Society. He is a
Chartered Engineer (CEng), a Fellow of the American Association for the Advancement of Science, the
IEEE, the Institution of Electrical Engineers (UK), and a Distinguished Engineer of the ACM. His re-
search interests are in the areas of high performance computing, parallel algorithms, mobile computing,
and bioinformatics.

Robust task scheduling for volunteer computing systems 181

Howard Jay Siegel was appointed the Abell Endowed Chair Dis-
tinguished Professor of Electrical and Computer Engineering at Col-
orado State University (CSU) in 2001, where he is also a Professor
of Computer Science. He is the Director of the CSU Information Sci-
ence and Technology Center (ISTeC), a university-wide organization
for promoting, facilitating, and enhancing CSU’s research, education,
and outreach activities pertaining to the design and innovative applica-
tion of computer, communication, and information systems. From 1976
to 2001, he was a professor at Purdue University. Professor Siegel is a
Fellow of the IEEE and a Fellow of the ACM. He received a B.S. degree
in electrical engineering and a B.S. degree in management from the
Massachusetts Institute of Technology (MIT), and the M.A., M.S.E.,
and Ph.D. degrees from the Department of Electrical Engineering and
Computer Science at Princeton University. He has co-authored over 370
technical papers. His research interests include robust computing sys-

tems, resource allocation in computing systems, heterogeneous parallel and distributed computing and
communications, parallel algorithms, and parallel machine interconnection networks. He was a Coeditor-
in-Chief of the Journal of Parallel and Distributed Computing, and was on the Editorial Boards of both
the IEEE Transactions on Parallel and Distributed Systems and the IEEE Transactions on Computers. He
was Program Chair/Co-Chair of three major international conferences, General Chair/Co-Chair of seven
international conferences, and Chair/Co-Chair of five workshops. He is a member of the Eta Kappa Nu
electrical engineering honor society, the Sigma Xi science honor society, and the Upsilon Pi Epsilon com-
puting sciences honor society. He has been an international keynote speaker and tutorial lecturer, and has
consulted for industry and government. For more information, please see www.engr.colostate.edu/~hj.

http://www.engr.colostate.edu/~hj

	Robust task scheduling for volunteer computing systems
	Abstract
	Introduction
	Models
	System model
	Application model
	Robustness model
	Scheduling model

	Related work
	Robust scheduling heuristics
	RMAX
	RMXMN

	Performance evaluation
	Experimental settings
	Results

	Conclusions
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

